
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is a copy of the final published version of a paper published via gold open access
in International Journal on Software Tools for Technology Transfer.

This open access article is distributed under the terms of the Creative Commons
Attribution Licence (http://creativecommons.org/licenses/by/4.0/) which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85886

Published paper

Lomuscio, A.R., Qu, H. and Raimondi, F. (2015) MCMAS: an open-source model
checker for the verification of multi-agent systems. International Journal on Software
Tools for Technology Transfer. Doi: 10.1007/s10009-015-0378-x

http://creativecommons.org/licenses/by/4.0/
http://eprints.whiterose.ac.uk/85886

Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-015-0378-x

REGULAR PAPER

MCMAS: an open-source model checker for the verification
of multi-agent systems

Alessio Lomuscio1 · Hongyang Qu2 · Franco Raimondi3

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We present MCMAS, a model checker for the
verification of multi-agent systems. MCMAS supports effi-
cient symbolic techniques for the verification of multi-agent
systems against specifications representing temporal, epis-
temic and strategic properties. We present the underlying
semantics of the specification language supported and the
algorithms implemented in MCMAS, including its fair-
ness and counterexample generation features. We provide
a detailed description of the implementation. We illustrate
its use by discussing a number of examples and evaluate its
performance by comparing it against other model checkers
for multi-agent systems on a common case study.

Keywords Verification · Multi-agent systems · Model
checking

1 Introduction

Model checking [15] is widely recognised as one of the lead-
ing logic-based techniques for the verification of reactive
systems [54]. In this paradigm, a system S is encoded as a

B Alessio Lomuscio
A.Lomuscio@imperial.ac.uk

Hongyang Qu
h.qu@sheffield.ac.uk

Franco Raimondi
f.raimondi@mdx.ac.uk

1 Department of Computing, Imperial College London,
London, UK

2 Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, UK

3 School of Science and Technology, Middlesex University,
London, UK

transition system, or model, MS by means of a programme
in a dedicated modelling language such as reactive mod-
ules [1] or NuSMV [13]. A specification P of the system is
represented as a logical formula φP . Verifying whether the
system S satisfies the specification P is encoded as the prob-
lem of checking whether the model MS satisfies the logical
formula φP , formally written as MS |� φP . Several speci-
fications of reactive systems, including liveness, safety and
several specification patterns [20] of interest, can be encoded
in discrete temporal logic, either in its linear variant LTL,
or in its branching version CTL. Well-known extensions to
this approach include employing real-time and probabilistic
specifications [40,43].

The fundamental challenge in model checking is the so-
called state-space explosion, i.e. the fact that the state space
of a system grows exponentially with the number of variables
employed to describe it. Various techniques have been devel-
oped over the years to tame this difficulty including Binary
Decision Diagrams, abstraction, bounded model checking,
induction, and assume–guarantee reasoning, thereby result-
ing in systems with state spaces of 1025 and beyond to be
verifiable.

While this approach has proven successful for a variety
of systems, including reactive and embedded systems as
well as hardware designs, multi-agent systems (MAS) are
often specified using languages strictly stronger than plain
temporal logic. MAS are distributed systems whose com-
ponents, or agents, act autonomously to meet their private
and joint objectives [71]. MAS are typically specified by
asserting the intended evolution of high-level properties of
the agents, including their knowledge [24], their beliefs [32],
their intentions [18], and obligations [35]. This follows the
successful tradition in MAS-based approaches that involves
ascribing high-level attitudes to highly autonomous systems
to better predict and specify their resulting behaviours [55].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0378-x&domain=pdf

A. Lomuscio et al.

Specifically, epistemic logic [24], or logic of knowledge,
has provided a natural and intuitive but yet formally sound
and computationally attractive, framework for reasoning
about security protocols [30], agreement protocols [66],
knowledge-bases, etc. By adopting epistemic modalities as
primitives, one can naturally express both private and col-
lective (common, or distributed) knowledge of the agents in
the system. For example, a security requirement concern-
ing privacy or secrecy in a system run can be translated
into a specification stating that no agent eventually knows
the fact in question [64]. Similarly, mutual authentication,
is naturally expressed by stating that a principal knows that
another principal knows that some key is shared [5]. Sim-
ilarly, an epistemic account can provide a natural set of
specifications for cache-coherence protocols [4]. These are
only some examples; we refer to the specialised literature for
more examples [31,64].

It is therefore compelling to extend traditional model
checking approaches so that they can support specifica-
tions that include agent-based features. However, these are
often sophisticated modal logics that may involve tailored
fixed-points computations. So, novel labelling algorithms
evaluating agent-based modalities need to be defined and
integrated with those for the temporal logics of interest.
In addition, since agent-based logics traditionally come
equipped with a semantics that is finer-grained than plain
Kripke models for temporal logic, input languages for the
systemdescription also need to be tuned to the needs ofMAS.
These include having an intuitive description of the states,
actions, local protocols and local evolutions. These consid-
erations suggest that adapting an existing model checking
toolkit to the needs of the verification of MAS specified by
epistemic and other logics inspired by MAS is not a simple
exercise and may, in fact, result in more effort than building
a dedicated one.

In this paper, we describe MCMAS, a model check-
ing toolkit for the verification of MAS specified through a
range of agent-based logics. MCMAS uses Ordered Binary
Decision Diagrams (OBDDs, [7]) for the symbolic repre-
sentation of state spaces and dedicated algorithms for the
computation of a number of epistemic operators encoding
private and group knowledge and Alternating-time Tempo-
ral Logic (ATL) operators. MAS are described in MCMAS
by means of Interpreted Systems Programming Language
(ISPL) programs,whose semantics is close to interpreted sys-
tems, a popular framework in temporal-epistemic logic [24].
MCMAS is equipped with an Eclipse-based plug-in for
coding support and offers a number of features typical of
advanced model checkers, including the graphical represen-
tation of counterexamples and witnesses, as well as fairness
support. MCMAS is released as open source [68] and has
been used in several research projects worldwide. We here
presentMCMASversion 1.2.2,which extends a previous ver-

sion [47] by means of more efficient algorithms to compute
the state space and the labelling of formulas. Also, among
other new features, more sophisticated treatment of uniform
strategies, counterexamples and fairness constraints is now
supported.

The rest of the paper is organised as follows. In Sect. 2, we
provide the formal underpinnings of the technique the model
checker implements by giving the syntax and semantics of the
logics employed aswell as the algorithms implemented in the
checker. In Sect. 3 we describe ISPL, the input to the model
checker. Section 4 describes the implementation and gives
a few examples. Section 5 focuses on specific applications
and reports experimental results. Section 6 describes related
work and concludes the paper.

2 Symbolic model checking multi-agent systems

In this section, we give the theoretical foundations of
MCMAS. We succinctly describe the semantics of inter-
preted systems in Sect. 2.1. We give the syntax of ATLK in
Sect. 2.2 and providemodel checking algorithms in Sect. 2.3.
We conclude in Sect. 2.4 by presenting the OBDD-based
encodings for the algorithms.

2.1 Interpreted systems

At the heart of MCMAS and its modelling language is the
notion of interpreted system as a formalisation ofmulti-agent
systems. Interpreted systemswere popularised by Fagin et al.
[24] as a semantics for reasoning about knowledge; they can
be extended to incorporate game theoretic notions such as
those provided by ATL modalities. Here we loosely follow
the presentation given in [47], where global transitions are
given as the composition of local transitions.

We assume AP to be a set of atomic propositions and a
set of agents Ag = {Ag0, Ag1, . . . , Agn} for the system. We
often refer to Ag0 as the environment of the system.

Definition 1 (Interpreted systems) Given a set of agents Ag,
an interpreted system is a tuple I S = ({Li ,Acti , Pi , τi }i∈Ag,

I, h) where:

– Li is a finite set of possible local states for agent i .
– Acti is a finite set of possible actions for agent i .
– Pi : Li → 2Acti\∅ is a local protocol function for agent i
returning possible actions at a given local state.

– τi : Li × Act0 × · · · × Actn → Li is a determinis-
tic local transition function returning the local state for
agent i resulting from the execution of a joint action at
a given local state; we assume that every action is proto-
col compliant, i.e. if l ′i = τi (li , a0, . . . , ai , . . . , an), then
ai ∈ Pi (li) for all i ∈ Ag.

123

MCMAS: an open-source model checker...

– I ⊆ L0 × L1 ×· · ·× Ln is the set of initial global states.
– h ⊆ L0 ×· · ·× Ln × AP is a labelling relation encoding
which atomic propositions are true in which state.

We say that G = L0 × · · · × Ln is the set of possible global
states for the system and ACT = Act0×· · ·×Actn the set of
possible joint actions. For a global state g = (l0, . . . , ln) ∈ G
and any i ∈ Ag, we consider the function li : G → Li such
that li (g) = li , returning the local state of agent i in the global
state g.

Observe that interpreted systems describe finite-state sys-
tems composed of agents possibly synchronising with each
other and the environment via joint actions. Also note that
the local protocols implement the agents’ decision making
and state the conditions for the transitions in the system. We
refer to [24] for more details.

Interpreted systems naturally induceKripkemodelswhich
can be used to interpret our specification language. These are
defined as follows.

Definition 2 (Induced models) Given an interpreted system
I S = ({Li , Acti , Pi , τi }i∈Ag, I, h), the induced model of
I S (or simply the model) is a tuple MIS = (Ag, ACT,

S, T, {∼i }i∈Ag\{Ag0}, h) where:

– Ag is the set of agents of I S;
– ACT ⊆ Act0 × · · · × Actn is the set of joint actions for

the system I S;
– S ⊆ L0 × · · · × Ln is the set of global states reachable
from I via T ;

– T ⊆ S × ACT × S is a transition relation representing
the temporal evolution of the system. We assume that
T is decomposable and define the transition relation as
(s, a, s′) ∈ T iff for all i ∈ Ag we have τi (li (s), a)) =
li (s′);

– {∼i }i∈Ag\{Ag0} ⊆ S×S is the set of equivalence relations,
one for each agent but not the environment, encoding the
epistemic accessibility relations. For any i ∈ Ag\{Ag0},
we assume that (s, s′) ∈∼i iff li (s) = li (s′).

We use the notation s
a→ s′ as a shortcut for (s, a, s′) ∈

T . We use the term path to denote any sequence of states
π = (s0, s1, . . . , sn, . . .) such that, for all i ≥ 0, we have
(si , a, si+1) ∈ T for some action a ∈ ACT . Given a path
π , we denote with π(k) the state at position k. Given a set of
agents Γ ⊆ Ag and a joint action a = (a0, a1, . . . , an), we
denote with SΓ the projection of S on the local states of the
agents in Γ and with aΓ the tuple consisting of the elements
in a restricted to the agents in Γ . In this case, we say that a is
a completion for aΓ . For instance, if a = (a0, a1, a2, a3, a4)
and Γ = {1, 3}, aΓ = (a1, a3) and aAg\Γ = (a0, a2, a4).
Given Γ ⊆ Ag and ACT , the set ACTΓ denotes the set of
all tuples aΓ as above.

We say that a joint action a ∈ ACT is enabled in a state
s ∈ S if there exists a state s′ ∈ S such that (s, a, s′) ∈ T .
Similarly, given a group Γ , we say that aΓ is enabled in
a state if there exists a completion of aΓ to a joint action
a ∈ ACT such that a is enabled in that state. Note that, by
Definition 1, each component of an enabled action is locally
protocol compliant. Further note that since a local action is
always possible at any local state, the models considered are
serial, i.e. there are no deadlocks.

A strategy for agent i is a function σi : Li → 2ACTi \{∅}
such that if ai ∈ σi (li), then ai ∈ Pi (li). Given a group of
agents Γ , a strategy for Γ is a function σΓ : SΓ → 2ACTΓ \
{∅} such that σΓ (lx1, . . . , lxk) = (σx1(lx1), . . . , σxk (lxk)),
where σx1, . . . , σxk are strategies for the agents x1, . . . , xk ∈
Γ .

The strategies defined above are analogous to the non-
uniform, incomplete information, memoryless strategies
in [2]. Note that an agent (or a group of agents) adhering
to memoryless strategies with incomplete information may
perform different actions in different global states whose
local component is the same. This allows for an element of
action “guessing” that is not considered useful when reason-
ing in terms of strategic abilities. In these cases, it is more
meaningful to consider, still under incomplete information
and memoryless assumptions, deterministic uniform strate-
gies [37] of the form σi : Si → ACTΓ \∅, which restrict
the definition of strategy above by assuming that the same
action is performed in the global states in which agent i has
the same local state.

The model induced by an interpreted system is said to
be non-uniform, i.e. along its paths the agents may pick dif-
ferent actions, compatibly with their protocols, in the same
local state at different global states. To evaluate an inter-
preted system under the uniformity assumption, we consider
the various (uniform) models derived from the induced non-
uniform model in which along any path the agents select the
same action whenever they are in the same local state. As we
will see later, MCMAS supports the verification of both uni-
form and non-uniform models derived from an interpreted
system.

2.2 Syntax of ATLK and satisfaction

We use ATLK as the specification language for the agents in
the system. ATLK combines the logic ATL [2] with modal
operators to reason about the knowledge of the agents in the
system. As it is known, ATL extends the logic CTL [15]
by replacing CTL temporal operators with strategic cooper-
ation modalities expressing what state of affairs a coalition
of agents can bring about in a system, irrespective of the
actions of the other agents. A large amount of work in Artifi-
cial Intelligence andMulti-Agent Systems routinely employs
rich specifications using the concepts of what an agent, or a

123

A. Lomuscio et al.

collection of agents, knows about the system and each other
(e.g. see [24] for an introduction to the area) and what a
group of agents can collectively enforce in the system (e.g.
see [65]).We illustrate this through some scenarios in Sect. 5.

Definition 3 (Syntax of ATLK) The syntax of the logic
ATLK is defined by the following BNF expression:

φ ::= p | ¬φ | φ ∨ φ | 〈〈Γ1〉〉Xφ | 〈〈Γ1〉〉[φUφ] | 〈〈Γ1〉〉Gφ |
Kiφ | EΓ2φ | DΓ2φ | CΓ2φ,

where p is an atomic proposition in AP , i ∈ Ag \{Ag0},
Γ1 ⊆ Ag denotes a set of agents and Γ2 ⊆ Ag, Γ2 = ∅,
denotes a non-empty set of agents.

Since, differently from [2], here we work with incomplete
information, the meaning of the modalities depends on the
uniformity assumption made on the system. If we do not
assume uniformity, the reading of the ATL modalities is as
follows. The formula 〈〈Γ 〉〉Xφ expresses that the agents in Γ

can ensure that φ holds at the next state irrespective of the
actions of the agents in Ag\Γ . In other words, the agents in
Ag\Γ cannot ensure that φ is false at the next state.

The formula 〈〈Γ 〉〉Gφ conveys that it is possible that the
actions of the agents in Γ result in φ being true forever in the
future, irrespective of the actions of the agents in Ag\Γ . As
above, this means that the agents outside Γ cannot ensure φ

is not uniformly realised. Similarly, the formula 〈〈Γ 〉〉[φUψ]
signifies that the agents inΓ may be able to realiseψ at some
point in the future and to ensure that φ holds till then.

While the combination of incomplete information, knowl-
edge and ATLmodalities give rises to the readings above, we
are generally interested in evaluating what the agents have
the power to enforce by means of ATL formulas [2]. In our
setting, this is the reading of the ATL operators under the
assumption of uniformity.

In this case, the formula 〈〈Γ 〉〉Xφ is read as “group Γ has
a strategy to enforce φ in the next state (irrespective of the
actions of the agents not in Γ)”; 〈〈Γ 〉〉Gφ represents “group
Γ has a strategy to enforce φ forever in the future”; and
〈〈Γ 〉〉[φUψ] means “group Γ has a strategy to enforce that
ψ holds at some point in the future and can ensure that φ

holds until then”.
The remainingoperators are used to characterise epistemic

states of agents as in [24]. In particular, Kiφ is read as “agent i
knowsφ”, EΓ φ as “everybody in groupΓ knowsφ”, DΓ φ as
“φ is distributed knowledge inΓ ”, andCΓ φ as “φ is common
knowledge inΓ . It is known that the standard branching-time
temporal operators EX, EG, and EU can be expressed by
considering the “grand coalition of all agents”, e.g. EXφ ≡
〈〈Ag〉〉Xφ.

The satisfaction of ATLK specifications on induced mod-
els is defined recursively as follows (recall that given an

action tuple aΓ for the agents only in Γ , we write a for
any of the completions of aΓ):

Definition 4 (Satisfaction) Given a modelM=(Ag, ACT,

S, T, {∼i }i∈{1...n}, h), a state s0 ∈ S, and an ATLK formula
φ, satisfaction for φ inM at state s0, formally (M, s0) |� φ,
is recursively defined as follows.

– (M, s0) |� p iff p ∈ h(s0);
– (M, s0) |� ¬φ iff it is not the case that (M, s0) |� φ;
– (M, s0) |� φ1 ∨ φ2 iff (M, s0) |� φ1 or (M, s0) |� φ2;
– (M, s0) |� 〈〈Γ 〉〉Xφ iff there exists a strategy σΓ and an
action aΓ ∈ σΓ (s0Γ) such that for all states s1 such that

s0
a→ s1, we have (M, s1) |� φ;

– (M, s0) |� 〈〈Γ 〉〉Gφ iff there exists a strategy σΓ and an

action a1Γ ∈ σΓ (s0Γ) such that all states s1 with s0
a1→ s1

are such that there is an action a2Γ ∈ σΓ (s1Γ) such that all

states s2 with s1
a2→ s2 are such that, etc., and we have

that (M, si) |� φ, for all i ≥ 0.
– (M, s0) |� 〈〈Γ 〉〉[φ1Uφ2] iff there exists a strategy σΓ

and an action a1Γ ∈ σΓ (s0Γ) such that all states s1 with

s0
a1→ s1 are such that there is an action a2Γ ∈ σΓ (s1Γ)

such that all states s2 with s1
a2→ s2 are such that, etc., and

we have (M, s j) |� φ2, for some j ≥ 0, and (M, si) |�
φ1 for all 0 ≤ i < j .

– (M, s0) |� Kiφ iff for all s1 ∈ S we have that if s0 ∼i s1

then (M, s1) |� φ.
– (M, s0) |� EΓ φ iff for all s1 ∈ S we have that if

s0
(⋃
i∈Γ

∼i

)
s1 then (M, s1) |� φ.

– (M, s0) |� DΓ φ iff for all s1 ∈ S we have that if

s0
(⋂
i∈Γ

∼i

)
s1 then (M, s1) |� φ.

– (M, s0) |� CΓ φ iff for all s1 ∈ S we have that if

s0
(⋃
i∈Γ

∼i

)+
s1, then (M, s1) |� φ, where + denotes

the transitive closure of the relation.

We say that an interpreted system I S = ({Li , Acti , Pi ,
τi }i∈Ag, I, h) satisfies an ATLK specification φ if and only
if (MI S, si) |� φ, for all si ∈ I . We say that that interpreted
system I S satisfies an ATLK specification φ under unifor-
mity iff at least one of the models MI S induced from I S
under uniformity is such that (MI S, si) |� φ, for all si ∈ I .

The semantics above is observational. In other words, the
agents’ local states do not necessarily encode all the local
states encountered by the agent in a run. Note that a bounded
form of perfect recall can still be encoded in the seman-
tics. Observational semantics is commonly regarded as the
standard treatment of epistemic modalities [24] and it does
not increase the complexity of the model checking prob-

123

MCMAS: an open-source model checker...

lem when combined with CTL or ATL [52]. Perfect recall
semantics with ATL leads to an undecidable model checking
problem [2].

2.3 Symbolic model checking ATLK

We now define model checking algorithms for the logic
ATLK; these extend the corresponding ones for CTL [15].
The approach here presented is symbolic in that it uses
Ordered Binary Decision Diagrams (OBDDs) [7] as basic
data structures to encode sets of states and transitions.

For a given specification model, Algorithm 1 reports the
high-level structure of the recursive model checking algo-
rithm SAT (φ), returning the set of states of the model in
which φ is true.

Algorithm 1 Model checking algorithm for ATLK
Input: φ.
Output: {s ∈ S | (M, s) |� φ}.
1: if (φ is an atomic proposition) then
2: return h(φ);
3: else if (φ is ¬φ1) then
4: return (S \ SAT (φ1));
5: else if (φ is φ1 ∨ φ2) then
6: return (SAT (φ1) ∪ SAT (φ2));
7: else if (φ is Ki (φ1)) then
8: return SATK (φ1, i);
9: else if (φ is EΓ (φ1)) then
10: return SATE (φ1, Γ);
11: else if (φ is DΓ (φ1)) then
12: return SATD(φ1, Γ);
13: else if (φ is CΓ (φ1)) then
14: return SATC (φ1, Γ);
15: else if (φ is 〈〈Γ 〉〉X (φ1)) then
16: return SATAT LX (φ1, Γ);
17: else if (φ is 〈〈Γ 〉〉G(φ1)) then
18: return SATAT LG(φ1, Γ);
19: else if (φ is 〈〈Γ 〉〉[φ1Uφ2]) then
20: return SATAT LU (φ1, φ2, Γ);
21: end if

The procedures SATK , SATE , and SATD for the epis-
temic operators are described inAlgorithms 2, 3, and 4. These
take as input the sub-formula to be checked and return the
set of states satisfying the epistemic formula.

They compute the existential pre-image of the set
SAT (¬φ1)with respect to the appropriate epistemic relation,
i.e. the set of states not satisfying the epistemic formula. The
complement of this set with respect to the set of reachable
states S is the set of states satisfying the formula in question.

Algorithm 5 iteratively calculates the set of states that
can access a state not satisfying φ via a finite sequence of
epistemic relations for the agents in Γ . The complement of
this set with respect to S is equal to the set of states satisfying
CΓ φ [60].

The algorithms for the ATL operators depend on the aux-
iliary procedure AT LPRE(Γ, X) (see Algorithm 6), which
computes the set of states Y ⊆ S from which there exists a
joint action aΓ for the agents in Γ such that all action com-
pletions a of aΓ enabled at a state in Y generate a transition
to a state in X . Algorithm 7 employs this procedure directly
to compute SATAT LX , while Algorithms 8 and 9 implement
the standard fix-point algorithms.

Given the above, to compute whether an interpreted
system I S validates a formula φ (without the uniformity
assumption) we compute the induced modelMI S and check
whether I ⊆ SAT (φ). To compute whether an interpreted
system I S validates a formula φ under uniformity, we estab-
lish whether I ⊆ SAT (φ) on some MI S induced from I S
under uniformity. The labelling for models generated under
the uniformity assumption is also carried out using Algo-
rithm 1; in this case the generation of the induced models
accounts for the constraints on the actions.

Algorithm 2 SATK (φ, i) for Kiφ.
1: X = SAT (¬φ);
2: Y = {s ∈ S | ∃s′ ∈ X such that s ∼i s′};
3: return ¬Y ∩ S

Algorithm 3 SATE (φ, Γ) for EΓ φ.
1: X = SAT (¬φ);
2: Y = {s ∈ S | ∃s′ ∈ X such that ∃i ∈ Γ, s ∼i s′}
3: return ¬Y ∩ S

Algorithm 4 SATD(φ, Γ) for DΓ φ.
1: X = SAT (¬φ);
2: Y = {s ∈ S | ∃s′ ∈ X such that ∀i ∈ Γ, s ∼i s′};
3: return ¬Y ∩ S

Algorithm 5 SATC (φ, Γ) for CΓ φ.
1: X = S; Y = SAT (¬φ);
2: while X = Y do
3: X = Y ;
4: Y = {s ∈ S | ∃s′ ∈ X and ∃i ∈ Γ such that s ∼i s′};
5: end while
6: return ¬X ∩ S

2.4 Symbolic model checking and OBDDs

To verify interpreted systems against specifications in ATLK
we use the algorithms above in which operations on sets
are implemented as operations on Boolean formulae, appro-
priately encoded as Ordered Binary Decision Diagrams
(OBDDs). As an example, consider the Boolean formula

123

A. Lomuscio et al.

Algorithm 6 AT LPRE(Γ, X).
1: Z = {(s, aΓ) | s ∈ S and a ∈ ACT and ∃s′ ∈

X such that (s, a, s′) ∈ T };
2: W = {(s, aΓ) | s ∈ S and a ∈ ACT and ∃s′ ∈ S \

X such that (s, a, s′) ∈ T };
3: Y = {s | ∃a ∈ ACT such that (s, aΓ) ∈ Z \ W };
4: return Y

Algorithm 7 SATAT LX (φ, Γ) for 〈〈Γ 〉〉Xφ.
1: X = SAT (φ);
2: Y = AT LPRE(Γ, X);
3: return Y

Algorithm 8 SATAT LG(φ, Γ) for 〈〈Γ 〉〉Gφ.
1: X = SAT (φ); Z = SATφ ; Y = S;
2: while X = Y do
3: Y = X ;
4: X = Z ∩ AT LPRE(Γ, X);
5: end while
6: return Y

Algorithm 9 SATAT LU (φ1, φ2, Γ) for 〈〈Γ 〉〉[φ1Uφ2].
1: X = SAT (φ2); Z = SAT (φ1); Y = ∅;
2: while X = Y do
3: Y = X ;
4: X = Y ∪ (Z ∩ AT LPRE(Γ, X));
5: end while
6: return Y

f1(x1, x2, x3) = ¬x1 ∨ (x1 ∧ ¬x2 ∧ ¬x3), where x1, x2, x3
are Boolean variables. The truth table of this formula is eight
lines long. Alternatively, f1 can be represented by means of
a binary tree with root node x1, as in Fig. 1, where the leaves
represent the truth value of f1. This tree can be simplified
as in Fig. 2. Notice that the simplified tree only has 5 nodes
instead of 15. In general, the reduced tree can be orders of
magnitude smaller than the truth table for a given Boolean
formula.

Symbolic model checking exploits the compression capa-
bilities of OBDDs to represent large state spaces efficiently.
A Boolean formula can represent a state in a model. As an
example, consider a model in which S = {s0, s1, . . . , s7}.
The Boolean formula f0(x1, x2, x3) = x1 ∧ x2 ∧ x3 can
be used to encode s0, the Boolean formula f1(x1, x2, x3) =
¬x1 ∧ x2 ∧ x3 to encode s1, etc. The number of Boolean
variables required to encode a set S grows as O(log2(|S|)).

The set of states {s0, s1} can be represented by the dis-
junction of f0 with f1. Boolean formulae can be encoded by
means of OBDDs; Algorithm 1 and all its associated proce-
dures can operate on OBDDs, including the strategic (ATL)
and epistemic modalities. We refer to [60] for more details
about the encoding process.

x1

x2

x3

00

0 1

x3

01

0 1

0 1
x2

x3

11

0 1

x3

11

0 1

0 1

0 1

Fig. 1 The evaluation tree for f1(x1, x2, x3) = ¬x1∨(x1∧¬x2∧¬x3)

x1

x2

x3

01

1

0 1

1

10

Fig. 2 The OBDD for f1(x1, x2, x3) = ¬x1 ∨ (x1 ∧ ¬x2 ∧ ¬x3)

3 Modelling multi-agent systems in ISPL

In this section, we describe Interpreted Systems Program-
ming Language (ISPL), the language used to model MAS
within MCMAS. ISPL is strongly based on Interpreted Sys-
tems as defined in Sect. 2. In this section, we present ISPL’s
constructs and give its semantics.

An ISPL program describes a multi-agent system as com-
posed of a number of agents and an environment. Agents’
definitions in ISPL closely follow those of agents in Def-
inition 1. To describe an agent in ISPL we declare the
following components. Local states are private, internal
states of the agents, declared by means of variables, and
cannot be observed by the other agents. Agents interact with
each other and the environment bymeans of publicly observ-
able local actions. Actions are performed in accordance with
a local protocol representing the agent’s decision-making
process. Local states change value over time following a local
evolution function, which returns the next local state on the
basis of the current local state and the joint actions performed
by all the other agents at a given instant. ISPL’s structure with
actions and protocols is deliberately based on interpreted sys-
tems’ semantics which constitute a widely used framework
for describing MAS.

We describe ISPL’s syntax using a simple example, the bit
transmission protocol [24]. In this protocol, a Sender agent
intends to deliver a message (the value of a bit) to a Receiver
over an unreliable communication channel. The channel may

123

MCMAS: an open-source model checker...

1 Agent Sender
2 Vars:
3 bit : {b0, b1}; -- The bit can be either 0 or 1
4 ack : boolean; -- True when the ack received
5 end Vars
6 Actions = {sb0, sb1, epsilon};
7 Protocol:
8 bit=b0 and ack=false : {sb0};
9 bit=b1 and ack=false : {sb1};
10 ack=true : {epsilon};
11 end Protocol
12 Evolution:
13 ack=true if (ack=false) and
14 (((Receiver.Action=sendack) and
15 (Environment.Action=sendSR))
16 or
17 ((Receiver.Action=sendack) and
18 (Environment.Action=sendR))
19);
20 end Evolution
21 end Agent

Fig. 3 A simple ISPL example: the Sender Agent

randomly drop messages in either direction, but it does not
modify the content of messages. To guarantee communica-
tion, the Sender keeps sending the same bit to the Receiver
until it receives an acknowledgement; at this point the Sender
stops sending the bit. The Receiver performs no action until a
bit is received, and keeps sending acknowledgements there-
after.

Figure 3 reports the modelling of the agent Sender in
ISPL. The declaration starts with the keyword Agent fol-
lowed by a string identifier (the name of the agent). The
variables declared in the Vars section (lines 2–5) define the
local states of the agent. In this example, the Sender has four
possible local states, corresponding to the possible combina-
tions of the two variables bit and ack. ISPL also supports
the declaration of bounded integers of the formx : a..b;
where a and b are two integer numbers (e.g. x: 1..4;).
Actions are declared as an enumeration of identifiers (line
6). The Protocol section (lines 7–11) associates actions
to sets of local states; for instance, line 10 represents the
fact that when the variable ack is true, the agent must
perform the action epsilon. Sets of local states are charac-
terised by Boolean conditions on local states. As an example,
consider the Boolean condition ack=true on the vari-
able ack: this corresponds to two local states, one where
bit=b0 and another where bit=b1. Boolean expressions
can also involve arithmetic expressions for integer variables
(e.g. x>2 and x<5) and bit expressions for Boolean
variables.

Non-deterministic protocols are encoded in ISPL either
by specifying more than one target action (see lines 7–10
in Fig. 5), or by giving different actions for overlapping
conditions on local states. Observe that, differently from
knowledge-basedprogrammes [25], actions in ISPLare spec-
ified on conditions on local states and not on the explicit
knowledge that agents have. The ISPL section Evolution

1 Agent Receiver
2 Vars:
3 state : {empty, r0, r1};
4 end Vars
5 Actions = {epsilon,sendack};
6 Protocol:
7 state=empty : {epsilon};
8 (state=r0 or state=r1): {sendack};
9 end Protocol
10 Evolution:
11 state=r0 if (((Sender.Action=sb0) and (state=empty)
12 and (Environment.Action=sendSR)) or
13 ((Sender.Action=sb0) and (state=empty)
14 and (Environment.Action=sendS)));
15 state=r1 if (((Sender.Action=sb1) and (state=empty)
16 and (Environment.Action=sendSR)) or
17 ((Sender.Action=sb1) and (state=empty)
18 and (Environment.Action=sendS)));
19 end Evolution
20 end Agent

Fig. 4 A simple ISPL example: the Receiver Agent

1 Agent Environment
2 Vars:
3 state : {S,R,SR,none};
4 end Vars
5 Actions = {sendS,sendSR,sendR,sendNone};
6 Protocol:
7 state=S: {sendS,sendSR,sendR,sendNone};
8 state=R: {sendS,sendSR,sendR,sendNone};
9 state=SR: {sendS,sendSR,sendR,sendNone};
10 state=none: {sendS,sendSR,sendR,sendNone};
11 end Protocol
12 Evolution:
13 state=S if (Action=sendS);
14 state=R if (Action=sendR);
15 state=SR if (Action=sendSR);
16 state=none if (Action=sendNone);
17 end Evolution
18 end Agent

Fig. 5 A simple ISPL example: the Environment Agent

describes how the local states of an agent evolve over time
(lines 12–20 of Fig. 3), using a syntax similar to the one
employed in NuSMV [13]. For instance, lines 13–19 pre-
scribe that the next value of the variable ack will be true
if the current value of ack is false, agent Receiver is
performing the action sendack (see Fig. 4), and the Envi-
ronment agent is performing either the action sendSR or
sendR (see Fig. 5).

Figure 4 reports the full ISPL code for the Receiver agent.
In this example, the unreliable channel is modelled by means
of the Environment. Figure 5 reports the ISPL code for the
Environment; notice (lines 7–10) that its protocol is non-
deterministic.

The environment is described using the keyword
Environment. One of its features is that some of its local
states can be observed by other agents. As an example, the
section Obsvars in Fig. 6 lists the variables that are observ-
able byall the agents in the system.The variables in theVars
section of the environment, instead, can be observed by an

123

A. Lomuscio et al.

1 Agent Environment
2 Obsvars:
3 v3: boolean;
4 end Obsvars
5 Vars:
6 v1: boolean;
7 v2: boolean;
8 end Vars
9 [...]
10 end Agent
11
12 Agent A1
13 Lobsvars = {v1};
14 Vars:
15 [...]
16 end Agent
17
18 Agent A2
19 Lobsvars = {v2};
20 Vars:
21 [...]
22 end Agent

Fig. 6 A simple ISPL example: observable and partially observable
variables

1 Evaluation
2 recbit if ((Receiver.state=r0) or (Receiver.state=r1));
3 recack if ((Sender.ack = true));
4 bit0 if ((Sender.bit=b0));
5 bit1 if ((Sender.bit=b1));
6 envworks if (Environment.state=SR);
7 end Evaluation

Fig. 7 A simple ISPL example: atomic variables

agent only if they appear in theLobsvars definition for that
agent. For instance, agent A1 in Fig. 6 can observe variable
v1 (but not v2), and agent A2 can observe variable v2 (but
not v1). Both agents can observe variable v3. This feature
enables faster communication and synchronisation between
the agents and the environment.

Following the agents’ declarations, an ISPL model con-
tains the section Evaluation declaring the atomic vari-
ables for the model. Figure 7 reports the definition of five
atomic variables recbit, recack, bit0, bit1,
envworks. The Boolean condition appearing on the right-
hand side of each line denotes the set of global states, where
the propositions hold. The specifications to be verified (see
theFormulae section in Fig. 8) are built on the propositions
defined here.

The description of a system of agents is completed by
providing a set of initial states, an optional set of fairness
conditions, and the set of formulae to be verified. As shown
in Fig. 8, the set of initial states is declared in the section
InitStates by means of a Boolean function imposing
conditions on local states. The Fairness section reports
a list of Büchi fairness constraints, expressed as Boolean
formulae. In the example of Fig. 8, it is required that the
proposition envworks, which captures the fact the Envi-
ronment is transmitting messages in both directions, must be
true infinitely often: this means that the channel cannot block
messages indefinitely. Finally, the section Formulae con-

1 InitStates
2 ((Sender.bit=b0) or (Sender.bit=b1)) and
3 (Receiver.state=empty) and (Sender.ack=false) and
4 (Environment.state=none);
5 end InitStates
6
7 Fairness
8 envworks;
9 end Fairness
10
11 Groups
12 g1 = {Sender,Receiver};
13 end Groups
14
15 Formulae
16 AG((recack and bit0) -> K(Sender,(K(Receiver,bit0))));
17 AG((recack and bit0) -> GCK(g1,bit0)));
18 end Formulae

Fig. 8 A simple ISPL example: initial states, groups, and fairness con-
ditions

tains the specifications to be checked. These are formulas in
the logic ATLK; since ATL subsumes CTL, formulas in the
logics CTL or CTLK [59] are also supported. As an exam-
ple, the first formula in Fig. 8 states that it is always true that,
when recack is true and the value of the bit is 0, then the
agent Sender knows that the agent Receiver knows that the
value of the bit is 0. The second specification is stronger and
states that when recack is true and the value of the bit is 0,
it is common knowledge in the group g1 that the value of the
bit is 0. The group g1 is defined above the specifications by
the keyword g1, listing the groups of agents to be considered
in the epistemic specifications for the model.

Semantics of ISPL programs Any ISPL program P
uniquelydenotes an interpreted system I SP = ({Li , Acti , Pi ,
τi }i∈Ag, I), obtained by instantiating the corresponding ele-
ments in I SP by means of the corresponding declarations in
P . More formally:

– The set of agents in I SP is the set of agents declared in
P , where the environment in P is mapped to Ag0 in I SP .

– For each agent i , the set of possible local states Li in I SP
is defined by taking the Cartesian product of the corre-
sponding sets defined for the local variables for agent i
in P (Section Vars).

– For each agent i , the set Acti is the corresponding set of
actions agent i in the programme P (Section Actions).

– For each agent i , the protocol Pi is defined by the list
of Boolean conditions in the Section Protocol for the
agent i in the programme P .

– For each agent i , the function τi is defined by the list of
Boolean conditions in the Section Evolution for the
agent i in the programme P .

– The set of global initial states I is defined by evaluating
the Boolean conditions in InitStates in P .

Given an ISPL program P and the interpreted system
I SP denoted by P , we construct the induced model MISP
by applying Definition 2 to I SP and by taking the evalu-

123

MCMAS: an open-source model checker...

ation h defined by the Boolean conditions in P (Section
Evaluation). Formally, an ISPL program P satisfies a
specification φ (given in section Formulae) if MISP |� φ.
Note that since the semantics of ISPL programs is defined in
terms of their corresponding interpreted system, their evo-
lution is deterministic. Also observe that the composition of
the different agents is synchronous via joint actions as in
interpreted systems.

As described in Sect. 2.1, under uniformity, an interpreted
system induces not just one but a set of uniform models. In
this case, we say that an ISPL program P satisfies φ under
uniform semantics if there exists an induced uniform model
MISP such that MISP |� φ.

As an example, the model generated by the ISPL program
for the bit transmission protocol is depicted in Fig. 9, where:

– Global states are represented by rectangles; only the
local states of the Sender and Receiver are reported,
for readability the Environment is not. For instance, the
global state((b0,false),empty) in the top-left cor-
ner encodes a state in which variable bit for the Sender
has value r0, variable ack is false, and variable state
for the Receiver is empty.

– The temporal transitions are represented by solid arrows
and for brevity are labelled with the Environment action
only (the Sender’s and Receiver’s actions are derived
deterministically from the protocol).

– The epistemic relations for the Sender are represented by
dotted lines; dashed lines represent the epistemic rela-
tions for the Receiver. All reflexive relations are omitted.

It can be manually checked that the first specification
given is satisfied on the model; so the programme satisfies

it; whereas the second is false. This is in line with work in
epistemic logic that establishes that common knowledge can-
not be obtained in the presence of a faulty communication
channel [24].

4 MCMAS: implementation and usage

MCMAS is implemented in C++ and can be compiled from
its source code on most platforms (including Windows,
Linux, Mac, Raspberry Pi and various other UNIX systems).
The build recognises most architectures automatically. Pre-
compiled versions of the tool are also available from the
support pages [68]. In what follows, we describe MCMAS
ver 1.2.2, released in March 2015.

4.1 Implementation details

To illustrate the tool, we discuss a number of implementa-
tion choices that affect the overall performance ofMCMAS.
In particular, we consider the following issues: (1) vari-
able ordering in OBDDs; (2) computation of the set of
reachable states; (3) construction of the temporal and epis-
temic transition relations; (4) consistency checks of the input
model.

4.1.1 Variable ordering in OBDDs

The size of an OBDD is very sensitive to the choice of the
ordering for its Boolean variables. A good ordering can use
less memory and speed up OBDD operations by orders of
magnitude with respect to an alternative one. Finding a sta-
tic ordering that generates a compact OBDD representation

((b0,false),empty) ((b0,false),r0) ((b0,true),r0)

((b1,false),empty) ((b1,false),r1) ((b1,true),r1)

SendS

SendSRSendR

SendNone SendR

SendSRSendS

SendNone Send*

SendS

SendSRSendR

SendNone SendR

SendSRSendS

SendNone

Send*

Fig. 9 The model generated from the ISPL code for the bit transmis-
sion protocol. Solid lines are temporal transitions labelled with actions
(only the Environment action is reported); the dotted lines represent the

epistemic accessibility relations for the Sender; the dashed lines rep-
resent the epistemic accessibility relations for the Receiver. Reflexive
links and the local states of the environment are omitted

123

A. Lomuscio et al.

for representing the state space and the transition relation is
challenging. Dynamic reordering is a useful technique aimed
at finding a good compromise between continuous variable
reordering and efficiency with the aim of reducing memory
consumption during model checking.

In some cases when the overhead of dynamic reorder-
ing cannot be offset by its savings, it may be more
efficient to disable it completely, a feature supported by
MCMAS. It is normally advantageous to provide heuris-
tics for dynamic reordering tailored to specific models to
reduce the overhead of evaluating all the possible orderings.
The CUDD library [61] used by MCMAS allows group-
ing OBDD variables so that the order of variables in the
same group is not changed during reordering. This approach
reduces the number of orderings that need to be explored.
MCMAS provides four different initial OBDD grouping
strategies:

1. Boolean variables for current and successor states are
interleaved. The resulting ordering is: (v0, v

′
0) · · · (vn,

v′
n)X0, . . . Xn , where v0, . . . vi0 are variables encoding
the local states for agent 0 and the other agents, and
primed variables encode successor states. The variables
X0 . . . Xn encode actions and are grouped at the end.

2. A variation of the above whereby variables for actions
are interleaved with states: (v0, v′

0)X0 · · · (vn, v
′
n)Xn .

3. For each agent, all the variables for the current state
are grouped at the beginning, followed by the vari-
ables used to encode actions, followed by primed vari-
ables to encode successor states: (v0, . . . , vi0)X0(v

′
0,

. . . , v′
i0
) . . . (vin N+1, . . . , vn)Xn(viN+1, . . . , vn),

4. A variation of the case above whereby variables for the
actions follow the variables for the states: (v0, . . . , vi0)

(v′
0, . . . , v

′
i0
) X0 · · · (viN+1, . . . , vn) (viN+1, . . . , vn) Xn .

The first two strategies are similar to those used by
NuSMVandothermodel checkers. The defaultOBDDorder-
ing strategy in MCMAS is the second one reported above,
but, as we show later, somemodels benefit from the third and
fourth heuristics.

4.1.2 Computing the set of reachable states

Let I S be an interpreted system and MIS = (Ag, ACT,

S, T, {∼i }i∈{1...n}, h) its induced model. In what follows the
function image(x, T) returns the set of states accessible from
x under the transition relation T . MCMAS uses OBDDs to
represent states and functions; the corresponding operations
are conducted directly on OBDDs.

Algorithm 10 Three approaches to compute reachable states
1: S ⇐ 0; q ⇐ I ;
2: while S = q do
3: S ⇐ q; q ⇐ S ∪ image(S, T);
4: end while

1: S ⇐ 0; n ⇐ I ; q ⇐ I
2: while S = q do
3: S ⇐ q; n = image(n, T); q ⇐ S ∪ n;
4: end while

1: S ⇐ 0; n ⇐ I ; q ⇐ I
2: while S = q do
3: S ⇐ q; n = image(n, T) \ S; q ⇐ S ∪ n;
4: end while

MCMAS provides three approaches to compute the set
of reachable states (see Algorithm 10). Experiments show
that the time to construct OBDDs for reachable states by
these approaches varies for different models and platforms
(e.g. 32-bits Linux, 64-bits Linux, 32-bits Windows, etc.).
No approach is consistently superior to the others. Note that
MCMAS does not compute a single OBDD for T to avoid
unnecessary computation time. Instead, the tool builds n tran-
sition relations Ti ⊆ S × ACT × S, 0 ≤ i ≤ n, one for each
agent and the environment; these are defined on the basis of
the local transition functions τ0, . . . , τn (see Definition 1) as
follows: Ti (s, a, s′) iff li (s′) = τi (li (s), a). When the image
of x with respect to T is needed, MCMAS executes a loop
to construct the intersection of T0, . . . , Tn with x , i.e.

y = x ∩ T0 ∩ T1 ∩ · · · ∩ Tn .

Note that x is also encoded over the whole set of OBBD
variables, amongwhich those for actions and successor states
are abstracted away.

4.1.3 Building the temporal and epistemic relations

It is often the case that the set of reachable states is only a
small subset of the set of possible global states. While it may
be time consuming to build a single OBDD for the complete
transition relation T for computing the reachable states, com-
puting the partial transition relation Treach usually speeds
up the process when checking properties on reachable states.
Formally, Treach is computed as follows:

Treach = S ∩ T0 ∩ T1 ∩ · · · ∩ Tn,

where S is the set of reachable states. In other words, Treach
is the projection of T on reachable states.

In Algorithm 2, the epistemic-indistinguishable relation
∼i can be pre-computed for each agent i . As in the case for the

123

MCMAS: an open-source model checker...

transition relation T , the computation of ∼i is usually time
consuming. MCMAS employs variable masking to compute
the OBDD encoding of the epistemic relations. For a set X
of states, we compute the set Y of indistinguishable state
with respect to ∼i as follows: let V be the set of all OBDD
variables encoding global states, and Vi ⊆ V be the set of
OBDD variables encoding the local states for agent i .

1. We first compute an OBDD X ′ by removing the OBDD
variables in V \Vi , which are not part of agent i’s encod-
ing. X ′ is characterised by the following set:

X ′ = {s ∈ L0 × · · · × Ln | ∃s′ ∈ X such that s′
i = si },

where si and s′
i are the local states of agent i in s and s

′,
respectively.

2. The OBDD Y is computed as Y = X ′ ∩ S, where S is the
set of reachable states.

The above two steps can be performed efficiently using the
procedures available in the CUDD library, and are applicable
to Algorithms 3, 4 and 5.

For efficiency purposes, MCMAS implements optimised
algorithms for the verification of CTL operators, rather than
employing the procedures for the ATL modalities.

4.1.4 Fairness for ATLK

In a number of circumstances, it is desirable to remove cer-
tain unwanted behaviours from the possible executions of
a system. For instance, consider the code for the Environ-
ment of the bit transmission protocol reported in Fig. 5.
The protocol for this agent allows the environment to block
messages forever; yet, the designer is likely to want to
describe a situation in which the communication chan-
nel randomly drops messages, but it is not continuously
faulty.

The removal of unwanted behaviours is often achieved by
imposing fairness conditions. In the case of branching log-
ics such as ATLK, this requires the definition of constraints
outside the model and the use of purpose-built verification
algorithms which extend the standard labelling algorithm
presented in Sect. 2.3.

Fairness conditions are declared in MCMAS using an
optional set of Boolean formulae constructed using atomic
propositions from AP . In line with the standard literature,
an infinite path in a model is said to be fair if all the Boolean
formulae from the set of fairness conditions are true infinitely
often along the path.

MCMAS implements the standard algorithms for the ver-
ification of temporal operators under fairness [15]. When the
fairness options are enabled all operators are evaluated on
the set of fair paths as discussed in [9].

4.1.5 Witnesses, counterexamples and strategy synthesis

To assist with advanced validation support,MCMAS enables
the user to inspect witnesses and counterexamples. These are
provided as trees, instead of traces, adopting the algorithm
described in [16]. MCMAS further extends [16] by:

1. by generating fair counterexamples and witnesses upon
request. This is done by integrating the algorithm
described in [14] for the temporal operators with the gen-
eration of the counter-example tree;

2. by including additional cases for the additional operators.
Algorithm11 generates a counterexample for the formula
Kiφ by picking a state not satisfying φ (the remaining
epistemic operators are treated in a similar way). A sim-
ilar algorithm can be used to compute a counterexample
for Kiφ under fairness by replacing SATφ is replaced by
SAT F

φ and S by SF inAlgorithm 11.Algorithm 12 builds
a witness for a formula of the form 〈〈Γ 〉〉Xφ by comput-
ing the set Z of states in which agents not in Γ can move
to a state satisfying ¬φ, and returns an element from
its complement. Algorithm 13, instead, returns a witness
for a formula of the form 〈〈Γ 〉〉φ1Uφ2. This algorithm
and a similar one for formulae of the form 〈〈Γ 〉〉Gφ (not
reported here) follow the standard procedure for Until
and Globally operators of CTL (see [15] for additional
details).

Algorithm 11 Counterexample for Kiφ in state s.
1: X = SAT¬φ ;
2: Y = {s′ ∈ S | s ∼i s′};
3: pick s′ in Y ∩ X and return s′

Algorithm 12 Witness for 〈〈Γ 〉〉Xφ in state s.
1: X = SAT¬φ ;
2: Y = {(s, aΓ) | ∃s′ ∈ S such that (s, a, s′) ∈ T };
3: Z = {(s, aΓ) | ∃s′ ∈ X such that (s, a, s′) ∈ T };
4: pick (s, aΓ) in Y\Z and return {s′ ∈ S | (s, a, s′) ∈ T }

Algorithm 13 Witness for 〈〈Γ 〉〉φ1Uφ2 in state s.
1: P = SATφ1 ; Q = SATφ2 ; X = ¬(P ∪ Q);
2: W = {s}\Q; V = {s};
3: while W = ∅ do
4: Y = {(s′, aΓ) | s′ ∈ W ∧ ∃s′′ ∈ S such that (s′, a, s′′) ∈ T };
5: Z = {(s′, aΓ) | s′ ∈ W ∧ ∃s′′ ∈ X such that (s′, a, s′′) ∈ T };
6: Y = Y\Z ;
7: pick (s, aΓ) in Y and Y1 = {s′′ ∈ S | (s, a, s′′) ∈ T };
8: W = Y1\(V ∪ Q); V = V ∪ Y1;
9: end while
10: return V

Notice that, in line with [1], MCMAS currently generates
ATLwitnesses and counterexampleswithout fairness, as this

123

A. Lomuscio et al.

would require double-exponential algorithms and cause visu-
alisation problems for the traces obtained.

Finally, it is customary for model checkers to compute
counterexample for universal formulae that do not hold in a
model, and witnesses for existential formulae that are true
in a model. MCMAS extends this approach as follows (all
formulae are assumed to be in negation normal form):

– MCMAS generates a counterexamples for universal for-
mulas containing an existential formula. For instance, if
the formula AFEGφ is false,MCMASgenerates a coun-
terexample consisting a loop reachable from the initial
state in which EGφ does not hold.

– MCMAS generates a witness for existential formulas
containing a universal formula. For instance, if the for-
mula EFAGφ is true, MCMAS generates a witness
consisting of a path leading from the initial state to a
state in which AGφ holds.

– MCMAS generates witnesses or counterexamples for
Boolean combinations of either universal or existential
formulae (including the cases mentioned above).

MCMAS also provides limited support for strategy syn-
thesis for ATLK specifications. Strategy synthesis is the
problem of deducing the strategies the agents need to employ
so that a given specification is satisfied. Given an interpreted
system and an ATLK specification over a set of agents in Γ ,
if the specification is satisfied, MCMAS can often return a
witness model. This witness contains the actions that every
agent in Γ performs at various states thereby making the for-
mula true. The strategies of the agents in Γ can therefore be
synthesised from the output. Note that the synthesised strate-
gies are guaranteed to be protocol compliant due to how the
model is generated.

4.1.6 Consistency checking

It is known that bounded integer types may generate over-
flows in a reachable state. Due to the encoding strategy
adopted in MCMAS, the value of a variable exceeding its
upper bound is truncated to a value within its domain. This
might lead to unexpected behaviours. To avoid thisMCMAS
allows users to verify the presence of overflows as an optional
check. This is carried out by encoding the transition relation
Toverflow in such a way that an expression on the right-hand
side of an assignment is assumed to be beyond the bounds of
the left-hand side variable, and then by constructing the con-
junction of Toverflow and the reachable states R. A non-empty
conjunction indicates the existence of an overflow.

The ISPL semantics requires that each state must have a
successor state. So, checking deadlock states that do not have
successor states is necessary to guarantee correct results of
model checking, as deadlock states violate the premises of

themodel checking algorithm for EG. Checking the presence
of a deadlock state is implemented by model checking the
formula EG true on the model. If the formula does not hold
in all states, then there exists a deadlock state.

4.2 MCMAS usage

In its basic form the executable file mcmas is a standard
command-line tool that takes as input the ISPL model to be
verified. The executable accepts a number of command-line
options, including:

– The options -o, -g, and -d are used, respectively, to
select the algorithm to be used to order OBDD variables,
to groupOBDDvariables, and to disable dynamicOBDD
reordering.

– The option -e is used to select the algorithm to be used
to generate the reachable state space (see Algorithm 10).

– The options -k and -a are used to check for deadlocks
and arithmetic overflows in the model.

– The option -c is used to select the way in which coun-
terexamples and witnesses are displayed. If this option is
selected, the user can also tune the generation of coun-
terexamples and witnesses using additional parameters
provided using the options -p, -f, -l, and -w (we refer
to the online documentation for a detailed description of
these).

– The option -uniform is used to force the generation of
uniform models as described in Sect. 2.2.

MCMAS can also be used to perform interactive simula-
tions: from the command line, this is achieved by invoking
the tool with the -s option.

To improve usability, a graphical interface is available.
The GUI is implemented as an Eclipse plug-in. The plug-in
creates a new menu in Eclipse that guides the interaction.
Currently, this interface supports the following features:

– ISPL program editing This helps users create MCMAS
projects and ISPL program skeletons; it implements syn-
tax highlighting; it performs dynamic syntax checking
(a separate ISPL compiler was implemented in Java +
ANTLR [58] for this); it provides an outline view and
the synchronisation between the outline view and the
ISPL editor; it also supports text formatting and content
assist.

– Interactive execution mode This mode implements the
-s option described above to perform interactive sim-
ulations. It allows users to execute their model step by
step by selecting an initial state first, and subsequently
by choosing a successor state among those reachable via
the enabled transitions. Users can backtrack an execu-
tion to the beginning at any step. Simulations can be

123

MCMAS: an open-source model checker...

Fig. 10 The ISPL Editor (Eclipse plug-in)

performed either explicitly, i.e. without OBDD encod-
ing, or symbolically. The explicit simulation is performed
by the Eclipse plug-in and does not require interaction
with MCMAS. The symbolic simulation is more appro-
priate for large models and requires the installation of
MCMAS.

– Verification In this modality the GUI invokes MCMAS
to execute the model checking procedures. Counterex-
amples and witness traces are displayed in a graphic way
using the dot utility from the Graphviz package [27];
states are shown as nodes and transitions as edges. When
the mouse is rolled over a node in the graph, the cor-
responding state is highlighted. The executions can be
projected onto a subset of agents tomask unwanted infor-
mation of other agents.

A screenshot of the Eclipse-based ISPL editor with syntax
highlighting is shown Fig. 10. A simple counterexample for
a formula involving ATL operators is shown in Fig. 11.

5 Scenarios and applications

In the past 10 years, MCMAS has been used to verify a wide
number of systems ranging from simple multi-agent systems
protocols to industrial scenarios [21–23,28,29,44,48–50]. In
the following, we summarise a few instructive examples, but
refer to the references above for more details.

The ISPL encodings for the scenarios below were either
manually given, or automatically generated by means of
dedicated compilers. While other traditional model check-
ers could be used to model the scenarios, as we will see
below, the specifications checked are based on epistemic or
ATL formulas, hence normally not verifiable with traditional
checkers.

We here focus on the tool functionality; the next section
covers its performance when compared to other tools.

5.1 Example scenarios

We begin with simple scenarios from the artificial intelli-
gence andMAS literature and thenmove on to describe more
complex use cases.

5.1.1 The muddy children puzzle

The muddy children puzzle [24] concerns a group of n chil-
dren out playing in the field; k of them get mud on their
forehead. They sit in a circle and see only the foreheads
of other children, but not their own. An adult arrives and
announces “At least one of you is muddy!”; he pauses and
then asks: “Does anyone of you know whether you are
muddy?”. The adult repeats this question over and over. After
each question, the children, assumed to be perfect reasoners,
answer “I do not know”. By reasoning about what children

123

A. Lomuscio et al.

Fig. 11 A model witness (Eclipse plug-in)

know and what they learn from each announcement it is pos-
sible to show that at round k the muddy children say that they
know they are muddy.

MCMAS can be used to verify that the children give the
correct answer at each round, and have the correct knowl-
edge at the end of the protocol. To do this we encode each
child by means of an agent and use a set of initial states to
generate a random assignment of muddy foreheads. We can
then, for example, verify the specification stating that when a
muddy child speaks, he indeed knows that he is muddy. This
is captured by the formula below:

AG((muddyi ∧ saysknowsi) → KChildimuddyi)

where the proposition “saysknowsi” is true after child i says
that he knows whether or not he is muddy.

Given the small size of the state space per child, the analy-
sis can be performed on a very large number of children.
Keeping track of the number of round of questions is not
problematic but leads to a larger state space.

To evaluate the performance of MCMAS and the speed
difference among various OBDDorderings, we ranMCMAS
on a sequence of models increasing the number of children.
All the experiments below and later were carried out on an
AMD Phenom 9600B 2.3 GHz Processor with 8 GB mem-

ory running Linux kernel version 3.11.0-18. Any run that
exceeded 24 h is reported as a timeout.

Table 1 shows thatMCMAS is able to handle a large num-
ber of children. The default OBDD ordering works well up
to 100 children; ordering 3 and 4 are more efficient for the
larger models.

5.1.2 One hundred prisoners

This puzzle concerns 100 prisoners kept in solitary confine-
ment [19]. One day the warden gathers all the prisoners in
the dining hall for dinner and announces that from the fol-
lowing day he will randomly choose one prisoner every day
for questioning. The interrogation room has only a light gov-
erned by a toggle switch. Prisoners can observe whether the
light is on when they enter the room. During their visit they
are allowed to switch the light on or off as they please. While
in the interrogation room, a prisoner may announce that he
believes that all prisoners have already visited the interro-
gation room. If a prisoner makes this announcement and
this corresponds to the truth, then all prisoners are set free;
if the announcement is not correct, all prisoners are exe-
cuted. The prisoners are granted one meeting to coordinate
their actions before the interrogations begin. It is assumed
that prisoners can count days and that the light is initially
off.

To check whether the puzzle’s solution is correct, we can
model the prisoners’ behaviours, corresponding to the solu-
tion of the puzzle, in ISPL and verify the formula

〈〈Prisoners〉〉F(Release) (1)

assuming Release to be true on the model only if all prison-
ers are free. MCMAS finds the formula to be true thereby
confirming the correctness of the solution. Table 2 reports
the performance of MCMAS on this example. As in the
muddy children puzzle, we found that the default OBDD
ordering is the most efficient when the model is small,
while other orderings offer better performance on larger
models.

5.1.3 Tian Ji racing horses

As documented above, differently from other tools,MCMAS
can also beused to synthesise strategies by inspecting amodel
witness of an ATLK formula. In the Tian Ji puzzle, a king
and a general called Tian Ji have a yearly horse racing com-
petition. Both the king and the general have three horses,
which are assumed to have high, medium, and low speed.
The rules of the competition prescribe three rounds; in each
round the king and Tian Ji should use the horse with the
same speed. The overall winner is the person who wins the

123

MCMAS: an open-source model checker...

Table 1 Experimental results
for muddy children

Number of
children

Number of
OBDD vars

Time (s)

OBDD
ordrng 1

OBDD
ordrng 2

OBDD
ordrng 3

OBDD
ordrng 4

20 111 0.61 0.50 0.76 0.76

40 213 11.46 6.57 8.76 10.68

60 313 40.29 39.58 54.16 97.67

80 415 165.62 144.44 190.46 192.49

100 515 736.04 431.85 466.05 385.31

120 615 920.02 1036.89 784.44 787.35

Table 2 Experimental results
for 100 prisoners

Number of
prisoners

Number of
OBDD vars

Time (s)

OBDD
ordrng 1

OBDD
ordrng 2

OBDD
ordrng 3

OBDD
ordrng 4

5 40 0.40 0.34 0.41 0.43

10 88 13.79 13.00 11.50 11.48

15 123 118.23 122.57 126.75 126.93

20 161 1573.96 1692.87 1636.44 913.02

25 196 6541 8682 6083 7107

highest number of runs. However, for any given speed, the
king’s horses always run faster than the general’s. Therefore,
Tian Ji is always bound to loose the race, unless he cheats and
employs horses in a different way. Tian Ji knows that the king
will run the horses in the three races from the fastest to the
slowest. MCMAS can be used to find the winning strategy
for the general: we encode the king and the general by means
of two agents. We fix the protocol for the king, and we allow
the general to choose any horse at any given level. We can
then inspect the winning strategy for Tian Ji by analysing the
witness for the formula:

〈〈TianJi〉〉F(win) (2)

Figure 12 illustrates the state space for the example. In each
state the general’s available horses are labelled with capital
letters; the king’s horses are labelled with lower case letters.
The current score is written as a pair where the first number
stands for the general’s wins and the second for the king’s.
The horses participating in each round are labelled with tran-
sitions. The general’s strategy is shown as a solid line. The
leaves of the tree represent the number of victories for the
general Tian Ji and the king, respectively.

The experimental results for various number of horses are
reported in Table 3. On this scenario, the OBDD ordering 1
offers the best performance on largemodels. It is worth point-
ing out that the running time for the model with 40 horses
is shorter than that with 35 horses under the first OBDD
ordering. This is because the former model has better struc-

G: HML
K: hml

0 : 0

G: ML
K: ml
0 : 1

H:h

G: HL
K: ml
0 : 1

 M:h

G: HM
K: ml
0 : 1

L:h

G: L
K: l
0 : 2

M:m

G: M
K: l
0 : 2

 L:m

G: L
K: l
1 : 1

 H:m

G: H
K: l
0 : 2

L:m M:m

G: M
K: l
1 : 1

H:m

0 : 3

 L:l

1 : 2

M:l L:l H:l

2 : 1

 M:l

Fig. 12 The general’s strategy in the Tian Ji puzzle

tural regularity, which makes the OBDD operations more
efficient.

5.2 Applications

We now turn to larger applications and use cases outside the
domain of multi-agent systems.

123

A. Lomuscio et al.

Table 3 Experimental results
for racing horses

Number of
children

Number of
OBDD vars

Time (s)

OBDD
ordrng 1

OBDD
ordrng 2

OBDD
ordrng 3

OBDD
ordrng 4

5 39 0.09 0.03 0.03 0.02

10 65 0.47 0.34 0.35 0.47

15 85 5.66 3.17 2.86 5.62

20 111 50.22 259.95 37.78 37.67

25 131 179.48 589.59 148.47 145.36

30 151 1000.06 1612.75 1011.45 1001.54

35 177 2449.73 2307.21 525.21 2078.08

40 197 224.21 329.09 Timeout 3278.78

5.2.1 Verification of authentication protocols

Authentication protocols are a class of security protocols
whereby two or more agents need to acquire knowledge
of their identity, typically to initiate secure communication.
Authentication protocols are notoriously difficult to analyse,
due to the possible existence of subtle bugs such as man-in-
the-middle attacks and impersonation. Formal models have
been employed to analyse authentication protocols; how-
ever, they are often limited to reachability analysis only,
thereby imposing rather severe limitations on the class of
specifications that can be verified. Specifications concerning
authentication are amenable to be expressed in a temporal-
epistemic logic language as they concern states of knowledge
of the principals in a system.

Authentication protocols expressed in CAPSL, a main-
stream language for the description of security protocols,
were automatically verified with MCMAS in [5]. Specifi-
cally, a compiler was built to translate protocols from the
Clark–Jacobs and SPORE repository [62] into MCMAS
readable input. This involved devising a translation from
the SPORE protocol description into ISPL and a transla-
tion from the SPORE protocol specifications (“goals” in
CAPSL) into appropriate temporal-epistemic formulas. The
methodology is completely automatic and was evaluated on
well-known key establishment protocols. The tool confirmed
bugs already known in some key establishment protocols
and verified the correctness of others. Since MCMAS also
provides counterexamples when a specification is false, an
attack could easily be derived by inspecting the output of the
checker.

The performance of the methodology was in line with
state-of-the-art model checkers for security protocols. It has
been argued, see, e.g. [8,31], that epistemic specifications
are considerably more intuitive for the security analyst as
they refer precisely to the states of knowledge of the princi-
pals, which are the basic primitive in security analysis. This
increase in expressiveness allows also the validation of other
specifications, including the distributed detection of attacks

at run-time [6]. Lazy intruder models are known to increase
the effectiveness of model checking approaches for security
protocols [3]; they can also be applied in the context of secu-
rity specifications [46].

5.2.2 Verification of anonymity protocols

Anonymity protocols are a class of protocols aimed at estab-
lishing the privacy of principals during an exchange. For
example, the onion routing protocol can guarantee the com-
munication between two partieswithout their identities being
revealed to any third party.

Onion routing and a number of other anonymity protocols
have been analysed with MCMAS. One well-known exam-
ple in this class is the dining cryptographers protocol [12],
which can be described as follows. A group of n cryptog-
raphers shares a meal around a circular table. Either one of
them paid for themeal or their employer did. Theywould like
to discover whether one of them paid without revealing the
identity of the payer (in case one of them did pay). To this
end, every cryptographer tosses a coin and shows the out-
come to his right-hand neighbour. Comparing his own coin
to the coin shown to him, each cryptographer who did not
pay for dinner announces whether the two coins agree or not.
However, if a cryptographer paid for the meal, he announces
the opposite of what he sees. By parity considerations, one
can show that an even number of cryptographers claiming
that the two coins are different entails that their employer
paid for the dinner, while an odd number of “different” utter-
ances signifies that one of the cryptographers paid for the
dinner. The protocol can naturally be formalised in ISPL.
The specification of the protocol can very easily be captured
in an epistemic setting: after the announcements the cryp-
tographers acquire common knowledge of the payer; but if
this is one of them no one knows who this is, other than
the payer itself. This analysis cannot be replicated on tradi-
tional checkers. We refer to Sect. 6.2 for more details on this
scenario including the epistemic specifications checked.

123

MCMAS: an open-source model checker...

5.2.3 Automatic verification of WS-BPEL services

Web services consist of distributed, networked applications
exchanging messages to perform a given function. A key
problem in service-oriented computing is to design and man-
age the service composition, whereby two or more services
collaborate to achieve a certain task. Model checking has
been used in this context to verify whether or not services are
composed correctly according to some temporal specifica-
tions.A commonapproach involvesmodelling the services as
finite-state machines and verify their composition by means
of a traditional checker.

In this context, to avoid the difficulties and the error-prone
task of manually encoding several services, a compiler from
WS-BPEL into ISPL was built [51]. WS-BPEL [57] is the
leading language and de facto industrial standard for service
composition. The compiler parses the input and constructs
an internal automata-based representation for the finite-state
machines defined in the WS-BPEL code and encodes these
in ISPL. The resulting code can then be passed to MCMAS
for verification.

This methodology was evaluated in the context of a large
use case of software procurement developed within a collab-
orative EU project. In the use case a client company places
an order for software and hardware to be deployed by a num-
ber of parties. Several providers propose the equipment to
the company which is given the opportunity of changing the
design a number of times before deployment. Penalties are
applied to the parties should they deviate from the procure-
ment process. The interaction continues into the integration
and testing phases of the hardware with additional contracts
regulating the extent to whichmodifications can be requested
by the client, compensation claims, reports from technical
experts and insurance providers. The reachable state space
of the scenario consists approximately of 106 states.

In the scenario, a number of specifications pertaining to
the knowledge of the parties in the exchange can be verified.
For example, it can be shown that as long as the client is
not in breach of contract, he knows that either the system is
installed correctly or some penalty to third parties will apply.
This and other specifications can be verified in a few seconds.
We refer to [51] and the source code for additional details.

Other scenarios from services and business process mod-
elling were similarly investigated by means of MCMAS. We
found that scenarios generating state spaces up to 1012 could
be analysed with no difficulty.

6 Related work

The first version of MCMAS was first made available as
open-source in 2003. In the past 10 years, the checker under-
went a number of extensions and revisions that lead to a first

documented release in [53] and a second in [47]. Unsup-
ported, experimental releases continue and include a module
to perform parameterised verification [41,42], and dedicated
for the verification of strategy logic specifications [10,11].
This area is fast evolving; in the past few years a number
of checkers have appeared that offer functionalities related
to those offered by MCMAS. We compare the various func-
tionalities and, when possible, the performance of the most
prominent ones below.

6.1 Verics

Verics is aSAT-basedmodel checker targeting real-time spec-
ifications and multi-agent systems [39]. Verics implements
bounded model checking algorithms for CTL, real-time
CTL, and variants of CTL that include epistemic operators.
Bounded model checking and OBDDs represent radically
different approaches to model checking; the former is based
on a partial exploration of the model and the check made
on a propositional encoding of the problem; the latter, as
it was discussed here, relies on the full exploration of the
model. Several comparisons were made between Verics and
MCMAS, see, e.g. [38]. The conclusions drawn from them
are that the techniques appear complementary with differ-
ent advantages and disadvantages depending on the specific
scenario considered. In terms of usability MCMAS’s input
language is likely to be more intuitive to researchers familiar
with MAS semantics and applications. Conversely, Verics’s
input format may be more appealing to users familiar with
real-time systems. In a related line, OBDDs and bounded
model checking have recently been combined in an extension
of MCMAS in [36], producing very attractive experimental
results and thereby demonstrating that the two techniques
can usefully be combined in a wide range of scenarios.
This conclusion was also recently reached in [56] where
an OBDD-based approach for bounded model checking for
LTLK was developed on Verics. The results obtained can-
not be compared to the ones reported here as the underlying
temporal logics have different expressivity.

6.2 MCK

MCK was the first OBDD-based model checker supporting
temporal-epistemic specification [26]; it has recently been
re-released with improved functionalities including a graph-
ical interface [67]. Its current version supports CTL∗ as the
underlying temporal logic. MCK implements a variety of
semantics including observational semantics, perfect recall
and clock semantics. Given the high computational cost of
these semantics, some are supported only in limited form; for
example perfect recall is only supported for one agent. Some
functionality for probabilistic reasoning was also recently
added [33] and an extension to bounded model checking has

123

A. Lomuscio et al.

Table 4 Experimental results comparing the performance of MCMAS, MCK, and MCTK on the dining cryptographer protocol

Number of cryptographers MCMAS MCK MCTK

OBDD vars (9n + 3) Time (s) OBDD vars (6n + 2) Time (s) OBDD vars (6n + 2) Time (s)

5 48 0.017 32 1.401 32 0.024

10 93 0.091 62 74.655 62 0.128

20 183 0.667 122 47937 122 34.790

30 273 1.476 Timeout 182 2.946

40 363 5.053 Timeout 242 20.786

50 453 13.437 Timeout 302 72.444

60 543 14.180 Timeout Timeout

also recently been explored [34]. While the original version
ofMCKused a different OBDD-handler, the current one uses
CUDD as MCMAS.

To compare MCK (and MCTK, as we discuss below)
to MCMAS uniformly, we used the dining cryptographer
benchmark [12] discussed in [38]. We instructed each model
checker to verify that the protocolmaintains the privacy of the
payer as intended. Specifically, we verified that if cryptogra-
pher 1 did not pay the bill, then, after the announcements are
made, either he knows that no cryptographers paid, or that
someone paid, but in this case he does not know who did.
This can be formalised by the following formula

AG

((n∧
i=1

ci_announced ∧ ¬c1_paid
)

→
(
Kc1(

n∧
i=1

¬ci_paid)

∨(
Kc1(

n∨
i=2

ci_paid) ∧
n∧

i=2

¬Kc1(ci_paid)
)))

, (3)

where n is the number of cryptographers, ci_announced
represents the announcement made by cryptographer i , and
ci_paid encodes the fact that cryptographer i paid the bill.

In the experiments, we used encodings of the scenario
fromboth theMCMASandMCKpackages and adapted them
to ensure the same number of variables were used in each
model. In the experiments, we used observational semantics
since several agents are present and no model checker sup-
ports perfect recall under this setting.

The experiments were carried out on the same setup as
previously reported. Table 4 shows the experimental results
obtained with dynamic variable reordering enabled. The
results reported are consistent with other experiments we
have run.

In summary, both MCK and MCMAS offer functionali-
ties to verify epistemic logic under different semantics. They
differ in the modelling language employed as well as some

advanced features supported. While MCMAS also supports
ATL, MCK supports a probabilistic version of epistemic
logic and a very limited form of perfect recall. They are both
OBDD based. Our tests appear to suggest that MCMAS is
more efficient in the treatment of large state spaces; this may
be due to a more effective construction of the global state
space.

6.3 MCTK

MCTK is a NuSMV-based [13] model checker for knowl-
edge and time [63,69]. In MCTK, epistemic formulas are
encoded by exploiting locality of propositions and labelling
of transitions.As such, it does not support interpreted systems
semantics which is a feature of MCMAS. A model checker
for knowledge based on NuSMV with similar characteris-
tics was previously presented in [45]. Note that NuSMV
is among the fastest and most mature OBDD-based model
checker available. As above, we compared the performance
ofMCTK to that ofMCK andMCMAS on the same example
above by adapting the encoding of the dining cryptographers
protocol to ensure the same state space is present. In our tests,
we found MCTK to be considerably slower than MCMAS
due to the efficient implementation of the model checking
algorithm for epistemic logic in MCMAS. It should be also
noted that MCTK’s input is given in SMV; this is adequate
for modelling reactive systems, but may not be suitable for
MAS where actions and protocols feature prominently. As a
further consequence of this, no support for ATL is offered in
MCTK. In addition, none of the debugging facilities present
in MCMAS, including counterexample generations for epis-
temic specifications, are offered by MCTK.

6.4 NuSMV

To evaluate MCMAS in a broader context, we now report
the results obtained by comparing MCMAS to NuSMV
when checking the dining cryptographer benchmark and a
game-theoretical scenario from [17] against plain CTL spec-

123

MCMAS: an open-source model checker...

Table 5 Experimental results comparing the performance of MCMAS and NuSMV on the dining cryptographer problem

Number
of cryptos

MCMAS NuSMV

Num of OBDD
vars

1.2.2 (CUDD 2.5.0) 1.0 (CUDD 2.4.1) Num of OBDD
vars

Without dyn reorder With dyn reorder

Time (s) Mem (KB) Time (s) Mem (KB) Time (s) Mem (KB) Time (s) Mem (KB)

10 93 0.10 11,056 0.10 10,972 62 0.87 16,060 0.09 12,668

20 183 0.65 13,572 0.58 13,504 122 3151.35 4,891,100 0.27 13,932

30 273 1.45 15,332 2.01 21,764 182 Overflow 2.05 17,040

50 453 12.98 16,076 10.06 40,708 302 Overflow 8.64 21,004

100 903 185.72 60,800 284.22 49,780 602 Overflow 117.77 42,516

150 1353 1916 72,172 1619 91,976 902 Overflow 397 68,176

200 1803 841.4 58,872 3057 76,608 1202 Overflow 2560 102,840

250 2253 3040 80,680 8705 221,404 1502 Overflow Timeout

Table 6 Experimental results comparing the performance of MCMAS and NuSMV on the card game scenario from [17]

Number
of cards

MCMAS NuSMV

Num of OBDD
vars

1.2.2 (CUDD 2.5.0) 1.0 (CUDD 2.4.1) Num of OBDD
vars

Without dyn reorder With dyn reorder

Time (s) Mem (KB) Time (s)Mem (KB) Time (s) Mem (KB) Time (s) Mem (KB)

8 59 0.37 11,592 0.41 11,552 56 0.16 17,772 1.58 15,880

10 97 7.61 38,712 12.47 38,376 94 507.63 2,441,688 1035.89 154,124

12 113 515.4 94,100 273.8 88,992 110 Overflow Timeout

14 129 17,783 1,191,864 10,552 539,552 126 Overflow Timeout

ifications. As in previous cases, to ensure the tests are robust,
we inspected and compared the resulting models and state
spaces.

The results are reported in Tables 5 and 6. Table 5 was
constructed by checking the dining cryptographers imple-
mentations discussed earlier in Table 4 against the CTL
formula:

AG

((n∧
i=1

ci_announced ∧ ¬NSA_paid
)

→
n∧

i=1

ci_paid

)
,

where NSA_paid stands for NSA (for which the cryptog-
raphers work) paying for the dinner.

Table 6 contains the result obtained when checking the
scenario against the CTL specification

AG(allred1 → AF win1),

which reports a winning condition for player 1. The scenario
was scaled by considering the number of cards present.

Both MCMAS and NuSMV offer several features to fine-
tune certain parameters in the model checking algorithms.
We used the defaults for both of them and tested both with
reordering enabled and disabled. Differently from NuSMV,

which often offers a better performance without reordering,
MCMAS’s state-space construction is heavily dependent on
reordering; given this MCMAS’s results are reported with
this feature enabled. Indeed, Table 6 shows that NuSMV is
faster and uses more memory when reordering is disabled.
NuSMV could not verify the model with 12 cards due to
memory overflow irrespective of whether or not reordering
was enabled. In contrast, MCMAS could handle the cases for
12 and 14 cards before timing out with 16 cards. To present
a fair comparison, we also linked MCMAS version 1.0 to
CUDD 2.4.1, which is the version used by NuSMV version
2.5.41 [70]. Table 6 shows the results from both versions of
MCMAS.

The tables above are not intended to give a comprehen-
sive performance evaluation of the two checkers. They are
purelymeant to show thatMCMAS’s performance is broadly
in line with NuSMV, one of the most commonly used sym-
bolic model checkers. We expect NuSMV to be faster than
MCMAS on other models not tested here.

1 MCMAS version 1.2.2 does not support CUDD 2.4.1, as the C++
interface between CUDD 2.5.0 and CUDD 2.4.1 is considerably differ-
ent.

123

A. Lomuscio et al.

7 Conclusions

The continuous rise in the number of autonomous systems
that are being deployedhasmade formal verification ofmulti-
agent systems a very active area of research. In this paper,
we have presented the toolkit MCMAS, a model checker
supporting specifications tailoring multi-agent systems. We
have discussed the details of the underlying semantics, its
input language, the functionalities offered and evaluated it in
the context of significant use cases and other checkers.

MCMAS is released as GNU GPL open-source software
and is currently used in a number of projects worldwide [21,
28,29,44]. Several extensions are currently being devel-
oped by various groups. Many of these extensions already
have in-house prototypes featuring, for example, abstraction,
symmetry detection, and combinations with bounded model
checking. This paper does not address these new features but
instead focuses on the core, underlying technology of the
MCMAS checker.

Acknowledgments The authors would like to thank Jakub Michal-
iszyn and the anonymous reviewers for valuable feedback on earlier
versions of this paper.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Alur, R., Henzinger, T.,Mang, F., Qadeer, S., Rajamani, S., Tasiran,
S.: MOCHA: modularity in model checking. In: Proceedings of
the 10th International Conference on Computer Aided Verification
(CAV’98), vol. 1427 of Lecture Notes in Computer Science, pp.
521–525. Springer (1998)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time tem-
poral logic. J. ACM 49(5), 672–713 (2002)

3. Basin, D., Mödersheim, S., Viganò, L.: OFMC: a symbolic model
checker for security protocols. Int. J. Inf. Secur. 4(3), 181–208
(2005)

4. Baukus, K., van der Meyden, K.: A knowledge based analysis of
cache coherence. In: Proceedings of the 6th International Confer-
ence on Formal Engineering Methods (ICFEM04), vol. 3308 of
Lecture Notes in Computer Science, pp. 99–114. Springer (2004)

5. Boureanu, I., Cohen, M., Lomuscio, A.: A compilation method for
the verification of temporal-epistemic properties of cryptographic
protocols. J. Appl. Non Class. Log. 19(4), 463–487 (2009)

6. Boureanu, I.,Cohen,M.,Lomuscio,A.:Model checkingdetectabil-
ity of attacks in multiagent systems. In: Proceedings of the
9th International Conference on Autonomous Agents and Multi-
Agent systems (AAMAS10), pp. 691–698. IFAAMAS Press
(2010)

7. Bryant, R.: Graph-based algorithms for boolean function manipu-
lation. IEEE Trans. Comput. 35(8), 677–691 (1986)

8. Burrows, M., Abadi, M., Needham, R.: A logic of authentication.
Proc. R. Soc. Lond. A 426(1871), 233–271 (1989)

9. Busard, S., Pecheur, C., Qu, H., Raimondi, F.: Reasoning about
strategies under partial observability and fairness constraints. In:
Proceedings of the 1st International Workshop on Strategic Rea-
soning (SR13), vol. 112 of Electronic Proceedings in Theoretical
Computer Science, pp. 71–79 (2013)

10. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-
SLK: a model checker for the verification of strategy logic
specifications. In: Proceedings of the 26th InternationalConference
on Computer Aided Verification (CAV14), vol. 8559 of Lecture
Notes in Computer Science, pp. 525–532. Springer (2014)

11. Cermák, P., Lomuscio, A., Mogavero, F., Murano, A.: Verifying
and synthesising multi-agent systems against one-goal strategy
logic specifications. In: Proceedings of the 29th AAAI Conference
on Artificial Intelligence (AAAI15), pp. 2038–2044. AAAI Press
(2015)

12. Chaum, D.: The dining cryptographers problem: unconditional
sender and recipient untraceability. J. Cryptol. 1(1), 65–75
(1988)

13. Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pis-
tore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV2: an
open-source tool for symbolic model checking. In: Proceedings of
the 14th International Conference on Computer Aided Verification
(CAV02), vol. 2404 of Lecture Notes in Computer Science, pp.
359–364. Springer (2002)

14. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Effi-
cient generation of counterexamples and witnesses in symbolic
model checking. In: Proceedings of the 32nd annual ACM/IEEE
Design Automation Conference (DAC95), pp. 427–432. ACM
Press (1995)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT
Press, Cambridge (1999)

16. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples
in model checking. In: Proceedings of the 17th Annual IEEE Sym-
posium on Logic in Computer Science (LICS02), pp. 19–29. IEEE
Computer Society (2002)

17. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in
model checking multi-agent systems. In: Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS09), pp. 945–952. IFAAMAS Press (2009)

18. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment.
Artif. Intell. 42(2–3), 213–261 (1990)

19. Dehaye, P.O., Ford, D., Segerman, H., Vakil, R.: One hundred pris-
oners and a lightbulb. Math. Intell. 25(4), 53–61 (2003)

20. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification
patterns for finite-state verification. In: Proceedings of the 2nd
Workshop on Formal Methods in Software Practice (FMSP98),
pp. 7–15. ACM Press (1998)

21. El-Menshawy, M., Bentahar, J., El Kholy, W., Dssouli, R.: Ver-
ifying conformance of multi-agent commitment-based protocols.
Expert Syst. Appl. 40(1), 122–138 (2013)

22. Ezekiel, J., Lomuscio, A.: An automated approach to verify-
ing diagnosability in multi-agent systems. In: Proceedings of the
7th IEEE International Conference on Software Engineering and
Formal Methods (SEFM09), pp. 51–60. IEEE Computer Society
(2009)

23. Ezekiel, J., Lomuscio, A., Molnar, L., Veres, S.: Verifying fault
tolerance and self-diagnosability of an autonomous underwater
vehicle. In: Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI11), pp. 1659–1664. AAAI
Press (2011)

24. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about
Knowledge. MIT Press, Cambridge (1995)

25. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based
programs. Distrib. Comput. 10(4), 199–225 (1997)

26. Gammie, P., van der Meyden, R.: MCK: Model checking the logic
of knowledge. In: Proceedings of the 16th International Conference

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

MCMAS: an open-source model checker...

on Computer Aided Verification (CAV04), vol. 3114 of Lecture
Notes in Computer Science, pp. 479–483. Springer (2004)

27. Gansner, E.R., North, S.C.: An open graph visualization system
and its applications. Softw. Pract. Exp. 30, 1203–1233 (1999)

28. Gerard, S.N., Singh, M.P.: Formalizing and verifying protocol
refinements. ACM Trans. Intell. Syst. Technol. 4(2), 21 (2013)

29. De Giacomo, G., Felli, P.: Agent Composition Synthesis based
on ATL. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multi-Agent systems (AAMAS10), pp.
499–506. IFAAMAS Press (2010)

30. Halpern, J.Y., Pucella, R.: Modeling adversaries in a logic for secu-
rity protocol analysis. In: Proceedings of the Workshop on Formal
Aspects of Security (FASec02), vol. 2629 of LectureNotes inCom-
puter Science, pp. 115–132. Springer (2002)

31. Halpern, J.Y., van der Meyden, R.: A logical reconstruction of
SPKI. J. Comput. Secur. 11(4), 581–613 (2004)

32. Hintikka, J.: Knowledge and Belief, An Introduction to the Logic
of the Two Notions. Cornell University Press, Ithaca (1962)

33. Huang, X., Luo, C., van derMeyden, R.: Symbolic model checking
of probabilistic knowledge. In: Proceedings of the 13th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK11),
pp. 177–186. ACM (2011)

34. Huang, X., Luo, C., van derMeyden, R.: Improved bounded model
checking for a fair branching-time temporal epistemic logic. In:
Proceedings of the 6th International Workshop on Model Check-
ing and Artificial Intelligence (MoChArt10), vol. 6572 of Lecture
Notes in Computer Science, pp. 95–111. Springer (2011)

35. Jones, A.J.I., Sergot, M.J.: On the characterisation of law and
computer systems: the normative systems perspective. In: Deontic
Logic in Computer Science: Normative System Specification, chap
12. Wiley (1993)

36. Jones, A.V., Lomuscio, A.: Distributed bdd-based bmc for the
verification of multi-agent systems. In: Proceedings of the 9th
International Conference on Autonomous Agents andMulti-Agent
systems (AAMAS10), pp. 675–682. IFAAMAS Press (2010)

37. Jonker, G.: Feasible strategies in alternating-time temporal epis-
temic logic. Master’s thesis, University of Utrech, The Netherlands
(2003)

38. Kacprzak,M., Lomuscio, A., Niewiadomski, A., Penczek,W., Rai-
mondi, F., Szreter, M.: Comparing BDD and SAT based techniques
for model checking Chaum’s dining cryptographers protocol. Fun-
damenta Informaticae 63(2,3), 221–240 (2006)

39. Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pól-
rola, A., Szreter, M., Wozna, B., Zbrzezny, A.: Verics 2007—a
model checker for knowledge and real-time. Fundamenta Infor-
maticae 85(1–4), 313–328 (2008)

40. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In:
Proceedings of the 27th International Conference on Software
Engineering (ICSE05), pp. 372–381. ACM Press (2005)

41. Kouvaros, P., Lomuscio,A.:Automatic verification of parametrised
interleaved multi-agent systems. In: Proceedings of the 12th Inter-
national Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS13), pp. 861–868. IFAAMAS (2013)

42. Kouvaros, P., Lomuscio, A.: A cutoff technique for the verification
of parameterised interpreted systems with parameterised environ-
ments. In: Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI13), pp. 2013–2019. AAAI Press
(2013)

43. Kwiatkowska,M.Z.,Norman,G., Parker,D.: Prism4.0: verification
of probabilistic real-time systems. In: Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV11),
vol. 6806 of Lecture Notes in Computer Science, pp. 585–591.
Springer (2011)

44. Latif, N.A., Hassan, M.F., Hasan, M.H.: Formal verification for
interaction protocol in agent-based e-learning system using model
checking toolkit-mcmas. In: Proceedings of the 2nd Interna-

tional Conference on Software Engineering andComputer Systems
(ICSECS11), vol. 180 of Communications in Computer and Infor-
mation Science, pp. 412–426. Springer (2011)

45. Lomuscio,A., Pecheur,C.,Raimondi, F.:Verification of knowledge
and timewith nusmv. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI07), pp. 1384–1389.
AAAI (2007)

46. Lomuscio, A., Penczek,W.: LDYIS: a framework formodel check-
ing security protocols. Fundamenta Informaticae 85(1–4), 359–375
(2008)

47. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker
for the verification of multi-agent systems. In: Proceedings of the
21th International Conference on Computer Aided Verification
(CAV09), vol. 5643 of Lecture Notes in Computer Science, pp.
682–688. Springer (2009)

48. Lomuscio, A., Qu, H., Sergot, M.J., Solanki, M.: Verifying tem-
poral epistemic properties of web service compositions. In: Pro-
ceedings of the 5th International Conference on Service-Oriented
Computing (ICSOC’07), vol. 4749 of Lecture Notes in Computer
Science, pp. 456–461. Springer (2007)

49. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying compliance
in agent-basedweb service compositions. In: Proceedings of the 7th
International Conference on Autonomous Agents andMulti-Agent
systems (AAMAS08), pp. 265–272. IFAAMAS Press (2008)

50. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract
regulated service composition. In: Proceedings of the 8th Interna-
tional Conference onWeb Services (ICWS08), pp. 254–261. IEEE
Computer Society (2008)

51. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract
regulated service composition. Auton. Agents Multi Agent Syst.
24(3), 345–373 (2012)

52. Lomuscio, A., Raimondi, F.: The complexity of model checking
concurrent programs against CTLK specifications. In: Proceedings
of the 4th InternationalWorkshop onDeclarative Agent Languages
and Technologies (DALT06), vol. 4327 of Lecture Notes in Com-
puter Science, pp. 29–42. Springer (2006)

53. Lomuscio, A., Raimondi, F.: MCMAS: Amodel checker for multi-
agent systems. In: Proceedings of the 12th InternationalConference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS06), vol. 3920 of Lecture Notes in Computer Science, pp.
450–454. Springer (2006)

54. Manna, Z., Pnueli, A.: The temporal logic of reactive and concur-
rent systems, vol. 1. Springer, New York (1992)

55. McCarthy, J.: Ascribing mental qualities to machines. In: Philo-
sophical Perspectives in Artificial Intelligence. Harvester Press
(1979)

56. Meski, A., Penczek, W., Szreter, M., Wozna-Szczesniak, B.,
Zbrzezny, A.: Bdd-versus sat-based bounded model checking for
the existential fragment of linear temporal logic with knowledge:
algorithms and their performance.Auton.AgentsMultiAgent Syst.
28(4), 558–604 (2014)

57. Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Business Process Execution
Language (WS-BPEL) Version 2.0 (2007)

58. Parr, T.: The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Bookshelf, Raleigh (2007)

59. Penczek, W., Lomuscio, A.: Verifying epistemic properties of
multi-agent systems via bounded model checking. Fundamenta
Informaticae 55(2), 167–185 (2003)

60. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent
systems by model checking via ordered binary decision diagrams.
J. Appl. Log. 5(2), 235–251 (2007)

61. Somenzi, F.: CUDD: CU decision diagram package-release 2.5.0.
http://vlsi.colorado.edu/fabio/CUDD (2012)

62. SPORE: Security protocols open repository. http://www.lsv.
ens-cachan.fr/spore. Accessed 1 June 2014

123

http://vlsi.colorado.edu/fabio/CUDD
http://www.lsv.ens-cachan.fr/spore
http://www.lsv.ens-cachan.fr/spore

A. Lomuscio et al.

63. Su, K., Sattar, A., Luo, X.: Model checking temporal logics of
knowledge via OBDDs. Comput. J. 50(4), 403–420 (2007)

64. Syverson, P.F., Stubblebine, S.G.: Group principals and the for-
malization of anonymity. In Proceedings of the World Congress
on Formal Methods in the Development of Computing Systems
(FM99), vol. 1708 of Lecture Notes in Computer Science, pp. 814–
833 (1999)

65. van der Hoek,W., Lomuscio, A.,Wooldridge,M.: On the complex-
ity of practical ATL model checking. In: Proceedings of the 5th
International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS06), pp. 201–208. ACM Press (2006)

66. van Oorschot, P.: Extending cryptographic logics of belief to key
agreement protocols. In: Proceedings of the 1st ACM conference
on Computer and communications security (CCS93), pp. 232–243.
ACM press (1993)

67. MCK. http://cgi.cse.unsw.edu.au/~mck/pmck/. Accessed 1 June
2014

68. MCMAS. http://vas.doc.ic.ac.uk/software/mcmas/. Accessed 1
June 2014

69. MCTK. http://sites.google.com/site/cnxyluo/MCTK/. Accessed 1
June 2014

70. NuSMV. http://nusmv.fbk.eu/. Accessed 1 June 2014
71. Wooldridge, M.: An Introduction toMultiAgent Systems, 2nd edn.

Wiley, Hoboken (2009)

123

http://cgi.cse.unsw.edu.au/~mck/pmck/
http://vas.doc.ic.ac.uk/software/mcmas/
http://sites.google.com/site/cnxyluo/MCTK/
http://nusmv.fbk.eu/

	MCMAS: an open-source model checker for the verification of multi-agent systems
	Abstract
	1 Introduction
	2 Symbolic model checking multi-agent systems
	2.1 Interpreted systems
	2.2 Syntax of ATLK and satisfaction
	2.3 Symbolic model checking ATLK
	2.4 Symbolic model checking and OBDDs

	3 Modelling multi-agent systems in ISPL
	4 MCMAS: implementation and usage
	4.1 Implementation details
	4.1.1 Variable ordering in OBDDs
	4.1.2 Computing the set of reachable states
	4.1.3 Building the temporal and epistemic relations
	4.1.4 Fairness for ATLK
	4.1.5 Witnesses, counterexamples and strategy synthesis
	4.1.6 Consistency checking

	4.2 MCMAS usage

	5 Scenarios and applications
	5.1 Example scenarios
	5.1.1 The muddy children puzzle
	5.1.2 One hundred prisoners
	5.1.3 Tian Ji racing horses

	5.2 Applications
	5.2.1 Verification of authentication protocols
	5.2.2 Verification of anonymity protocols
	5.2.3 Automatic verification of WS-BPEL services

	6 Related work
	6.1 Verics
	6.2 MCK
	6.3 MCTK
	6.4 NuSMV

	7 Conclusions
	Acknowledgments
	References

