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Stability of Systems with Multiple Time Delays

Abstract

Systems whose dynamical representations involve multiple
transportation lags are generally difficult to analyse. Such
systems give rise to infinite strings of poles in the complex
plane and subsequently, transfer functions of a transcendental
nature. A Nyquist stability analysis of a system with two delay
terms reveals a central region of stability even though the system
has an infinite number of poles with positive real parts. An
input-output stability criterion due to Zadeh is used to confirm
the Nyquist analysis and show that systems with an infinite number
of poles are not necessarily subject to the same pole location

restrictions as systems with a finite number of poles.
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Many industrial processes involve transportation lags and when
these lags occur in both the states and inputs to the System, quite
difficult nonrational transfer functions occur. Various authors have
considered systems with constant time lagé as inputs only and in
particular Ansoff[l]’EZI, develops stability criterion for linear
oscillating systems with a time delay in the feedback term. Many
standard methods of stability analysis have been applied to time delayed
systems with Laplace transforms[3], Nyquist analysis[4], Root Loc:us[‘j;|
and Lyapunov's method[6]’[7] all yielding useful stability criterions.

Edwards[g]’[pj has examined multipass systems in which the material
or workpiece involved is processed by a sequence of passes of the
processing tool. In particular, we consider an underground coal

cutter which is a single input single output system described by the

difference equation

y(x) = y(xT) + u(xT,) (1)
where x is a distance variable, u is an input to the system and Tl’TZ
are arbitrary delay distances chosen such that Tl>>T2. The input u

acts as a control element and can be written as
u(x—Tz) = KlEyref_y(x_TZ)] (2)

where yref is the initial value of y and K. is a constant gain factor.

1
Combining (1) and (2) and applying the Laplace transform with

respect to x yields the system transfer function

F(s) = (3)

~-T.s -T.8
1-e + K.e




Nyquist Analysis

Edwards[gj has derived the open loop transfer function of the system

in (1) to be

6(a) =L | )

and applied an inverse Nyquist plot of (4) to obtain Figure 1. The
process is clearly unstable for all practical values of T2 since the

plot shows the critical point to be encircled for all gains Kl'

Series Expansion

Since the useful stability criterion developed by Routh and Hurwitz
can only be applied to polynomials and hence to systems with rational
transfer functions, we may obtain approximate results for nonrational
transfer functions by using series expansions of the exponential terms

in the characteristic equation

-Tls —Tzs
FI(S) =1-e + Kle (5)
Thus we can write
- T1252 T1353
Fi(e) =1~ [1-ns + S — gy g
T2252 T2333
+ K]_ [1"T2$ + 2! i —-3-!—— + ...] (6)

and grouping in powers of s yields

2
1

2. 2 3 3.3
+K1T2 )s (Tl —KlT2 )s

7T * 37

(-T

F == —
1(5) Kl+(T1 KlTZ)S +

+ ... (7)
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It is immediately clear that the system in (1) has an infinite
number of poles. For these poles to all be in the same half of the

complex plane, it can easily be shown from the Routh criterion that all

the coefficients in (7) must be of the same sign. Since K1 is positive,
each coefficient must be positive, ie

le . Kszk

g 0 (8)
for any odd integer k, and

KT k+1 7 k+1

172 1 > 0 (9)
(k+1) !

must be satisfied. Combining (8) and (9) yields

—_ < K < (10)

which clearly cannot be satisfied for any choice of Kl since T1>>T2.

Thus, the system in (1) has poles in both halves of the complex plane.

Pole Location

A great deal of literature is available on the location of poles
of systems with delays[3]’[1o]. We define an exponential polynomial

to be of the form

n c;s )
F.(s) = I a. e (1)
1 . i
i=0
where ai and Ci are real constants. If there is some real o such that
c; =ap, i=1,2,...,n (12)

for integral values P> then




inl
F (s) = T a, () , p =0 (13)

If we can find the p, roots of the polynomial in e™® defined as

3
51,52,...,gp ; then it can be shown that the zeros of Fl(s) are given
n

by

1 r . ' :
Si = a‘ _21'[1'-’1':' + logl£l|] 1= 1:2:"'31—"“ (14)

M= Q] *2 s

Since Tl’TZ and K1 are arbitrary, we can put (5) in the exponential

polynomial form

P
Fl(s) _ (eas) no_ e (eas

1 ) - 1=0 (15)

where o = "Tz.
Thus the zeros of Fl(s) will lie along P, lines, normal to the real

axis of the complex plane defined by

-loglE, |
e " LR N (16)
2

Re(si) =

1f we take P, ® 2, the roots of (15) are

Now since 1og|£l| and log|£2|30, the two lines of zeros specified
by P, = 2 will both lie in the left hand plane for K1<1, If K1>1,
then log [52|<O and one line of zeros will lie in the right half plane.
The Nyquist analysis shows that the system will be unstable for any
choice of Kl' Thus, for a system with an infinite number of closed

Loop poles, it is not a sufficient condition of stability that all the

Poles have negative real parts.
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A question little considered by other authors is whether the
location of closed loop poles is a necessary condition for stability
of systems with an infinite number of closed loop poles. We will
consider a system which has an infinite number of poles in both halves
of the complex plane, yet has a region of stabiiity in which the system
can be said to be input-output stable.

The system in question arises in a metal rolling multipass process
and has been studied by Edwards[g]. The systein open loop transfer

function is of the form

(17)

and is the same as that of system in (1) except for the nonunity gain
factor K2 in the interpass feedback loop. Tl and TZ are delay distances
as before and Kl a constant gain factor. Edwardng] has used an
inverse Nyquist plot of this system, shown in Figure 2, to reveal a
central region of stability for a suitable choice of Kl,K2<l. It can

easily be shown that the closed loop transfer function of this system

with the gain factor K2 in the interpass feedback loop is of the form

H(s) = (18)

1~K2e +K1e

We can utilize the series expansion of the characteristic equation

of H(s) denoted by Hl(s) to examine the poles of H(s). Therefore
: (—K2T12+K1T22)52
- i o Bl
Hl(s) (1 K2+K1)+(K2Tl Ksz)s + 57
(19)

which yields the inequality




< — ' (20)

where k is any odd integer. The inequality is (20) cannot be satisfied
for any choice of Kl,K2<1. Thus the system with characteristic equation
Hl(s) appears to have poles in both halves of the complex plane.

We can locate these poles as before by writing Hl(s) as an
exponential polynomial of the form

P K

Ho(s) = ) P -t () -1 =0 (21)
1 K K
2 2
where o = —T2. As before, choosing P, = 2 the roots of the polynomial

W as
in:e are

K K
1, 422 1 f2,2
= + L /K2 +4/K2 P L /K2 +4/K2

= =2
%y 5 £y 7

no

and chO ensures that Hl(s) will have at least one infinite line of
zeros in the right half plane for any Kl’KZ'
Thus it appears that the system above has both a region of stability

for suitable choice K1 and K2 as well as poles with positive real parts.

Impulse Response Criterion

Many studies of stability of variable systems are based upon
boundedness and asymptotic behaviour of solutions. For the remainder
of this paper we shall be concerned only with the so-called input-output
stability of a system. In particular, we consider a forced system,
the stability of which is defined as follows:
Definition

A forced system is stable with respect to a set of inputs U = [p(XX],

if and only if the system output is bounded for all u(x) in the set U
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for all x>x0. That is, there exists a constant Q such that
Iy Q<=
for all u(x) in the set U for all x>xo.

This definition, introduced by James and Weiss[la] leads naturally
to the basic stability theorem for forced systems developed by Zadeh[lll.
Theorem I |

A variable forced system is stable with respect to a set of
bounded inputs U = Eu(x)] if, and only if its' impulse response ﬁ(x,T)

is integrable with respect to t for all values of x; that is

éw‘ﬁ(x,T)ldT < o for all x.

Zadehlrll-.-I has shown this to be a necessary and sufficient condition
for input-output stability. The impulse response stability criterion
has received much comment by various authors[lzj’[ljj. Desoer and Wuils]
have found a form of a system's open loop impulse response which can be
related directly to a Nyquist diagram of the open loop gain to give
stability criterion for the closed loop system. This approach is mnot
satisfactory for the system in question since we wish to examine closed
loop characteristics and in particular the closed loop impulse response.

The criterion in Theorem I will be of great use to us under the
following conditions

1) The system closedloop transfer function is known explicitly.

2) It is possible to analytically invert the system transfer

function to yield an explicit expression of the system's
closed loop impulse response.

The first condition above can be satisfied with the system transfer

function




H(s) =

(22)

To satisfy the second condition we can use the complex Laplace

inversion formula as follows

at+jY ™%k

= S
h(x) =L "[H(s)] = i g aij -T.8  -T.8
Yoo

1-K2e . +K1e
(23)
We know that H(s) has an infinite number of simple poles isi where
iem 1 2yaen If we consider a closed curve T inside of which H(s) is

single-valued and analytic everywhere except at the singularities

s = isi(i =1,2,...,n), then the Cauchy residue theorem yields

E%? eXSH(s)ds = gum of residues of eKSH(s) (24)

LI

at s = isi
O By

Even though H(s) has an infinite number of poles, only a finite number
s need be considered to affect the stability of H(s). We calculate
the residues in (24) by the following theorem.
Theorem II

Lt Hl(s) and HZ(S) are analytic in the neighbourhood of s, and if
Hl(so) # 0, but HZ(SQ) has a simple ;ero at 8y then the residue of
Hl(S)/HZ(S) at s_ is equal to Hl(so)/H’z(so).

Thus we can write

X8
K.e
1 n

s/ e*H(s)ds = I . (25)
2m] v ! =L, 8,

T i=1 KT e i 1gTe s

2-1 172

Now let R tend to = in Figure 3. Then by the inversion integral,

AB tends to h(x). The behaviour of the integral along CE is found from

the following theorem.
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Theorem III

If for roe, H(s) = H(rej¢) tends to zero uniformly in ¢ in the left
half plane Re(s)<0, ie w/2<¢<3n/2, and if § is a semicircle in the left
hand plane of radius r around the origin-then

S eXSH(s)ds + 0 for r + =
§

when x>0,
For s in the left hand plane

=-T.8 =T 8
e 5 > 1 5 e & > 1

and thus, in the lefthand plane, when |s|+, H(s) tends uniformly in ¢

XS

to zero. The integral along CE tends to zero as R+» for x>0. el g

=T.8 -T,.s
e 1 and e are bounded along arcs BC and EA and these contributions

to the integral also converge to zero since the length of the path of

integration is bounded.

Thus
XS,
n Kle o
h(x) = % T = (26)
i=1 KT e T'igre 271
271 12
and we can write the system impulse response H as
(x=1)s.
3 n Kle t
H(x,1) = I T 5 = (27)
i=l ¢ 1 e Vigre 2 i
271 172

To establish stability, it is simply left to show that H(x,T) is
integrable, which will be the case if h(x) is bounded. We can simply
consider the expression for h(x) in (26) by considering only the s

poles with positive real parts. If the system has k lines of poles
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in the right half complex plane, each with 2 poles with positive real

part a then we can let

K’
S = @y # jYi (28)
where i = 152546510
a; =a, = ... =a,
and kf =m

If we use the well known identity

exp(fjx) = cos x £ j sin x (29)
then
a.x
m K. e (cos y.x%x+j sin y.X)
1 i 1
h(x) = =
i=1 "% 9%
KZTle (coslei*351nlei)-K1T2e (cosTZyi—jslnszi)

(30)

Since from (14), the complex poles occur in conjugate pairs,
h(x) = 2 x Re[h(x)] (31)
Thus, separating (30) into real and imaginary parts and applying

(31) yields

m/2 a,x
h(x) =2 x I Ke  [R (%] (32)
; 1 i | ’
151
where
) Aicos[yi-(T1+x)]—Bicos[yi-(T2+x)]
R. (%) 5 5 . (33)
Ai +Bi —2AiBi cosLyi-(T1+T2)]
and
~T.a
B 174
Al = KZTle
=T, .a
B, =K Tg °°%
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For h(x) to be bounded, it is sufficient to show that there exists

a constant M such that

R ()] <M<w, i=1,2,...,m/2 (34)
If T, and T, are chosen so that !Ri(x)| is maximized, then

+1

]

cos [yi-(T1+xj]

cos [yi-(T2+x)] -1 35)
cos Eyi-(T1+T2)]= +1

and

i
max [R.(x)] = (36)
o K, 8,2 0h, B,
1 1 i S
Substituting in (36) for Ai and Bi yields
=T._4a., i
KTe Lljgre 21
mxﬁdwﬂ = 21 12
3. -2T. 4. -2T.a, -a, (T +T.)
k21 % tlgZp2, i ,pgqppe 112
2 71 1, @ 2717172
37

Thus, each line of poles in the right half complex plane will
contribute one value of a, %/2 times and if there are k lines, then

each line will have a constant value of R associated with it of the

form

=T g -T_a
1 2
s Klee +K1T2e

-2T a -2T.a -a(T
2 2 1 22 2
K2 Tl e +K1 T2 e —2K2K1T1T2e

(38)
1+T2)

since K
2’ Kl’ Tl’ T2 and a are all constants.
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Now R can only be infinite if its denominator is zero. Thus we

must show that the equality

., =2T.a -2T_ a -a(T,+T.)
g @ %8 5 g TElpd S 172
M e +K, T, % = 2K,K T T,e (39)

cannot be satisfied.

If we let T, =T £ in (39) and divide each term by T 2 then the

L Z 29%
equality becomes
-2T ta -2T.a a(T, +T.)
2o & 2 2 2 (t~1) 2 2
K2 T2 e +K1 e 2K2K1T2 (40)
2T2ta
Now multiplying each term in (40) by e yields
t t
2a(T, -T,) a(T. =)
B o 2 (t-1) 2 "2
K, T, +K; “e = KK T, e (41)
If we let W = a(th—Tz) then (41) becomes
2.t 2 2W _ (t-1) W
K)"T, +K;"e™" = 2K K T, e (42)

Writing E(W) for ew and E(2W) for e2w and rearranging (42) yields

K.T K

22, 1 E(2W) = E(W) (43)
2K (t=1) .

1 &,T,

Since W will be some constant value dependent on T, and a, there

2
exists a constant N such that
E(2W) = N-E(W) (44)

where E(W),E(2W),N > 1.
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Substituting (44) into (43) yields

K.T } N-K

gy 1
e R S 1 - —_— EW) (45)
2K1 2Ksz(t 1)

If we choose Kl,K2<l, then for a fixed K2 we can ensure that the
equality in (45) does not hold by choosing

Kl < 1—K2 (46)

for a suitable value of TZ' If the criterion in (46) is satisfied,
then the right hand side of (45) will tend to E(W) and the left hand

side to a factor of TZ' Since
KZ‘

for any K1<1—K2, the equality will not hold. There may be some small

value of T2 which satisfies the equality for ill-chosen K. and KZ’

1

since E(W) will grow large faster than T. for large T But in general,

2 2r
suitable T2 can ensure that even the largest R will be bounded by some

constant M and
é“’ H(x,1)dr < (48)

The criterion in (46) is the same as that developed by Edwards[g]
and input-output stability is clearly dependent on suitable choice of
Kl’ K2 and T2° This stability demonstrates that for a system with
an infinite number of closed loop poles, pole location to the left of
the imaginary axis in the complex plane is not a necessary condition of
stability.

It is expected that the same result would be achieved by examining

the impulse response of the open loop system and using the result of

Desoer and WuLlS], although this has not been attempted here.
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Conclusions

A system whose open loop characteristics have yielded an inverse
Nyquist plot with a central region of stability has been shown to have
an infinite number of closed loop poles iﬁ both halves of the complex
plane. It appears that systems with lines of infinite closed loop
poles can exhibit stable properties when excited by bounded inputs, even
when at least one line of poles lies to the right of the imaginary
axis. The result may be due to the impulsive nature of the system
transient response and further study of such responses is required.

Since it is possible to generate an explicit series representation
of the impulse response of systems with infinite numbers of poles, the
impulse response criterion used here may be generalized and standard
criterion for systems of this type developed. This work could fill

a large gap in the understanding of systems with multiple time delays.




Fig. 1 TInverse Nyquist Diagram for Coal Cutting Process.
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Fig. 2 Inverse Nyquist Diagram for Rolling Process
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