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Abstract

We consider the problem of identifying a nonlinear heat transfer law at the boundary, or
of the temperature-dependent heat transfer coefficient in a parabolic equation from boundary
observations. As a practical example, this model applies to the heat transfer coefficient that
describes the intensity of heat exchange between a hot wire and the cooling water in which it
is placed. We reformulate the inverse problem as a variational one which aims to minimize a
misfit functional and prove that it has a solution. We provide a gradient formula for the misfit
functional and then use some iterative methods for solving the variational problem. Thorough
investigations are made with respect to several initial guesses and amounts of noise in the input
data. Numerical results show that the methods are robust, stable and accurate.

Keywords: Inverse problem; Nonlinear boundary condition; Heat transfer law.

1 Introduction

There are many physical phenomena occurring at high temperatures/high pressures or, in hostile
environments, e.g. in combustion chambers, gas turbines, cooling steel or hot glass processes, gas-
quenching in furnaces, etc. in which either the actual method of heat and mass transfer is not
known, or it cannot be assumed that the governing boundary law has a simple form, e.g. linear
Newton’s law of cooling or, fourth-order power Stefan-Boltzmann’s black-body radiation law. In
such situations, we model these as an inverse problem of identifying a nonlinear heat transfer
law at the boundary, or of the temperature-dependent heat transfer coefficient. In other fields of
application, this formulation may also be considered as a model for the concentration of gaseous
diffusion with an unknown chemical reaction at surface or, for the population density with an
unspecified migration law at the boundary, [23].



In [11], Pilant and Rundell considered the problem of determining the heat transfer law function
g(+) and the temperature u(z,t) in the initial boundary value problem

Up — Ugy = Y(2,1), 0<z<1,0<t<T, (1.1)
u(z,0) =up(z), 0<z<l, (1.2)
uz(0,t) = g(u(0,t)), 0<t<T, (1.3)
—ux(1,t) = g(u(l,t)), 0<t<T (1.4)
from the additional condition
u(0,) = ht), (1.5)

where the functions ~,ug and h representing a heat source, an initial temperature and a boundary
temperature, respectively, are given. Note that from (1.1) and (1.5) we obtain u,(0,t) = g(h(t)) for
t € [0,7]. Under certain conditions, the authors of [11] proved that there exists a unique pair (u, g)
o (1.1)—(1.5) over the interval 0 < ¢ < ¢*, for some t* € (0,7]. They also proposed an iterative
method for this inverse problem and tested it briefly on computer. Later on, Rundell and Yin [21]
studied a similar problem, but in multidimensions. Namely, for 7' > 0 and Q = Q x (0,7] with Q
being a bounded domain in R, they considered the problem of finding a pair of functions u(x,t)
and g(s) defined on @ and [A, B], respectively, which satisfies the equations

ur — Au = ~y(z,t) inQ, (1.6)
u(z,0) = up(z) on 9,
g—z =g(u)+¢ on S :=00 x[0,T], (1.8)
and the additional condition
u(éo,t) = h(t), tel0,T], (1.9)

where the functions 7, ug, ¢ and h are given, & is a fixed point of 92, n is the outer normal to 952,
A = mingu(z,?) and B = maxgu(z,t). Under some conditions, the authors of [21] established
a stability estimate for g and from that they obtained the uniqueness of a solution to (1.6)—(1.9).
It is clear that the function g can be determined only in the interval [A, B], but not on the whole
real axis R. However, in [3], Choulli raised the question: how many measurements do we need to
recover ¢(s) for s € R? Choulli proved that: (i) if all lateral boundary measurements are available
and ¢’ is bounded, then we have uniqueness; (ii) if lateral boundary measurements are generated
by a one-dimensional vector space, then we also have uniqueness, provided that g = gg + g1, where
go is known and ¢; is unknown with no accumulation point of zeros. In the above context, it is
also worth citing the natural linearization numerical algorithm of [4] for the identification of the
nonlinear heat transfer law g(u) in (1.8) when, instead of the single measurement (1.9), one has
available the overdetermined measurement of the temperature u on the whole boundary S.

Finally, note that the identification of the heat transfer law g(u) in (1.8) is one-dimensional although
the underlying temperature state u(z,t) may depend on the time ¢ and on x := (z1,...,Zm).

Similar problems have been investigated in a series of papers by Troltzsch and Rosch [8], [20], [14]-
[19]. Namely, these authors considered the problem of determining the heat transfer coefficient
o(u) in the initial boundary value problem

uy—Au =0 1in Q, (1.10)
u(z,0) = ug(z) on Q, (1.11)
% =o(u(&,t))(ueo — u(&,t)) on S =09 x [0,7T], (1.12)



where uq, is the ambient temperature which is assumed a given constant, from various additional
conditions: wu(x,t) is given in the whole domain @, or wu(z,t;) are given at fixed time points
tiyi = 1,...,L, [20], [14], or w is given on the whole boundary S, [17]. They reformulated the
inverse problem as an optimal control problem and proved the Fréchet differentiability of the
functional to be minimized. They also solved the problem numerically by iterative methods. We
also note that in some continuous casting of steel processes, the heat transfer coefficient o in (1.12)
may depend on both temperature u and time ¢, [5], but the investigation of this more complex
inverse problem is deferred to a future work.

Later on, Lesnic and co-authors [9], [10], Janicki and Kindermann [7] also attempted to solve the
inverse problems (1.1)—(1.5) and (1.10)—(1.12) numerically. For more physical meaning of these
inverse problems in heat transfer, we refer the reader to the aforementioned references.

In this paper, we consider the inverse problem of determining the function g(-,-) in the initial
boundary value problem, [22],

uy—Au=0 1in Q, (1.13)
u(z,0) = up(z) in Q, (1.14)
% =g(u,f) onS (1.15)

from the additional condition (1.9). Here,

g : I xI— R (with I a subinterval of R) is assumed to be locally Lipschitz continuous,
monotone decreasing in u and increasing in f and to satisfy g(u,u) = 0, up and f are
given functions with range in I belonging, respectively, to L2(£2) and L?(S).

Throughout, we assume that ¢ satisfies this condition, and write that as g € A. Usually, the heat
transfer coefficient is identified as a function of time or space, [6], but in this paper we refer to
applications where it depends on the boundary temperature.

The model (1.13)—(1.15) describes many practical situations, [1, 22]. It includes the linear boundary
condition g(u, f) = ¢(f —u) with ¢ a positive constant. It includes nonlinear conditions of the form
g(u, ) = &(f) — ¢(u), with ¢ Lipschitz and monotone increasing on I; these include the Stefan-
Boltzmann radiation condition for which ¢(w) = w* and I = [0,00), the Michaelis-Menten law
of enzyme diffusion for which ¢(u) = cu/(u + k), where ¢ and k are positive constants. It also
covers the case g(u, f) = ¥ (f —u), where 1) is Lipschitz and monotone increasing on the ”difference
interval” I — I; in particular one can take ¢ (w) = w®*4 for w > 0, and = 0 for w < 0, which relates
to natural convection.

As the additional condition (1.9) is pointwise, it cannot be defined if the solution is understood in
the weak sense, as we intend to use in this paper. Therefore, we consider the following alternative
conditions.

1) Observations on a part of the boundary:
uls =h(§ 1), (&) €, (1.16)
where ¥ =T x (0,7, T is a non-zero measure part of 9€;

2) Boundary integral observations:

lu ::/ (€YUl )de = h(t), te (0,T], (1.17)
o0



where w is a non-negative function defined on 99, w € L'(0Q) and [, w(£)d > 0. We note
that if we take w as approximations to the Dirac J-function, then the observations of this kind
can be considered as an averaged version of (1.9). Such integral observations are alternatives to
model pointwise measurements (thermocouples have non-zero width) and they will make variational
methods for the inverse problem much easier.

This paper is organized as follows. In the next section we will outline some well-known results on
the direct problem (1.13)—(1.15). Section 3 is devoted to the variational method for solving the
inverse problem (1.13)—(1.15), (1.17), and (1.13)—(1.15), (1.16), where we formulate the method
and prove the existence result for it, as well as deliver the formula for the gradient of the functional
to be minimized. As a by-product, we derive also the variational method for solving the inverse
problem (1.10)—(1.12), (1.17). Section 4 is devoted to presenting and discussing thoroughly the
numerical results, whilst Section 5 presents the conclusions of this study.

2 Direct problem

In this section, we outline the results on the direct problem (1.13)—(1.15), [22]. We use the standard
Sobolev spaces H(Q2), H*°(Q) and H'(Q) (see e.g., [24, p. 111]).

For a Banach space B, we define
L*(0,T;B) = {u:u(t) € B ae. t€c (0,T) and 1wl 20,8y < o0},
with the norm .
e I 2
In the sequel, we shall use the space W (0,T') defined as
W(0,T) = {u:ue L*0,T; H(Q)),u € L*(0,T; (H' ()"},
equipped with the norm
HUH%/V(O,T) = HUH%Q(O,T;Hl(Q)) + HutH%Q(O,T;(Hl(Q))’)'
We take the convention of notation in [22]: letting J be a subinterval of I we shall use J as a
subscript on function spaces to denote the subset of functions having essential range in J.
Definition 2.1. Let ug € L3(2) and f € L*(S). Then u € H}’O(Q) is said to be a weak solution

of (1.13)~(1.15) if g(u, f) € L*(S) and for all n € H>Y(Q) satisfying n(-,T) = 0,

/Q ( —u(z, t)ne(w,t) + Vu(z,t) - Vn(ﬂc,t))dxdt = /

Q

()1 (z, 0)d + /S g(ulE. ), F(E.6)n(E, t)dedr.
(2.1)

In [22] the following results have been proved.

Theorem 2.2. Let J be a subinterval of I such that g(u, f) is uniformly Lipschitz continuous on
J x J. Then, for every ug in L%() and f in L%(S), the problem (1.13)~(1.15) has a unique weak
solution.

Theorem 2.3. Let u be a weak solution of (1.13)—~(1.15). If up and f are bounded below by m (or
above by M ) almost everywhere, the same is true for u.
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We note that in [22] the strict monotonicity of ¢ is assumed. However, it is in fact not needed.

We have also stronger results.

Theorem 2.4. ([2, 12, 13]) If up € C(2) and f € L*°(S), then there exists a unique solution of
(1.13)(1.15) in W(0,T) N L>=(Q). This solution is continuous in Q and there exists a positive
constant ¢ independent of ug, f such that

el + o) < ¢(lollog) + llz=qxn )- (2.2)

From now on, to emphasize the dependence of the solution u on the coefficient g, we write u(g) or
u(x,t; g) instead of u. We shall prove that the mapping u(g) is Fréchet differentiable with respect
to g. In doing so, first we prove that this mapping is Lipschitz continuous. To this purpose, we
assume that

g(u, f) is continuously differentiable with respect to w in I and denote that by g € A;.

Furthermore, since f is fixed, we shall write g(u) instead of g(u, f), but we always keep in mind
that g depends on the both variables, and f has the same essential range in I as ug does. Also, as
we consider g as a function of one variable, we write ¢(u) instead of dg(u)/du.

Lemma 2.5. Let g',g°> € Ay such that g' — g> € A. Denote the solutions of (1.13)(1.15)
corresponding to g' and ¢*> by u' and u?, respectively. Further, suppose that ug € L%(Q) and
f € LY(S). Then there exists a constant ¢ such that

lu' = v lwom) + llu' —v?llog) < clg' = g lL=(xn- (2:3)

1

Proof. Denote v = u' — u?. Then, v satisfies the problem

ve—Av=0 1in Q,
v(z,0) =0 in Q,
ov

= gll) — ) on S, (2.6)

Since v(z,0) = 0,

gt (u?) — g?(u?) € L>=(S) and ¢! < 0, from Theorem 2.4 (see also [13, Proposition 3.3]) applied to

the problem (2.4)-(2.6), we have v € W(0,7) N C(Q) and the estimate (2.3). O

Now we prove that u(g) is Fréchet differentiable with respect to g. In doing so, we introduce the
sensitivity problem:

n—An=0 in Q, (2.7)
n(z,0) =0 in Q, (2.8)
o1 = glulg)) + =(u(g)) on S. 29



Here, z € Ay and g € A;. Since n(z,0) = 0, there exists a unique solution of (2.7)—(2.9) in

W(0,7)NL>®(Q) which belongs to C(Q). From the proof of Lemma 2.5 we see that 7 is a bounded
linear operator mapping z € A; into W (0, 7).

We have the following result.

Theorem 2.6. Let ug € L3(Q), f € L(S) and g € Ay. Then the mapping g — u(g) is Fréchet
differentiable in the sense that for any g,g9 + z € Ay there holds

lulg + 2) — ulg) = nllwer _
l2ll oo (2 1y —0 2]l 1y

0. (2.10)

Proof. Set w = u(g + w) —u(g) —n, where 7 is the solution of problem (2.7)—(2.9). We see that w
is the solution of the problem

wy—Aw =0 in Q, (2.11)
w(z,0) =0 in €, (2.12)
g—: = g(u(g + 2)) + z(u(g + 2)) — g(u(g)) — g(u(g))n — 2(u(g)) on S. (2.13)
We have
g(u(g + 2)) + z(u(g + 2)) — g(u(g)) — g(u(g))n — z(u(g))
= g(u(g))(u(g + 2) —u(g) —n)
+g(u(g + 2)) — g(u(g)) — g(u(g))(u(g + 2) — u(g))
+ 2(u(g + 2)) — 2(u(g)).

Thus, w is the solution of the problem

wy—Aw =0 1in Q, (2.14)
w(z,0) =0 in €, (2.15)

oL julg)w = glul + 2)) — 9(u(s))
= g(u(9)) (ulg +2) —u(g)) + 2(u(g + 2)) — 2(u(g)) on S.  (2.16)

Since g is continuously differentiable, we have

lg(u(g + 2)) — g(ulg)) — g(u(g))(u(g + 2) — u(g))llze(s)y = o(l[ulg + 2)|s — u(g)|sllz=(s)

= o(l|zll e (1))
due to Theorem 2.4. Furthermore,

u(g+z)

letuly +2) — 2tu@ueis = | [ 0],

(9)
< cll2llLoo(ny 12l oo () = ozl (1)) (2.17)

From the estimates (2.17) and the estimates in Theorem 2.4 we arrive at (2.10). Since 7 is a
bounded linear operator mapping z € A; into W (0,T), the theorem is proved. ]



3 Variational method

3.1 Inverse problem (1.13)—(1.15) and (1.17) over A,

In this subsection we study a variational method for the inverse problem (1.13)—(1.15) and (1.17).
We minimize the functional

1
J(g) = 5lltulg) ~ hlZ20.1) (3.1)

over A;. First, we prove that this functional is Fréchet differentiable and derive a formula for the
gradient. Second, under some stronger conditions on g we shall prove that there exists a solution
of the variational problem.

Let € > 0 and z be in Ay such that g + ez € Ay for 0 < e < ¢q, ¢ is given and sufficiently small.
Denoting u€ the solution of (1.13)—(1.15) with g replaced by g + €z, we have

1 1
To+e2) — J(a) = glula + )~ M) — 3 lu(a) — hlEaq)
1 € €
= §W(U - u(ﬂ))”%%o,Tﬁ <(u —u(g)), lu(g) — h >r20.1) -

Letting € — 0, in virtue of Lemma 2.5, we have ||[(u¢ — u(g))||%2(0 T = o(||zll e (ry)- On the other
hand, since u(g) is Fréchet differentiable, J(g) is also Fréchet differentiable and its gradient has the
form

J'(9)z =< 1(i(g)2),lu(g) — h >p120,1)

= [1 (] ctemena) ([ wlemiasic - o), (3:2)

where 7 is the solution of the sensitivity problem (2.7)-(2.9).

Introduce the adjoint problem

—pt—Ap=0 inQ, (3.3)
o(x,T)=0 in Q,

o = tulgNe +w©( [

o

w(€)ulg)|sdg — h(t)) on S. (3.5)

Since g(u(g)) < 0 and cu(é)(faQ w(&)u(g)|sde — h(t)) € L?(9), this problem has a unique weak

solution in W (0,T) and due to Green’s formula [24, Theorem 3.18], we have

/0 ' ( /a Qw(f)n(&t)dé) ( /a wl€)ul)lsde - A(t))dt = [S 2(ulg)) (€, t)dEdt.
Thus,
Ty = [ suto)elendsar (3.6)

We summarize this result as follows.

Theorem 3.1. The functional J(g) is Fréchet differentiable in A; and its gradient has the form
(3.6).

From this statement, we can derive the necessary first order optimality condition.
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Theorem 3.2. Let g* € A; be a minimizer of the function (3.1) over Ay. Then for any z =
g—9° €A,

Tz = [ =g ))ele.tig" s > 0, (3.7
where (x,t; g*) is the solution of the adjoint system (3.3)—(3.5) with g = g*.

Now we prove the existence of a minimizer of the function (3.1) over an admissible set. We introduce
the set Ay as follows (]20]),

Ay = {g € CM[I],m1 < glu) < My, My < §(u) <0,Yu € I,

sup ’g(ul) _g(u2)’ < C} (3.8)

uy,ug€l ’ul - UZ‘V
Here, v, my, My, My and C are given.

Suppose that ug € C?(Q) for some constant 3 € (0,1]. Then, due to [12, Corollary 3.2], u €
C7/2(Q) for some 7 € (0,1).

Following [20], set
Tos = {(g.u(9)) : g € Assu € @)},

Lemma 3.3. The set T,y is precompact in C1[I] x C(Q).

Proof. The set Aj is compact in C'[I] (see [20]). Due to [12, Corollary 3.2], when g € Ay the
solution u(g) is bounded in C7/2(Q), which is compactly imbedded in C(Q). Hence, T,q is
precompact. ]

Theorem 3.4. The set T,q is closed in C[I] x C(Q).

Proof. Let (gn,un) be a convergent sequence in T,y with the limit (g,u). We shall prove that
u = u(g). Since g, € Aj, following [20], g also belongs to A3. Besides, since ug and f have the
essential range in I, so do the functions w,, and u. It follows that

lg(u) = gn(un)| < |g(u) — glun)| + |g(tn) = gn(un)
< Mi|lu = unllog) + 9 — gnll e n)-

Hence, gy (z,t) = gn(u,) converges uniformly to g(z,t) = g(u). From Definition 2.1 we see that
u=u(g). O

Since J(g) is continuous, from the last theorem we have the following result.
Theorem 3.5. The problem of minimizing J(g) over Ay admits at least one solution.

3.2 Inverse problem (1.13)—(1.15) and (1.16) over A,

To solve the inverse problem (1.13)—(1.15) and (1.16), we approach it similarly: minimize the
functional

7(a) = glhula) b aqs, (39)



over A;. All the above results are valid for this functional, except for the formula of the gradient
of J. To obtain it, we introduce the adjoint problem

—pt—Ap=0 inQ, (3.10)
o(x,T) =0 in Q, (3.11)
02— j(ulo)e + (u(e) b)) xs(e) on s (3.12)

Here, xx is the characteristic function of ¥: xx(&,t) = 1if (§,t) € ¥, = 0 otherwise. Taking z as
in the previous subsection, we obtain that the gradient of J(g) has the same form of (3.6).

3.3 Inverse problem (1.10)—(1.12) and (1.17) over A,

As a by-product, we consider now the variational method for (1.10)—(1.12) and (1.17) under the
condition that o € As. We denote the solution of (1.10)—(1.12) by u(o): A function u € H%(Q)
is said to be a weak solution of (1.10)—(1.12) if for all n € HYY(Q) satisfying n(-,T) = 0,

/Q ( —u(z, t)ne(z, t) + Vu(z,t) - Vn(z, t))dxdt = /Quo(x)n(m, 0)dx

+/0W®ﬂmm—u@0M@0%®
S
(3.13)

If we suppose that ug € C(2), due to [2, 12, 13], there exists a weak solution of (1.10)—(1.12) in
W(0,T) N L>=(Q) which belongs to C(Q) and if ug € C?(Q) for some constant 3 € (0,1], then
u € C7/2(Q) for some v € (0,1). Furthermore, as noted in [20], due the maximum principle,
min {Ueo, infreo up(z)} < u(z,t) < max {us,sup,eq uo(x)}.

Now we consider the problem of minimizing the functional
1
J(o) = 5Hlu(a) — M2 0.1 (3.14)
over As. It can be proved that there exists a solution of this minimization problem.

It is proved in [15] that the mapping from o € CY(I) to u(c) € C(Q) is Fréchet differentiable.
Here, I := {min {too, infreq uo(x)}, max {us, sUp,cq uo(x)}] We note however that this result
can be proved also by the same way as above. If we take the variation z as in §3.1, then the Fréchet
derivative n = 1(0)z satisfies the sensitivity problem ([15])

m-Ap=0 inQ, (3.15)
n(x,0) =0 in £, (3.16)
g—z = (&(u(a))(uoo —u(o)) — U(U))n + 2(u(0)) (uoo - u(a)) on S. (3.17)

Due to [2, 12, 13], there exists a unique weak solution of (3.15)—(3.17) in W(0,7T) N L*°(Q) which

belongs to C(Q).

Now we derive a formula for the gradient of J. In doing so, we introduce the adjoint problem:

—pt—Ap=0 inQ, (3.18)
o(z, T) =0 1in Q, (3.19)
g—i — (6(u(0)) (oo = u(0)) = o)) + w(&) /a A€l ) - B(B) onS. (320



Similarly to the above, we can prove that

J'(0)z = /S z(u(o))(uoo - u(o))gp(f,t)d&dt. (3.21)

4 Numerical results

We tested our algorithms for the two-dimensional domain © = (0,1) x (0,1) and 7' = 1. For the
temperature we take the exact solution to be given by,

100 x — x|
Uezact(T,1) = o P <—%> ) (4.1)
where g = (—2;—2). This gives the intial condition (1.14) given by u(x,0) = up(z) = 0. From
(4.1) it is easy to check that the minimum of wueyeet Occurs at ¢ = 0 giving A = 0, whilst the
maximum of Uezqer Occurs at ¢ =T =1 and x = (0;0) giving B = %6_2.

We consider the physical examples of retrieving a linear Newton’s law and a nonlinear radiative
fourth-power law in the boundary condition (1.15) which is written in the slightly modified notation

form 5

U

a_n :g(u) _gea:act(f)a on S,
where the input function f is given by

0

f = u(;j:wt + Uezact, ON S

in the linear case gezact(f) = —f, and
ou 1/4
f = <%¢M + uga}act) ; on S

in the nonlinear case gegact(f) = —f% One can calculate the extremum points of the function f

on S in the above expressions and obtain that [m := mingf, M = maxsf] D [A, B] = [0, 12e2].
From the max-min principle Theorem 2.3 we know that m < u < M, and we have available these
upper, M, and lower, m, bounds because the functions ug and f are given input data. However,
in our preliminary numerical investigation reported in this section, we have taken that the full
information about the end points A and B is available, although from Theorem 2.3 we only know
that [A, B] is a subset of the known interval [m, M]. In the absence of such information being
a priori available, one could run the inverse problem on the wider interval [m, M] and retain a

posteriori the function g only on the reliably obtained range of the function wu.

We investigate two weight functions in the boundary integral observations (1.17), namely,

1
P T CTNCT s
0 otherwise,
and
W) =& +&+1, (4.3)

where & = (£1;&2). Note that the weight function (4.2) with & vanishingly small is supposed to
mimic the case of a pointwise measurement (1.9) at the origin &, = (0;0).
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We employ the Gauss-Newton method for minimizing the cost functional (3.1), namely,

1 1
J(9) = 5‘”“(9) - hH%Q(O,T) = §H(I>(Q)H%Q(O,T)7 (4.4)

as follows. For a given g,, we consider the sub-problem to minimize (with respect to z € L?(I))

1 Qp
L 18(9.) + (02l )+ Sl Method 1 (M1), (45)
or 1 o
L0(gn) + (012 a0y + Ll — g+ oy Method2 (M), (46)

Then we update the new iteration as

In+1 = gn + 0.5z, (4.7)

Here we choose the regularization parameters

0001
Con+1

(4.8)

Qo

The direct and adjoint problems are solved using the boundary element method (BEM) with 128
boundary elements and 32 time steps. We also use a partition of the interval [A, B] into 32 sub-
intervals.

In what follows, we present the numerical results for both cases of linear and nonlinear unknown
functions g(u) using methods M1 and M2 for several choices of initial guess gy and noisy data

1R° = hll 120,y < 6.

4.1 The linear case

In this case, we wish to retrieve the linear function g(u) = —u. Consider three sufficiently different
initial guesses
1 1
golu) € {0,—§u,—§u2}. (4.9)

For the weight function (4.2), Figures 1 and 2 show the numerical solutions obtained using methods
(M1) and (M2), for various initial guesses (4.9), and amounts of noise § = 0.001 and § = 0.01,
respectively. Figures 3 and 4 presents the same results as Figures 1 and 2, respectively, but for the
weight function (4.3). From Figures 1-4 it can be seen that both methods (M1) and (M2) perform
similarly well and show independence of the initial guesses (4.9). Except for some isolated large
jumps occurring at u = B, the numerical results are accurate, stable and robust, i.e. independent of
the initial guesses. By comparing Figures 1 and 2 with Figures 3 and 4 it seems that the choice of
weight function (4.2) or (4.3) slightly influence the behaviour of the numerical results. In particular,
Figures 3 and 4 show a staircase behaviour of the numerical results for g(u), as a function of w,
and there is also some slight dependence on the initial guess (4.9) which is more pronounced for
method (M2) and for the larger noise § = 0.01. The numerical solution for the function g is not so
smooth because we approximate it by piecewise constant functions.

4.2 The nonlinear case

In this case, we wish to retrieve the nonlinear function g(u) = —u*. Consider three sufficiently

different initial guesses

go(u) € {0, —B3u, —%u4}. (4.10)

11



0.5 T T T T T T 0.2

Exact Exact
- - -g=0 - - -g=0
0 —e— g ) =-(12u | o —e— g0 =-(W2u ||
—— g =-(WBY’ —— g0 =-(uB)’

0.5

-1

-15F

-2+

-3 I I I I I I _14 I
0 12 14

Figure 1: The exact linear function g(u) = —u in comparison with the numerical solutions obtained
using method (M1) (left) and method (M2) (right), for 6 = 0.001 noise. The weight function w is
given by (4.2).

0.5

Exact Exact
- - —gyu)=0 o - - —gyW=0
0 —e— g, =-(12)u [{ —a— g, (W) =~(12)u
—— gy(u) = ~(WB? 05k ——gy(u) = ~(WBW?]

-15¢

-3 I I I I I I —4

Figure 2: The exact linear function g(u) = —u in comparison with the numerical solutions obtained
using method (M1) (left) and method (M2) (right), for § = 0.01 noise. The weight function w is
given by (4.2).

For simplicity, we only show the numerical results obtained using the method (M2). Figures 5 and
6 show the numerical solutions obtained using method (M2), for various initial guesses (4.10) and
amounts of noise 6 € {0.001,0.01}, for the weight functions (4.2) and (4.3), respectively. Similar
conclusions to those obtained for the linear case of the previous section can be drawn from these
figures.

5 Conclusions

This paper presented a novel theoretical and numerical nonlinear analysis of a multi-dimensional in-
verse heat conduction problem which allows the determination of the heat transfer law from bound-
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Exact Exact
0 o _gw=0 || - g0 ||
—e gy )= -2 o —e— g ) =-(1/2u
-0.2F ——gy )= —WB)A[] N ——gy(u) = -(UB)u? |

-1+

1.2

-14r

-16F

-18 I I I I I I _14
0 0.2 04 0.6 0.8 1 12 14 0

I
12 14

Figure 3: The exact linear function g(u) = —u in comparison with the numerical solutions obtained
using method (M1) (left) and method (M2) (right), for 6 = 0.001 noise. The weight function w is
given by (4.3).

0.2

0.2

Exact Exact
- - =0 - - —g=0
0 —e— g0 = (U2 | 0 —a—gy(0) = (W2 |
' —— g0 =B —— g0 = (B

-0.8f 08 AN — = — -

-1

12 I I I I I I _12 I I I I I I
0 0.2 0.4 0.6 0.8 1 12 14 0 0.2 0.4 0.6 0.8 1 12 14

Figure 4: The exact linear function g(u) = —u in comparison with the numerical solutions obtained
using method (M1) (left) and method (M2) (right), for § = 0.01 noise. The weight function w is
given by (4.3).

ary temperature integral observations (1.17). A weak form variational formulation was adopted
in which the least-squares functional (3.1) or (3.9) was minimized over a couple of admissible sets
A; (sections 3.1 and 3.2) or Ay (section 3.3). The Fréchet differentiability (Theorem 3.1) of the
objective functional and the existence of its minimizer (Theorem 3.5), as well as explicit formulae
(3.6) and (3.21) for the gradient have all been rigorously established. The numerical solution was
found by employing the Gauss-Newton method for the nonlinear minimization of (4.4) based on
either (4.5) (method (M1)) or, (4.6) (method (M2)). The numerically obtained results in Sec-
tion 4 demonstrated that the methods proposed were able to retrieve in an accurate, stable and
robust manner, the unknown both linear (section 4.1) and nonlinear (section 4.2) heat transfer
laws g(u), from the noisy boundary temperature integral measurements (1.17). Future work will
consider a more general nonlinear identification of a heat transfer law g(u,t) depending on both

13



0.5

-0.51

-1+

-1.5¢

-2

Figure 5: The exact nonlinear function g(u)
obtained using method (M2): 6 = 0.001 noise (left) and ¢ = 0.01 noise (right). The weight function

w is given by (4.2).

0.2

;
Exact
- - —gu=0
—e— g, =-8%
—— g, () = (/2|
‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 14

Exact
- = =gyw=0
—e—g0) =B

——gu) =-(1/2u"|

in comparison with the numerical solutions

Exact
- - —g =0

—e—g, )= B ||

—— g () = ~(W2)u"||

T
Exact
- = -gyw=0

—e—g )= ||

——gy(u) = -2

-1.2¢

~14 I I I I , 8 I _14 I I I I I I
0 0.2 0.4 0.6 0.8 1 12 14 0 0.2 0.4 0.6 0.8 1 12 14

Figure 6: The exact nonlinear function g(u) = —u* in comparison with the numerical solutions

obtained using method (M2): é = 0.001 noise (left) and ¢ = 0.01 noise (right). The weight function
w is given by (4.3).

the temperature v and the time t.
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