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An Analytical Study of the Dynamics of Binary

Distillation Columns

* %
J. B. Edwards and H. J. Jassim

Abstract Analytical transfer function matrices are developed for
describing the dynamic behaviour of the compositions within the
rectifying and stripping sections of both very short and very long
distillation columms, in response to changes in energy and liquid
throughput. Matrices of first-order lags are shown to describe both
situations very closely and the simple structure of the models
demonstrates the need to consider only steédy—sta;e operating curves
for the elimination of interaction problemé arising in twin product
control.

The models are useable directly by the plant or design engineer
who merely needs to substitute basic design data to obtain good
estimates of all the model parameter values. An elementary inverse
Nyquist approach is presented which predicts precisely the extent of
the detuning of one composition control loop by closing the other loop.

The long column model is shown to have much in common with models
produced by other authors who have used widely different, and usﬁally
partly-empirical, approaches to column modelling. The analytical
approach here proves, for specified conditions, the empirical observa-
tions relied upon by these previous workers. The modelling method
used here involves the solution of the process partial differential
equation at high frequency and the discrete process equations at low
frequency. The two resulting models join together quite naturally
because of their structural similarity. It is believed that the

approach could find application in separation processes generally.

%*
Department of Control Engineering, University of Sheffield, England,




1z Introduction

Process models expressed in the form of a matrix of transfer
functions are valuable for predicting process behaviour in response to
small disturbances and for assessing the performance of control systems.
Their value to the practising engineer is increased enormously if the
model parameters can be related to the basic design parameters of the
plant and its pre-specified operating conditions. The analytical
determination of such relationships has the advantage over an empirical
approach in that the former provides a deeper insight into the process
behaviour and generatés fairly precise confidence limits on the range of
conditions to which the model is applicable. Because of the need to
idealise process equations,however, the analytic model predictions must
be shown to agree with well-established empirical results before the
idealising assumptions can themselves be validated.

The binary distillation process has so far proved to be far from
amenable to the analytical approach although significant efforts by
Wilkinson and Armstrong1 in 1957 and Wood and Armstrong2 in 1960 did
produce transfer functions between the compositions of the products and
that of the feed. Unfortunately feed composition is rarely available
for manipulation by the control system and the dynamic affects of.
changes in, say, reflux flow rate,L, or vapour rate,V, although related,
are very different, as will be demonstrated. Stainthorp and Searson3
have more recently developed simplé models for the response to changes
in V and L based on a partly-analytic, approach, validating their model
predictions on two industrial columms. Their approach was partly
empirical, however, in that a key step in solving the process equations
involved the use of a dynamic interrelationship between consecutive tray
compositions determined from pilot—plant observations. Shinskey's4
approach is again analytic apart from one key assumption, empirically
justified, of a unique relationship between V and the column separation
factor, S. Davison5 developed a detailed dynamic model completely
analytically but left this in terms of partial derivatives having little
immediate relation to basic plant parameters.

Of course a wealth of material has been published on the application
of control system design techniques, both optimal6 and frequency response
based, to models derived from tests on specific columns and the strategies

emerging have been evaluated practically by pilot plant trials by, often,
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different authors, with varying degrees of success. All this provides
an invaluable library of experience the only problem with which is its
immense size. Furthermore the main objective of a report has very often
been the testing of an identification, or control design or computer
technique rather than being specifically devoted to acquiring column
insight. :

The need still exists for anm approach to modelling column dynamics
which yields an insight comparable to that offered by the McCabe-Thiel
method8 for steady-state design. At an international symposium in 1969,
Professor H. H. Rosenbrock9 acting as rapporteur for & session on columms
stated: "In particular, any results Which‘increase understanding and
insight into the dynamic behaviour, (of distillation columns), are doubly
rewarding. They can often confirm that difficulties will not arise so
that a detailed investigation need not be made. On the other hand, when
they show that difficulties can arise they may also suggest ways in which
these difficulties can be overcome, again without the need for a full
investigation". The present paper is an attempt to meet this need and
the results do give much of the insight called for. The study begins
with an investigation of the simplest possible type of still comprising
essentially only two theoretical plates, and then moves to the case of a

semi~-infinite column.

24 Small Columm

By way of introductionwe consider first an ideal single—tray
rectifier of molar holdup Hr surmounting merely the reboiler of holdup Hs'
The term "ideal" indicates here adiabatic conditions, negligible sensible
heat changes, equal molar latent heats, constant molar liquid holdup and
negligible vapour holdup and a boiling liquid feed i.e. the standard case
generally used to introduce steady~state design concepts. The total
condenser is assumed to have negligible capaéitance. Under these
conditions the mass-balance equations for the lighter component for the

rectifier and reboiler are:
V(Y'-Y) + L(Y=-X) = H X
N oo (L)

!_'_‘_."y ""‘-....J

and F(z-X") - V(Y'-X") + L{(¥-X") = Eé X'

and these together with a vapour/liquid equilibrium relationship, (assumed

to hold throughout), of the form, say:




_Y(@-X) _ Y (-X') _ ;
¢ =D XY constant relative vewi(2)

volatility

provide a complete specification of the process, if variables V,L,F and Z

are known and X,Y,X' and Y'are unknown.

2.1. Steady State Behaviour

Steady-state data is valuable for choosing reasonable operating
conditions under which to study the process dynamically, and such data
is easily digested if presented graphically. The Y v X' plane offers
a useful basis for presentation, as, for instance, in the McCabe-Thiel
approach. Now a steady-state mass—balance on the whole column gives

' the general result:

Y = (1-F/D)X' + FZ/D ve e (3)

where D = V-L ‘ s o (4)
so that Y must be linearly related to X' for constant feed conditioms,
the line slope being determined by the D/F ratio only and the line
passing always through the point Z,Z. Within this plane combinations
of terminal compositions are restricted to lie within a domain bounded
by minimum and maximum separation lines. Column separation, S, is

by definition given by

_ Y(a-x')

S = A1) xoe 80

and its maximum value,which is approached at very high vapour rates,
is given by the Fenske formula:

+
g " uP 1
max

e akB)
where P = number.of actual ‘trays. (The result is easily derived from
the steady-state versions of equations 1, by setting V>>F). Here
Smax = az and §_. is obviously o, a situation pertaining to zero reflux,
(or D = V), when the column acts as a simple still. The permissible
crescent shaped area which can be practically occupied by points Y,X' -
is illustrated in figure 1 for the case of o = 8.0.

As well as straight loci of constant D/F, curves of constant v/F
can also be determined analytically via equations 1, although with
greater difficulty. As would be expected, for very large values of

V/F, these loci follow closely the form of the upper permissible boundary
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and therefore are similar in shape to lines of constant separation as
assumed throughout by éhinske§% For more economical energy throughputs
however their form changes sigpificantly in the l-tray column as the
curves of figure 1 indicate. Their slope never—the-less remains positive.
(Figure 2 shows the computed loci for a b-tray column having the same
maximum separation, (64), as the single tray process and demonstrates the
increasing tendency towardsa one-to-one correspondence between V/F and S

as columns become longer). As will be actually proved, an approximate
knowledge of the form and location of these loci for any binary columm

is reaily all that is ultimately required for resolving the problems of
interaction between the composition control loops under normal circuustances.
Loci of constant L/F or constant R can be immediately determined from
those for constant V/F and D/F. The former are also presented in

figures 1 and 2.

2.2. Dynamic Model

Linearising process equations 1 for small perturbations x',y,v and 2
in X',Y,V and L respectively, and taking Laplace transforms with respect
to time yields, after some algebraic manipulation, a matrix equation of

the form

5,807 = [6(s)] [7,2]" Lre (D)

where the transfer-functionmatrix, G(s)

%(Y'-X')Va

(X=X )Vu 7]
T DL T (YDA 5)} §

m- +(Y~X) (l-i-TSS)k

§r'-X") (14T, 9) [(V_L)ar+L]+(Y-Y'>L‘} ; (x-x") (1+T_s) [ (V-L)o +L]+(Y—X)LL
! F+(a ~1)V+L > ! F+(u =1)V+L

F+(as-1)V+L
x‘T(V—L)ur+L}(1+Tss)(1+Trs){F+(un—1)v+L}—LVaS

wos (8B)

)

where T

I

H /{F+(a ~1)V+L} cww(3)y T

s s 5 . Hr/{(V—L)ar+L} N L)

Hi

and = 3Y' /oxX' .. (1), o Y /09X se s (12)

2
|
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Choosing as an initial working point one which allows easily observable
changes in both outputs, X' and Y, to be produced by {nput perturbations,
either v or &, of reasonable size, yields thé point Y,X' = 0.8,0.2 (see
figure 1). At this working point the quiescent operating conditions are:
Y = 0.8, X = 0.333, X' =0.2, Y' = 0.666, D/F =0.5, V/F = 0.7, L/F = 0.2,
W/F = 0.5, Z = 0.5, o 0.72 and a, = 1.39. Substituting these values in

equation 8 gives the numerical result

B 0.7940.24T s 0.992+0.835T s
_3(1+Tss)(l+Trs)-0.236} 0.72 § (1+Tss)(1+Trs)—0.23610'72
G(s) = o e GES)
0.3685+O.316Trs E ; 0.2034+0.0904Trs
L((1+1:Ss)(1+1:rs)—o.236 (T+T_5) (1T 5)-0.236 ]

Of course equation 7 is only one of many possible mathematical
representations of the process dynamics, an alternative, in terms of

inputs v and d, (ZAD), being:

(7,57" = [a)] [v,d]" . s)

where, for the particular case considered here,

[ 0.202+0,595T s 0.992+0,835T s i
((1+TSS)(1+T1_S)-O.236}0 2 s {(m: ST s) 0.736) 072
Q(s) = e 15
0.1651+0.2256T s } 5 0.2034+0,0904T s g
] ((1+Tss)(1+Trs)-0.236 (1+TSS)(1+Trs)—O.230

the steady-state gain terms of which may be checked by measurement of

the slopes of the constant V and constant D loci of figure 1.

2.3 Dynamic Behaviour

The inverse Nyquist loci of eaéh of the constituent transfer functions
8112812289789 and qll’q12’q21’q22 of the matrices G and Q are very well-
behaved, exhibiting phase shifts +90 and resembling a first order lag loci
for all reasonable holdup-ratios, HS/Hr, thus implying no difficulty in
stabilising either the y-control loop, (loop-l1), or the x'-control loop,
(loop-2), irrespective of the choice of input variable: provided the other

loop is left open. Due to interaction effects, however, the choice of
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coupling is most important when the :losed-loop control of both products
is considered and the results of simulating the non-linear process with
various couplings are summarised in table 1. In each case the P+I loops
were tuned for good separate performance before testing their simultaneous

behaviour with separate disturbances in each loop.

Table 1. Interaction effects with various input/output couplings

Test Identification| Loncp 1 Loop 2 Interaction effect
A y to d x' to v | Loop tuning virtually unaffected,
transient interaction in both
loops
B y to v x' to d | Loop tuning considerably

worstened, tramsient interaction
in toth loops

& ¥y to & x' to v |Leop tuning somewhat improved,
' some transient interaction in
both loops
D y to v x' to L |Control lost completely
Figures 3 and 4 illustrate cases A and B respectively. A loop-1

reference~change from 0.75 to 0.85 is applied with the loop 2 reference
set at 0.15 in figure 3 and 0.25 in figure 4. The controllers employed

for figure 3 and 4 were, respectively:

v 0.0 ,  1.0+4,17/T s|[v[
= = e s(16)
x| 1.0+1.79/T s 0.0 1]
y 0.0+4.17/T.s , 0.0 11v]
and = ® X Gl
x 0.0 s 1.041.79/T s||d

The latter case (figure 4, equation 17) illustrates an attempt, by
elimination of proportional action in loop-1, to produce complete
instability through interaction and, as such, is a somewhat pessimistic
rather than a typical result for case B. The production of significant

oscillation in case B is a general observation never—the-less.
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Most of the results of Section 2.3, intei-alia, are predictable,
without resort to simulation, by means of a simple inverse Nyquist
approach which was inspired by Shinskey and Bristol's "relative-gain
matrix"4 method, but extended beyond the steady-state to cover the full
frequency range. The method is based on the inverses, (reciprocals),

of the constituent elements of a system-transfer function matrix H,
. =l =i ) T ® %
(i.e. hll* " h12 5 h21 > Ny ) rather than on the elements hll . 12 .

h21 » hy, of the matrix inverse H , (=H ), as in Rosenbrock's inverse

: . 10
Nyquist array technique .

If the open-loop system inpui and cutput vectors are [eil,eiz]rl

I 7 T .
and [801,602] respectively then

~ ~

6.1 =hyg 0 85 =0 .o (16)
h,.h ”

- I -+ e -

R R s T TPt o)

22

and similar results apply to the three pairs of alternative input/output
dependences. Equation 16 describes the loop 1 situation with 902
uncontrolled and equation 17, that with 602 controllfg perfectly. The
vectorial separation of the inverse Nyquist loci hiy and {h11 12/h }
therefore give an immediate indication of the degree to which the tuning
of loop 1 is affected by the ideal closure of loop 2. The inclusion of
pre- and post-compensators and the cascading of control-loop dynamics in
the loop under investigation is readily achieved.

Figure 5a and 5b show the inverse Nyquist plots pertaining to the
control laws 16 and 17, (and figures 3 and 4) respectively. Figure 5a
predicts immediately the already noted insensitivity of loop 1l tuning to
loop 2 closure. It furthermore predicts the loop's resonant frequency,
. (=1. 4/T ) which correlates closely with‘the natural frequency
(m =1.5/T ) as well as the 20-307% overshoot of the step r23ponse. For
the coupllng y+v, x'+d, figure 5b clearly shows the 51gn1f1cant shift of
the locus from outside the unit M-circle towards the critical point and
predicts therefore the change from an overdamped to an oscillatory
response on closure of loop 2. The predicted resonant frequency,
(=2.5/Tr), is higher than the natural frequency (=1.1/Tr) obtained from
simulation but, as figure 4 shows, this is clearly due to the limiting
effect of the process non-linearities and linear simulation yields good

frequency correlation.

]
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The complete loss of control observed in case D, (y+v, x'»), is
obvious by application of the simple inverse Nyquist fechnique to the
steady-state situation. We note from the relevant process equation,
(13), that

-0.569 , 0.714

G(o) =1.31
~-0.3685 , 0.2034
= =0 74 {e¢ . ()= . o)} =
and hence, whereas gll(o) 9, 745, ‘811( ) glz(o) g21(o)/g22(n), +0,949

indicating a complete reversal in loop-l gain upon closure of loop-2.
The result is a general one since, as figures 1 and 2 illustrate, BY/aVIL,

|=g11(0)|, is always negative whila: BY!BV!K,, |=g11(0)+g12(o) gZI(o)/gzz(o)[,
is always positive because the constant V/F loci must have a greater slope
than the constant L/F loci.

The simple method used here does not however give a clear picture of
the transient interaction persisting between loops. It merely predicts
the effect of interaction on loop tuning and the change in the degree of
loop stability so caused. Clearly it is essential that tuning one loop
should not significantly de-tune another, and the present method predicts
the extent of the tuning alteration exactly. If the extent of transient
interaction is to be determined then Rosenbrock's techniquelo must be
applied requiring access to the U.M.I.S.T,, C.A.D. package. TFigures 6
and 7 show elements of the inverse Nyquist array, so computed,
together with the band of Ostrowski circles, (which are computed from
a knowledge of both* controllers), within which the final locus lies.
There is no obvious prediction of tuning insensitivity in figure 6 which,
in this respect at least, is therefore highly pessimistic, and the
proposed method is preferable for making such predictions.

Finally it is noted that for this short colummn, for a very wide
range of Hs/Hr’ transient interaction can be virtually eliminated over
the entire frequency range of interest merely by cascading a non-dynamic

pre—-compensator of the form
1

K =G (o) 3 o+ aC18Y
with the process G(s), (equation 13), thus making
hlz(o)h21(0)/h22(o) = 0 wunXd9)

The two inverse Nyquist loci of the proposed method are now practically
indistinguishable and the Ostrowski bands
shrink enormously also, as shown in figure 8. Dynamic interaction is

therefore eliminated by steady-state compensatiomn.

*

The method here proposed requires knowledge of only the loop under test for
the construction of both loci. The inverse Nyquist array method can also
predict a band (the Gershgorin band), enclosing the final locus, requiring data
from the one loop but this band is far wider than the Ostrowski band.




3. Very Long Columms

The analytic determination of a transfer functions matrix for columms
having several trays by manipulation of the highly interconmected mass-
balance equations would be extremely tedious and the resulting formulae,
if obtained, would be too complicated to yield the desired imsight into
the structure of such processes, As the number of plates increases
however the composition profile through each of the two column sections
tends towards a continuous function in space thus allowing the use of

two partial differential equations,(p.d.el9, for the process
description yielding a tractabile sclution. We shall show that the
semi-infinite colum's dynamic structure closely resembles that of the
short colummn just analysed so permitting the assumption of a common

dynamic structure for all columns within limits to be determined.

3.1 Steady-State Analysis

Such an analysis is required to provide the quiescent operating
conditions appearing as constant parameters in the small-perturbation
dynamic model derived in Section 3.2. Considering the nth tray of the
N-plate rectifier, (numbering upwards), the mass balance for the lighter

component 1is
V¥(n=1) = V¥(n) + LX(n+l) - LX(n) =0 v s (20)
and the equilibrium relationship is simplified to the linear form:
Y(n) = arX(n) + (1-ur) ' e w2y
where o for a long colum will be only marginally less than unity because
of the low relative volatily of the mixture requiring many stages for its

separation. Applying Taylor's theorem and trunkating to the second

derivative we obtain the differential equation:
k_dX(n)/dn = d2X(n) /dn” | i i22)

where kr = 2(Vur—L)/(Vur+L) e (23)

Equation 22 has the solution
X(@) = [e,exp (ke n)-c ] /k_ < as (o)

where ¢y and Cos (constants for comstant V and L), are to be determined

from the boundary conditions pertaining at n=l and N.
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The M-tray stripping section may be treated similarly, (the reboiler

being tray M), now modelling the equilibrium curve by the straight line

Y'(m) = aSX' (m) s »E25)
where o, = 1/ar o . (26)
for approximating a curve of constant relative volatility. This yields:

~k_dX' (m) /dm = 42X’ (m) /dm” ... 27)

# *
where ks = Z(VuS-L )/(VuS+L ) ww s (28)
%

and L = L+F ee s (29)

which has the solution:

X' (m) = [baexp(-ksm)+cé]/ks evs (30)

The boundary conditions for the top and bottom of the rectifier and
stripping section are respectively:
VY (N=1)=-VY (N)+LY (N)-LX(N) = 0
VY' (1)+LX(2)-VY (1)-LX(1) =0
LX(1)+FZ4VY" (2)-VY' (1)-L X' (1) = 0
and L' (-1)-vy' - -zt oo = o

... (31)

and substituting the solutions 24 and 30 into these boundary equations
yield four independent equations for determination of the constants

¢y to Cpe For example, taking N =29, M =30, V =25, F =1, L = 2445,
Z =20.,5, o = 1.04 and a, = 0.96 yields numerical coefficients giving the

solution:-

X(n) = ~48.5[0.0147exp(-n/48.5)-0.02474]

.v+(32)
X' (m) = 51.5[0.0133exp (-m/51.5-0.003720]

giving terminal compositions X(N) = 0.808 and X(M) = 0.192 which may be
checked out by the McCabe-Thiel method. The important points to note

are the similar values for <, and Cyo Fkr and ks and that the spatial
decrements --l/kr and 1/kS are significantly larger than N and M permitting
later simplificaticns. Another important point to stress here is that

a mixture of low relative volatility, despite using many trays, can only
be separated by employing veflux and V/F ratios much greater than

those needed by mixtures of high a. The internal flows iherefore

greatly exceed the external flows.



3.2. High Frequency Dynamic Analysis

Linearising the dynamic version of equation 20 for the rectifying
section for a plate holdup of H_, and using the solutions derived in
Section 3.1 for the quiescent operating conditions we obtain the following

p.d.e. for x(n,t)

(RIL-V/V)(chlHr)(1+kr/2)exp(krn)+a3x/8n+b32x/3n2 = 3x/at wwe (33)
where a = (L—Vo.r)/Hr oo (34) and b = (L+Var)/2Hr eee(35)

It is required to obtain the frequency response between x(n,t) and
sinusoidal forcing functions %(t) = fsinet and v(t) = vsinut. If we

therefore set

fl(t) = F1 sin wt R F1 = L/L-v/V v (36)

and spatial function

“

£, (n) : (Le, /H) (1+k_/2)exp (k_n) AT
then we have
£, (£)£, () +adx/an + ba2x/an = x/5t )

We approach the solution of (38) by breaking the spatial function fz(n)
into a series of impulses, e.g. fz(n')a(nwn'), equispaced at infinitesimal
intervals dn' thus:

N
fz(n) = I G(n—n')fz(n')dn' s C39)
n'=o :

and, having evaluated the response of p.d.e. 38 to one such impulse,

summate the effects of all such impulses over the range Ogn'gN.

3.2.1. Response to Spatially-Concentrated Sinusoid

For this fictitious situation we have simply

adx/on + b32x/3n2 = 3x/at g - mFEn’ .o (40)

Taylor's theorem cannot be applied across n=n' however because of the
point forcing function there present. We have instead, returning to
the linearised dynamic mass balance equation at tray n' and reapplying

Taylor's theorem:
fl(t)fz(n')5(n-n')dn'+(Vur/H¥iax(n‘—)/3n+0.532x(n'—)/3n2}

+(L/H){8x(n'+)/an+0.532x(n'+)/3n2} = ax(n') /ot e LB
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(n'+) denoting n marginally >n' and (n'-) denoting n marginally <n'.
Now 1f N> n"',n >0 eoo (42)
boundary conditions, at n=0 and N, may be neglected and the solution to

p.d.e. 40 is then:
x(n,t) = cn,exp{—p(nwn')}sin{wt-q(n—n')-¢} oo Ll 3)

where the distance-dependent phase—-shift and decrement have coefficients

governed by

Py » 459, , n?> n'

=Py s 9=49,, n<n oos (44)
q, = -1, = [la’+@a*+16b°0")° 1 /86%°°
and P, = w/2bq1+ab > Py = m/2bq2+a/b

The constants C and ¢ may be determined by substitution of solutiomn 43
and equations 44 in boundary condition 41 and, after tedious algebra, the

following results emerge:

¢ = tan'l(qulzlw) .o (45)

e, = 4F,£;(0")%(-n")dn" /b (4-a’ /b7) {(p,-p,) F+ha, ” } oo (46)

£,

From solution 43 and the equations for constants p and q it is obvious

that the response to the spatially concentrated input sinusoid shows an

increasing phase-shift and attenuation with distance, ]n—n‘l, from the
point of application of the input.

Figure 9 shows the response of liquid temperatures to a step-change
in feedrate from a 12-tray pilot column separating a water—ethanol mixture
at Sheffield. Because R was kept constant in this test, the disturbance
resembles @ true point disturbance at m = M and the effect of the
increasing attenuation and phase-shift with distance are clearly visible.
The response differs fundamentally from that obtained with a distributed
disturbance as will be demonstrated in Section 3.2.2. The decrement
distance, |1/pl, is clearly frequency-dependent and the model is therefore
only relevant for frequencies specified by

|1/p| << N/2 e s CAT)
Now since a/b << 1.0, (equations 34 and 35), equations 44 simplify to give

x s B " s o 0.5
Py = "Pp ® 4y = ~qy = (w/2b) ... (48)

and the condition for model validity, from 34, 47 and 48, is therefore:




T -

i 55 BB = 8L/HrN2 oo (49)

For lower frequencies the terminal boundary conditions at n=0 and N must

be considered.

3.2.2. Response to Spatially Distributed Forcing Function

Denoting the response to the concentrated input fl(t)fz(n')a(n-n')dn'

now as An,x(n,t) we have from 3.2.1, and subject to 49,

An,x(n,t) = cn,exp{-pl(n~n')}sin{wt-ql(n-n')—¢} , n>n' } -

and An,x(n,t) = cn,exp{—pz(n-n')}sin{wt—qz(n"n')—¢} , n<n'

The response to the distributed input fl(t)fz(n') will therefore be

N oo
x(n,t) = I A ,x(n,t) = I A ,x(n,t) Rl 8 )
n'=o " n'=o O
if 0 << n << N s ni(52)

as before.
Replacing the summation by integration and approximating fz(n'),

(equation 37), to

fz(n') = (Lc2/Hr)(1+0‘25Nkr) e 359
we obtain
Fl(L/H )c2(1+0.25Nk )
x(n,t) = ¥ ) sin(wt—¢~B) see(h4)
w(1-0.25a"/b")
-1 2 )
where B = tan (w/2bq1 ) i vsa55)

Unlike the case of point inputs, the response is now independent of
distance, (provided 0<<n<<N), both in amplitude and phase since a
comparison of equations 45 and 55 reveal that

o+ = /2 ...(56)

This absence of lag between the response of consecutive trays to distributed
inputs is verified by figure 10, which shows the effect of a step—change in
vapour-rate on the Sheffield pilot-plant columm. It was on such practical

observations, here proved theoretically, that Stainthorp and Searson's
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model3 was based, although they did allow for hydro-dynamic effects here

. neglected,

3.2.3. High-Frequency Transfer—Function Matrix

Results similar to equations 54 and 56 are obtainable for the
stripping section. The transfer functions relating x(n,t},x'(m,t) to

Flsinwt are therefore both of an integrating nature at high-frequency

due to the 90° phase-lags and the appearance of the single w-term in the

in
1
terms of v and 2 (equation 36) yields a matrix equation relating the

denomlnators. Comblnlng these transfer-functions and rewriting F

Laplace transformed variables, viz:

[Z(m,s), %' m,s)]" = a(s) [v(s), 2(s)]" (o (5T
where
. 2.2
c2(1+0.25Nkr)/s(1-0.253 /b )HrV ; 0 ol BRI
G(s) = mye wo gl .. (58)
J o , ca(I-O.ZSMkS)aS/S(l—O.25a /b )HSL_ =T, e N
; or, in terms of v and d,
” By -'T . " T
[X(H,S), X (m,s)_] = Q(s) I:V(S), d(S):I ...(59)
where
2.2 - =
c. (1+40.25Nk )/s(1-0.25a"/b")HV , O D, =V
2 T o
Q(s) = Ap ap % .. (60)
0 , c,(1-0.25Mk )a /s(1-0.25a"/b")H L =W gi=N
4 s" s s
“ % A %
where a = (VuS—L )/HS ve.(61l) and b = (VaS+L )/ZHS S CH D)

3.3. Low Frequency Perturbations

Because of the boundary conditions, (which in 3.2 have been permissibly
ignored for higher frequencies), a complete solution for a continuous
infinite range of frequencies is very difficult to achieve. A geometrical
approach based on the McCabe-Thiel diagram does however yield the
behaviour of the system at perturbation frequencies sufficiently low to
allow the dynamic terms in the process equations to be ignored. The
high- and low-frequency models, if sufficiently similar in structure, may

then hopefully be "joined together".
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Figure 11 shows the diagram used for the geometrical analysis, but
’ the angular deviations of the operating and equilibrium lines from the
45° 1ine have been greatly exaggerated for reasons of clarity. The angle
y €. denotes the slope difference between these two lines in the rectifier
and is given by
e, = L/V - o eee(63)

The angle vy between the equilibrium curve and the 45° 1line will be

Y = (l-ar)/(1+mr) 50 (64)

If AY(n) and AX(n) denote the vertical and horizontal distances between
equilibrium and operating lines at tray n then a little consideration of

the geometry reveals that

AX(N) = AY(N) = {l-X(N)}Z(lwar)/(l+ar) o (65
. and, furthermore,
AX(n-1) = AX(n) + ZErAX(n) .o (66)

The total composition change, Xr’ over the rectifier is therefore given

P
Il

N ;
1 ax@) [1v2e ] * e e

i=1

and also

X
r

i

X(N) - Z ... (68)

Simplifying equation 67 by expanding as a power series in € neglecting
all but the first order terms and replacing the summation by integration

yields the equation:

2[1-X)]N(1+Ne ) = R(N)-Z .o . (69)

the results from which agree closely with those derived from Section 3.1.
. We are here however interested in small perturbations from the steady-
state and differenting 69 with respect to forcing function €. yields

+ the perturbation equation:

(W) = 2(1-2) I (1-o_)L/¥[1+a_-2 (1~a )N (14Ne )] IHYL-v/V} ... (70)

%
Noting that x(N/i) = x(N) /1 v wnl ALY

x(N/2) could be determined more precisely if necessary but we are here
interested in trays in a generally central region.




1

G By

and applying the same analysis to the stripping section yields the matrix

equation
- = T
k@, = @]* = c_[v,2] WitT2)

where

2 (1-Z)Nn (1-a_2) 7 i ]
s, 0O Rl
{1+a +2(1l-a )N(1+Nsr)} v
Go = x J X R (o .
22Mn(a_*-1) i
g 4 2 5y LT, v
i {1+us+2(as—1)M(1+Mas)} v § i ]
or, in terms of v and d,
[ﬁ(n) s X'(m )]T = Qofﬁ,d]T ik 74)
where
2(1-Z)Nn (1-a ©)
= % 0 D, -V
{1+a +2(1—ar)N(1+Ner)} \
Qo = E x e 5 )
27Mm (o 2—1)
o = s -W o, =V
{1+a +2(o =1)M(1+Me )}V
| s s s X i ]

Now merely by inspection of the high and low frequency transfer-
function matrices G,Q, and GO,Q0 structural similarities are immediately

obvious and an overall transfer-function matrix equation of the form, say,

x(n,s) | k. /(1+T.s), 0 1 b, =v]|[%(s)
. 1 1
ool o~ --:(76)
x' (m,s) 0 5 k?/(1+T23) =W , =V||d(s)
would appear to fit both frequency domains. kl, kz, T1 and Tz are

directly calculable from the appropriate elements of Q and Qo which in
turn are directly calculable from the basic plant parameters and via the

constant-defining equations givean in the paper.
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Substituting parameter values, the 59-tray column of Section 3.1

is found to have the full-frequency-range transfer function matrix: (for n=m=15),

17.10"4/(1+3.4Hrs) 0 Il 0.5, 5850

Q(s) = vss (1)

0, 16.6.107°/(1+3.58H s)]|-0.5 , -25.0

which may clearly be diagonalised by application of merely a static pre-
compensator Q(o)_l. Unlike the short columm of section 2 no simple
pairing of input and output variables would yield acceptable interaction.
This is basically due to the large V/F ratio required to separate mixtures
of low relative volatility.

The long column model, (equation 76), is found to give useful
predictions for colums of only moderate length. A 20-tray column,
(N=9, M=11), for instance, separating a mixture of a=1.39, (equivalent

to as=1.25, ur=0.80), is found to have the transfer—-function matrix:(for n=m=5),

o.os9o/(1+eosur) s B 0.5 , —2.0’!

Q(s) = .es (78)
0 , 0.180/(1+12.70HS) -0.5 , —2.0J

, (when operating at V = 2.5, L. = 2.0, Z = 0.5, F = 1.0), and this claim

is verified by figure 11 which shows a comparison between the computed
step-responses of the non-linear process with that of the linearised
transfer-function model, for a step in V from 2.0 to 3.0 at D = 0.5. The
agreement is remarkable in view of the very large step in V, the comparative
shortness of the columm, and the severe non linearities of the simulated process

arising from the use of the true equilibrium curve and the multiplicative nature
of the inputs.

4, Discussion and Conclusions

Original analytical transfer function models have been developed for
both very small and very long columms. Like the small columm, the
multi-tray column's transfer-function exhibit 90° of phase-shift at high
frequency suggesting that a matrix of simple time constants would describe
any column. This observation is consistent with the models of other
authors such as Stainthorp 3, McMoran7 and Osborne et alll. It must be
remembered however that the long column model has been derived for

trays in the central regions of the rectifier and stripping sections,

(which is appropriate to conventional feedback control techniques in
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practice), but the boundary conditions imposed by highly mismatched

accumulator and reboiler vessels could conceivably cause greater phase=-

shifts over the intermediate frequency range O<m<8L/HrN2,8L*/HSM2 in

colums of intermediate length yielding the travelling-wave effects

sometimes apparently observed in practice4 though rarely, except in Pigford's wrorlg'2
produced by computer or reduced-order models. Whether or not such

phenomena if revealed,by virtue of their low frequency,have a significant

bearing on the performance of a control system is uncertain and merits

further investigation.

Much simulation has however validated the model here proposed for a
wide range of column sizes and,on the tasis of such a model,it is
concluded that, whereas any simple pairing of input and output variables
fails to eliminate interaction as columns become longer, a simple, non-
dynamic precompensator is all that is required to eliminate not only inter-—
loop detuning but also interaction of a transient nature. This is
possible as a result of the very simple dynamic structure of the process
which allows all interaction problems to be investigated merely from a -
knowledge of static characteristics. It is concluded also that the
detuning effects of multiple loop closure are predictable, for colummns
at least, by an inverse Nyquist method considerably simpler than the
computer based inverse Nyquist array technique of Rosenbrocklo and with
far greater certainty.

Finally it should be noted that the columns and separations examined
have been of a fairly symmetrical physically. However it is believed
that the approaches outlined here could be extended fairly simply to
cover non—symmetric equilibrium curves and rectifiers and stripping
sections of unequal size. A badly sited feed tray would cause difficulty
however because of the uneven spatial distribution of composition which
this would cause so prohibiting the linearising of this distribution in

the analysis (equation 53).
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7o Symbo%s Used

D,d

= Relative volatility of binary mixture

= Mean slopes of equilibrium curves in rectifier and
stripping sections in the long column, and their point
values in the short colummn

= Coefficients of lst spatial derivative of composition
w.r.t. plate no. in p.d.e.'s describing rectifier and
stripping section |

= Coefficients of 2nd spatial derivative of composition
w.r.t. plate no. in p.d.e.'s

= Phase~shift angle

= Constants in steady-state composition distribution
equations

= Angle between equilibrium line and 45° line of
McCabe-Thiel diagram

= Distillate molar flow rate and small perturbation therein
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Unit impulse function

Difference in slope between equilibrium and operating
lines on McCabe-Thiel diagram

Horizontal and vertical distances between equilibrium
and operating lines of McCabe-Thiel diagram at tray n
Molar flow rate of feed stream

Sinusoidal time-varying component of column forcing
function and its peak value

Spatial distribution of column forcing function
Transfer-function matrix relating mid column compositions
to ¥ and E and elements thereof

General 2x2 transfer—function matrix and elements thereof
Molar holdups of each theoretical tray in rectifier

and stripping section

Constants relating to spatial decrements of steady-

state composition distributions

‘Gain terms of final transfer—-function model

Reflux molar flow and small perturbation therein

Liquid molar flow in stripping section

General tray number in stripping section and its maximum
value

General tray number in rectifier and its maximum value
Frequency-dependent constants relating to spatial
decrements of sinusoidal composition perturbations
Frequency-dependent coefficients relating to phase shift
of sinusoidal composition perturbations

Transfer function matrix relating mid column compositions
to ¥ and 8 and elements thereof

Phase-shift angle

Reflux ratio, (L/D)

Laplace operator w.r.t. time, t

Separation

Time constants of rectifier and stripping sections

(short column)

Time constants of entire rectifier and stripping sections
(long column)

Molar vapour flow rate and small perturbation therein
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W = Molar flow rate of bottom product
i - = Mol fraction of light component in liquid in rectifier,

and small perturbation therein

X, x' = Mol fraction of light component
| section, and small perturbation
Y,y = Mol fraction of light component

and small perturbation therein

Y.y' = Mol fraction of light component

section, and small perturbation
Z = Mol fraction of light component
w = Angular frequency of sinusoidal

in liquid in stripping
therein

in vapour in rectifier,

in vapour in stripping
therein
in feed stream

perturbations

Tynn denotes Laplace transform of v wer.t. time, etc.

Superscript T denotes the Transpose of a matrix

Suffix o denotes steady-state model
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