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Abstract

The stability of linear systems with multiple delays is
considered using parameter plame methods. By mapping contours from
the complex variable plane to the parameter plame it is possible to
choose control parameters such as loop gain and system delays which

will ensure that all closed loop poles have negative real parts.
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Introduction

The stability of linear control systems with multiple delays is a
difficult problem due to the transcendental nature of the closed loop
characteristic equations of these systems. Since such systems have an
infinite number of closed loop poles, standard techniques due to Routh
and Hurwitz are only applicable when delay terms are approximated by
series expansions. This approach is hardly satisfactory and in recent
years, attempts have been made to utilize the theorems developed by
Pontryaginl to locate the system's poles.2 Pontryagin's criterion is
not really helpful in the design of control systems and increases in
complexity if the system delays do not have a common factor. Eisenberg3
appears to be the first to have applied the parameter method developed
by Mitroviéa and generalized by giljaks5 to systems with delays., This
approach has seen further development6’7’8 and it is the interpretation
of L008 which will be followed here. By dividing the characteristic
equation into real and imaginary parts and treating the exponential
terms as complex coefficients, it is possible to generate analytical
expresssions for various system parameters in terms of complex plane
parameters. By then mapping the imaginary axis of the complex plane
into the parameter plane, it is possible to locate regions of the
parameter plane corresponding to regions of the complex plane and to
see the effect of'varying system:parameters on the location of the
system's closed loop poles.

A linear feedback system with multiple delays.

Consider the feedback system in Fig. 1 with delays Tl and T2. G(s)

and H(s) may be ratios of polynomials in the Laplace variable S, or

constant. R is a function of s and exp(—TIS)




‘G(s)R(s,e_Tls)

N

H(s)e—TZS

Figure 1
The closed loop characteristic equation of the system in Fig. 1
can be written as
F(s) =1 + G(s) H(s).exP(—Tzs) s Ris, exp(—Tls)) oise & 5 L1
and is clearly dependent on the form of the function R.

Characteristic equation with single exponential terms
If we choose R = exp (—Tls) and

Gl(S)

G(S) = Kl E;TE} .....5(2)
Hl(s)

Bla) =K, ﬁ?(’é")

,K, are constant

are finite polynomials in s and K 9

where Gl’GZ’Hl’H 1

2

loop gains, equation 1 becomes

E(s) = GZ(S)Hz(S) + K KZGl(S) Hl(s) exp(-(T1+T2)S) sxusew3)

1
If

s = 8 + jm ......(4)
then the polynomials Gz(s) Hz(s) and Gl(s) Hl(s) can be split into real

and imaginary parts and written as

Il

Gz(e,w)ﬂz(s,m) RZ(G,w) +i1, (6,w) A )

]

Gl(e,w)Hl(B,w) Rl(e,w) + 3 Il(e,m) i & FEEE GO
where

Rz(e,m) and Rl(esw) denote the real ; 12(9,w) and Il(e’m) the

imaginary parts of G2H2 and G1H1 respectively., Thus equation 4 enables




us to write

F(o,0) = Ry (0,w) + j LGw e (7)
where RF(e,w) denotes the real and IF(G,w) the imaginary part of F(8,w)-
Combining equation 3,4,5,6,7 yields.

RF(G,w) = Rz(e,w) + KK, exP(-e(T1+T2)).

DRl(G,m) i cos(T1+T2)m + Il(e,w)-51n(Tl+T2)uﬂ ...... (8)

12
[11(8,m) : cos(T1+T2)w - Rl(ﬁ,w) sin(T1+T2)dﬂ ...... (9)

IE(B,w) =-12(6,m) + K. K exp(—e(T1+T2)).

Now by writing the polar representations of equations 5 and 6 as

]

G,(8,0) . H,(8,u) r,(8,0) . exp[jcpz(e,w)j ...... (10)
Gl(e,w) ; Hl(e,w) = rl(ﬁ,w) ’ exp[3¢1(6,wil ...... (11)
equation 3 becomes

]:'2(9,0-)) « EXp B¢2(8,w)]

= Klerl-(B,m) exp (-G(T1+T2)). eXPI:j(¢1(8,w)—w(T1+T2)+(2n+1)Tr]

where n = o, +1, + 2, ...... _

By equating magnitude and phase angle of both sides of equation

12 yields
rz(e,w)
K1K2 = m . exp(G(Tl+T2)) ...... (13)
14T, =2 [(6,0) - 6,(0,0) + @ueD)T] ...l (14)

It is now possible to construct the desired o = B parameter plane

by choosing, say: a = T1+T2, B =KKy; a= Tl, B = Kl; a =T,y B = K

o =Tl,8==K2; or o = T2’ B = KZ' The appropriate choice of o and B

1;

shows how any two of the system parameters Tl’TZ’Kland KZ affect the
location of the system's closed loop poles.

By letting 6 = o, equations 13 and 14 become functions of w only

and it is possible to map the entire jw axis into the parameter plane.
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Since the region of interest with respect to pole location is the left
half complex plane, rules and graphical methods‘have been developeds’9
to determine the corresponding region in the parameter plame. The

correspondence is dependent on the sign of the Jacobian

aRF(e,w) ‘ BRF(G,m)
da 0B
J = Tinni ld5)
BIF(e,w) BIF(G,m)
20 aB

If J is positive/negative, the region of interest in the complex s
plane (sometimes referred to as the shaded region) which lies on one side
of a contour in the s plane, maps into a region on the same/opposite side
of the corresponding contour in the parameter plane.

Using equations 8 and 9 we can show that for

(i) o = T1+T , B = KlK

2 :
3 = KK, wexp(-20(1,+1,))r, % (6,0) s (e alLE)
(1) a=T, B=K ju=T, 8 =K
J = Kle2 mexp(‘ZB(T1+T2))r12(8,w) s e Gl
(iii) o = T,, B = R, 30=T,8=K,
J = K12K2w exp(-26 (T1+T2)r12(8,m) oo e 8)

Thus for positive values of Kl and Kz, the sign of the Jacobian is
the same as that of w. Since we are mapping the jw axis into the parameter
plane, the region to the left of the jw axis (the left half complex plane)
will map into a region to the left/right of the corresponding contour in
the parameter plane, in the direction of increasing w, for positive/
negative values of J.

Finally, since the jw axis will map into a different contour for each

value of n(n=o, = 1, *# 2,...), the region of the parameter plane
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corresponding to the left half complex s plane will be the intersection
of the n - regions defined by any n—contours in the parameter plane.

Characteristic equation with multiple exponential terms.

If we choose R = 1/(1—K1G3(s) exp (—Tls))

and
G, (s)
G 2 By g . aam (18
H, (s)
H(s) = Hz(s)
where G G G3,H H2, are finite polynomials or constant and KI’KZ are

constant loop gains as before, the system in Fig. 1 has a characteristic
equation of the form
F(s) = Gz(s).Hz(s) - Kle(s) H2(S)G3(5) exp (-Tls)
+ K G (s)H (s) exp(-T s) v A0

Letting the complex variable s = 6 + jw as before, we can write

Gz(e,m).Hz(G,m) and Gl(e,w) . Hl(e,w) as in equations 5 and 6.
Define
Gz(B,w).Hz(e,m).GB(e,m) = Rs(e,m) + ] IB(G,m) ..... (21)
where R3(6,m) denotes the real and IB(S,w) the imaginary part of

GZ H2 G3. Then using equations 4,5,6,7 and 21, we can write

RF(B,m) = Rz(e,w) - Kl exp(-Tla) [?S(G,m) cosT1w+I3(6,w)51nT1@1
+ K2 exp(—TZB) [?1(6,m) cosT2m+Il(8,m)51nT2@1

* _ . L) (22)

I,(8,0) = Iz(e;w) - Klexp(—T 9) LI (6,w) cosT,w = R (B,M) sinT(E

+ K exp(-T 6) ri (6 ,w) cosle = R (6,w) sinT w

i e R %23)

Now by writing GZ'HZ'G3 in polar form as
. = . j B
G, (8,0) . Hy(0,) .G4(8,0) = 1,(6,0). exp (36 4¢ ??1...(24)

and combining with equations 10 and 11 enables equation 20 to be

written as




- B
rz(e,w) exp[j¢2(e,mi] = Kzrl(e,m) exp(-TZB).exp[j¢1(B,m) - wT2+(2n+1)ﬁ]
+ Ker(e,w) exp(—Tle).exp[j¢3(8,m) = MTi]

n=90, %1, £ 2

...... (25)
Equating magnitude and phase angle as before yields
) [__rz(B,m) - K, 1r,(0,0) exp(—Tle)] exp (T,6)
K =
2 r, (6,0)
...... (26)
: [%z(e,w) - Kzrl(e,m) exp(-Tzej] exp(T1e)
K =
1 rB(G,w)
° 0 98 e (27)
=1 b
T 4T, = = [3,(0,0) + ¢3(e,w) $,(8,0) + (2n+1)] o

By choosing the system parameters to be defined in the parameter
plane,the Jacobian, defined in equation 15 can be calculated for
appropriate a and B. Using equations 22 and 23 it is easy to show
that for

(i) a =T, , B =K

i M) ) ¥ 2 2 o B0 Moo
J = Klmexp( 28T1) [?3 (8,0) + 13 (8,w) (8in"T.w cos Tlm)

i
+ 2R3(9,m)13(9,m) sin Tlm cos Tluﬂ
...... (29)

(Gi) wa = T2 , B = K2

J =K, wexp(-20T,) [rlz(e,m)] ...... (30)
Examples I
(a) Referring to Figure 1 let

Kl(s+1Q)
G(s) = T+ (e ) raeeas (31)
K2
H(s) = - (32)

Then with s = 6 + jw, equations 10 and 11 yield

r, (8,0) [(6+10) *+u?) L (33)

¢1(B,m) = arctan (_5%150 ...... (34)




- 7 =

r,(8,0) = [(07-36u”+80%-8u+176+10)>
D
+(382m"w3+16ew+17m)%]2 ...... (35)

2 3
= 1
¢2(9,w) = arctan 32 i TR, S s A (36)

] —38m2+8@2-8m2+17e+10

Substituting equations 33,34,35,36 into equations 13 and 14 yields

B!
K = [}83—38m2+882—8m2+179+10)2+(3Bm2-w3+166m+17w)i}2
1 - 2 21
K, [(8+10) “+u”] 2 b e (37)
1 o 387 iy w6851 7 ‘
Tl =-—E arctan(e+To)- arctan ( 3 o w2 5 ; )+(2n+1)ﬂ-T2
v 07 -30w +86° 8w +170+10
...... (38)
=g, & Ly 2
Now let ® = o and consider the TI_Kl plane (i.e. o = Tl, B = Kl)
by letting
T, = 0.5
LR - - (39)
K2 = 0,5
Therefore equations (37) and (38) become
1
% “[r(—8m2+10)2+(—m3+17m)%]2 ...... (40)
. I
L 0.5. [w2+100] 2
1 w 17w- v
T, == [arctan (s=) - arctan (-—ELELJ+(2n+1)n]-O.5 e Cal)
1 w 10 2
10-8w
From equation 17,
T Klm ...... (42)
Figure 2 shows contours in the T_-K, plane for various values of n.

T~k

As w increases along each contour, we know from equation 42 that the
region corresponding to the left half complex planme will lie to the left/
right of the contour for positive/megative w. The crosses along each
contour indicate the desired region and the intersection of each region
bounded by a contour dependent on n, will be that region bounded by the

contour for n = o, -1.
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Figure 3 shows the relevent contour in the parameter plane and
determines suitable values of K1 and T1 which ensure that all the

systems closed loop poles lie in the left half complex plane.

(b) Referring to Figure 1 let

K2 P £ B

1 _ caee (44)

G(s)
H(s)

]

Then letting s = 6+jw, equations 10, 11 and 24 yield

r, =r, =TI = 1 s ne(45)
¢ = ¢, = ¢3 =0 Pan ()
Substituting equations 45 and 46 into equations 26 and 28 yields
K2 = (1 - Klexp(-TIB)) exp (Tze) e D)
_ Qo4liw
T, = . T, <ot 8
n=o, £ 1, £ 25 o0
Now let 6 = o and consider T2 = K2 plane with
K1 = 0.5
T1 = constant
From equation 30 ,
J =K. w v L)

Figure 4 shows the one contour for all n, T1 and T2 in the T2—K2

plane. Clearly, since J takes the sign of w, the region of stability

1,T2 and if

K2 <1 - Kl st (50 )

This problem occurs in the rolling of metal strip and has been

(denoted by crosses) can be achieved for all T

analysed by the Nyquist criterionlo and analytical methodsll with
some difficulty. The parameter plane method reduces the stability

analysis of the problem to the simple analysis of Figure 4.




Conclusion

The parameter plane method has been used in the stability analysis
of two different linear feedbacks systems with multiple delays. The
approach could clearly be applied to any similar system with variable
control parameters. It is hoped to extend this work to non linear systems
and to provide a user orientated computer package to assist in the design

of such control systems.
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