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Abstract 

The aim of this work was to investigate the performance of a multi-directional wind tower integrated with heat 
transfer devices (HTD) using Computational Fluid Dynamics (CFD) and wind tunnel analysis. An experimental scale 
model was created using 3D printing. The scale model was tested in a closed-loop wind tunnel to validate the CFD 
data. Numerical results of the supply airflow were compared with experimental data. Good agreement was observed 
between both methods of analysis. Smoke visualisation test was conducted to analyse the air flow pattern in the test 
room attached underneath it. Results have indicated that the achieved indoor air speed was reduced by up to 17 % 
following the integration of the cylindrical HTD. The effect of varying the number of HTD on the system’s thermal 
performance were investigated. The work highlighted the potential of integrating HTD into wind towers in reducing 
the air temperature. The technology presented here is subject to a UK patent application (PCT/GB2014/052263).  
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1. Introduction 

Buildings today account for 30 - 40% of the world’s primary energy consumption and are responsible 
for about one-third of global carbon emissions. Heating Ventilation and Air Conditioning (HVAC) 
systems consume more than 60% of the total energy use of buildings [1]. Extensive efforts have been 
focused on an environmentally friendly approach to building design, revealing the on-going interest of the 
scientific community on the topic. Passive cooling technologies such as wind towers are increasingly 
being employed in buildings for increasing the fresh air rates and reducing energy consumption [1]. A 
wind tower is a wind driven ventilation device, which captures air at high elevations and directs the air 
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into the interior of the building. The internal volume of the device is divided into quadrants, which allow 
fresh air to enter as well as stale air to escape, irrespective of the wind direction [1]. 

 In hot regions such as the Middle East, there is a huge dependency on electricity to run mechanical 
ventilation systems. In these areas, using wind towers is a well-known technique. However, the cooling 
capabilities of wind towers, which depend only on the structural design, are limited. Therefore it is 
essential to cool the air in order to reduce the building heat load and to improve the thermal comfort of 
occupants during summer months [2]. Traditionally, wind towers have been integrated with evaporative 
cooling to reduce the air temperature. The induced hot air is sprayed with water or passed through cooling 
pads, evaporating the water in the process. Thus, the air becomes heavier and sinks to the bottom of the 
channel (Fig 1a). However, the addition of these cooling devices may reduce the airflow rate inside the 
channel. Another disadvantage of this configuration is the requirement of taller towers to have sufficient 
contact time. Furthermore, evaporative coolers use a substantial amount of water to run [2].  

In this study, Heat Transfer Devices (HTD) were integrated into the passive terminal of a commercial 
wind tower to reduce the temperature of supply air. As shown in Fig 1b, the hot outdoor air (1) enters the 
wind tower through the louvers. The louvers are used to deflect the impact of weather and direct sunshine 
from entering the device. The airflow is driven downwards and passed through a series of HTD (2), which 
absorbs heat from the air and transfers it into a parallel cooling system (3). This is similar to the 
evaporative cooling system, but unlike the traditional method, the water is recirculated inside the cold 
sink and source (4). Adjustable dampers are mounted at the bottom of the unit to control the delivery rate 
(5). The cooled air is supplied to the room beneath the channel via ceiling diffusers (6). 

    

Fig. 1. (a) wind tower with evaporative cooling; (b) wind tower integrated with heat transfer devices (HTD) 

A number of studies have assessed the natural ventilation performance of wind towers using 
Computational Fluid Dynamics (CFD) and wind tunnel analysis. CFD played a major role in 
development of wind towers due to the low computation resources required for the design and simulation 
of prototypes [1, 3]. The optimal design of various components of wind towers has been conducted 
including the damper and louver. Complimentary wind tunnel experiment of a smaller scale model 
validates the CFD simulation to improve the reliability [4, 5].  

Several research projects investigated the integration of cooling techniques into wind towers for hot 
climates. Hughes et al. [1] highlighted the different cooling techniques integrated with wind tower 
systems to improve their thermal performance. Kalantar [6] evaluated the performance of a wind tower 
with evaporative cooling in the hot region of Yazd using CFD. Using the same CFD method, Calautit et 
al. [2] compared the thermal performance of an evaporative cooling and HTD assisted cooling for 
traditional wind towers. The study concluded that height of the wind tower was not a factor for the HTD 
integrated design, making it viable for commercial wind towers. The aim of this study was to investigate 
the performance of a commercial wind tower integrated with Heat Transfer Devices (HTD) using CFD 
and wind tunnel analysis. An experimental scale model was created using 3D printing. The scale model 
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was tested in a closed-loop wind tunnel to validate the CFD model. Smoke visualisation experiment was 
conducted to analyse the pattern of the airflow in a room with the device. 

2. Computational Fluid Dynamics (CFD) Setup 

The basic assumptions for the steady-state CFD simulation included a three-dimensional, fully 
turbulent, and incompressible flow. The turbulent nature of the flow was modelled by the standard k– 
epsilon model. This technique is well established in the field of natural ventilation and wind tower 
research [1]. The CFD code used the Finite Volume Method (FVM) approach and employed the Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE) velocity-pressure coupling algorithm with the 
second order upwind discretisation. The governing equations are available in [7]. 

2.1. Physical domain and mesh generation 

The CFD analysis was carried out using the ANSYS FLUENT software. The flow domain 
representation of the geometry of the wind tower and location of set boundary conditions are shown in 
Fig 2. A 5 x 5 x 10 m3 enclosure was created to simulate the velocity of the outdoor wind. Furthermore, 
the model of the 1 x 1 m2 wind tower was integrated to a test room located beneath it. The test room with 
an internal volume of 3 x 3 x 5 m3 represented a small classroom of 15 occupants [8]. The diameter of the 
cylindrical HTD was 0.002 m and the horizontal spacing between the HTD was 0.05 m. The thermal 
performance of three HTD configurations were compared; configuration 1 (1 row), configuration 2 (2 
rows) and configuration 3 (3 rows). The performance of the cold sink (parallel cooling system) was not 
investigated in this study, therefore it was modeled as a solid block in the numerical analysis. 

 

          

Fig. 2. (a) Closed-loop wind tunnel test set-up; (b) view of the computational mesh of the wind tower and test room model.  

A non-uniform mesh was applied to the volumes of the computational model. The computational 
mesh of the wind tower and test room model is shown in Fig 2b. The mesh was refined around critical 
areas of interests (HTD, louvers, etc.) in the simulation [8]. Several meshes were generated to investigate 
the solution independency from the mesh. The numerical mesh was refined using the hp-grid adaptation 
method [9]. The mesh was refined (mesh sizes ranging from 3.8 to 7 million elements) until the posterior 
estimate error became insignificant between the number of elements and the posterior error indicator 
(supply velocity). The discretisation error was found to be the lowest at over 7 million elements. 

2.2. Boundary conditions 

Fig 2b shows the computational domain of the macro- and micro-climate volumes. A wall boundary 
condition with a set roughness height and roughness constant [5] was used to create a boundary between 
each volume. Boundary conditions for the numerical modeling of the flow were chosen to be the same as 
the conditions in the wind tunnel experiment [5]. CFD analysis was performed at various outdoor wind 
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speeds (0 - 5 m/s). The pressure outlet was set to 0 Pa (atmospheric). For the analysis of the wind tower 
with HTD, the outdoor air temperature was set to 318 K to simulate a hot outdoor environment [2]. In 
order to cool the induced air, the HTD wall temperature was set to 293 K.  

3. Wind Tunnel Experimental Set-up and Measurement Procedure 

The experimental investigation was conducted in a closed-loop wind tunnel in the School of Civil 
Engineering of the University of Leeds [9, 10]. The size of the test section was 0.5 x 0.5 m2  and 1m 
length (Fig 3a). A 1:10 scale model of the wind tower with HTD was used in the experimental study. The 
creation of an accurate scaled model was essential for the study, therefore, the wind tower was 
constructed using 3D printing. The scale of the model of the wind tower was selected to maintain, as 
close as possible, equality of model and prototype ratios of overall dimensions to the important 
meteorological lengths of the simulated wind. Cylindrical rods with an outer diameter of 0.002 m were 
used to model the HTD (Fig 3b). The scale model produced a maximum wind tunnel blockage of 4.8% 
[11, 12]. The model of the wind tower was connected to a 0.5 x 0.5 x 0.3 m3 test room, mounted 
underneath the test section.  
  

     

Fig. 3. (a) Closed-loop wind tunnel; (b) 3D printed model of a wind tower with cylindrical HTD (configuration 2). 

In this study, the induced airflow into  the test room was measured using a hot-wire anemometer 
positioned below the channels of the wind tower. The cross-sectional area of the supply and exhaust 
channels of the wind tower was divided into several portions (16 points). The hot wire probe (Testo 425) 
gave velocity measurements with uncertainty of ±1.0 % rdg. at speeds lower than 8 m/s. In order to 
recognise the flow pattern in the test room, smoke visualisation test was also carried out.  

4. Results and Discussion 

Fig 4a shows the velocity contours of the cross sectional plane in the test room model. As observed, 
the airflow passed around the wind tower, parts of it entered the channel and portion of it exited through 
the pressure outlet on the left wall. The flow entering the wind tower speeded up as it hit the cross-divider 
and streamed downward towards the test room. The air then spread sideways and upwards in all direction 
and part of it escaped through the wind tower outlet. At an outdoor wind speed of 3 m/s, the average 
velocity in the wind tower diffuser was 1.42 m/s while the average velocity in the room was measured 
0.53 m/s.  Fig 4b illustrates the temperature distribution inside the test room. The average temperature 
inside the microclimate was 311.8 K when the outdoor air temperature was at 318 K. A greater 
temperature reduction was obtained at the immediate downstream of the Heat Transfer Devices with a 
supply temperature value of 311.5 K,  a reduction of 6.5 K. The results displayed that the HTD was able 
to reduce the temperature of the induced air stream while ensuring that the space was adequately 
ventilated. 
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Fig. 4. (a) Velocity contour of a cross-sectional plane inside the test room; (b) temperature distribution inside the test room 
model 

Fig 5a compares the supply airflow speed of a multi-directional wind tower with and without HTD. 
The airflow speed was reduced by 4 - 17 % following the addition of HTD. Fig 5b shows the effect of 
various outdoor wind speeds on the thermal performance of the HTD integrated wind tower. As observed, 
by increasing the number of HTD (from 1 row to 3 rows), the cooling performance of the system 
increased. Furthermore, significant reduction in temperature was observed at lower wind speeds.  

 

          

Fig. 5. (a) Effect of the integration of HTD on the air supply velocity (b) Thermal performance of different HTD configurations 

Fig 6 shows a comparison between the experimental and CFD results of the velocity measurements. 
This comparison showed a low difference range and the trends were to be in a good agreement. Average 
error across the points was 7.5 %.  Fig 7 displays a comparison between CFD and the experimental flow 
pattern inside the test room model. A similar flow pattern was observed; the airflow entering the wind 
tower was directed towards the floor of the room and spread outwards in all directions. As the airflow hit 
the bottom surface the air slowed down and flowed through the side walls, and parts of the air escaped 
through the exhaust quadrant. 

   

Fig. 6. Comparison between the experimental and CFD results of the airflow velocity measurement 
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Fig. 7. (a) CFD flow visualisation; (b) Smoke testing in the wind tunnel 

5. Conclusion 

A numerical and experimental investigation was carried out to investigate the performance of a wind 
tower with Heat Transfer Devices (HTD). The numerical model was validated against the wind tunnel 
data and good correlation was achieved between both methods, as the error was below 10 %. The results 
indicated that the supply rate was reduced by 4 – 17 % following the integration of the HTD. The effect 
of different numbers of HTD on the thermal performance was investigated. The work highlighted the 
potential of integrating HTD into wind towers to reduce the temperature of the air induced into the 
ventilated space. Full scale field testing is required for further analysis and validation of the results. 
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