
This is a repository copy of An Excel tool for deriving key photosynthetic parameters from 
combined gas exchange and chlorophyll fluorescence: theory and practice..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85658/

Version: Accepted Version

Article:

Bellasio, C., Beerling, D.J. and Griffiths, H. (2015) An Excel tool for deriving key 
photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: 
theory and practice. Plant, Cell & Environment. ISSN 0140-7791 

https://doi.org/10.1111/pce.12560

This is the peer reviewed version of the following article: BELLASIO, C., BEERLING, D. J. 
and GRIFFITHS, H. (2015), An Excel tool for deriving key photosynthetic parameters from 
combined gas exchange and chlorophyll fluorescence: theory and practice. Plant, Cell & 
Environment. , which has been published in final form at 
http://dx.doi.org/10.1111/pce.12560. This article may be used for non-commercial purposes
in accordance with Wiley Terms and Conditions for Self-Archiving 
(http://olabout.wiley.com/WileyCDA/Section/id-820227.html).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 
 

Plant, Cell  and Environment 

An Excel tool for deriving key photosynthetic parameters from 

combined gas exchange and chlorophyll fluorescence: theory and 

practice 

Chandra Bellasio1*, David J Beerling1 and Howard Griff iths2 

1 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK 

2 Department of Plant Sciences, university of Cambridge, Cambridge, CB2 3EA, UK 

*Correspondence: c.bellasio@sheffield.ac.uk 

Abstract:  

Combined photosynthetic gas exchange and modulated fluorometers are widely used to evaluate 

physiological characteristics associated with phenotypic and genotypic variation, whether in 

response to genetic manipulation or resource limitation in natural vegetation or crops. Af ter 

describing relatively simple experimental procedures, we present the theoretical background to the 

derivation of photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT) 

that will  be of use to specialists and non-specialists alike. We use data acquired in concurrent 

variable fluorescence - gas exchange experiments, where A/Ci and light-response curves have been 

measured under ambient and low oxygen. From these data, the EFT derives light-respiration, initial 

PSII  photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested 

by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, 

stomatal limitation, Rubisco rate of carboxylation and oxygenation, Rubisco specificity factor, 

mesophyll  conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent 

Michaelis-Menten constant, and Rubisco CO2-saturated carboxylation rate. As an example, a 

complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential 

measurement problems and pitfalls, and suggest how such empirical data could subsequently be 

used to parameterise predictive photosynthetic models. 

Keywords 

Modelli ng, quantum yield, respiration, compensation point, αβ, electron transport rate, 

photorespiration, oxygenation, carboxylation, rate, Rubisco, specificity, mesophyll  conductance, 

VCMAX. 
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Introduction 

Leaf photosynthetic gas exchange is generally measured with infra-red gas analysers (IRGA). CO2 

uptake (referred to as net assimilation, A; symbols and acronyms are listed in Table 1) and water 

vapour transpiration are measured directly. A first data treatment step, embedded in the IRGA 

software, uses classical calculations (Farquhar et al., 1980, von Caemmerer & Farquhar, 1981) to 

derive stomatal conductance to H2O, and then CO2 (gS), together with the CO2 concentration in the 

substomatal cavity (Ci). In this way, A, gS and Ci are standard outputs of IRGA measurements, in 

addition to incident light intensity (PPFD) (Evans, 2013, Long & Bernacchi, 2003, Long et al., 

1996). All  IRGA manufacturers optionally mount a pulse amplitude modulated leaf chamber 

fluorometer on the IRGA leaf cuvette. These devices add high frequency pulses of ‘modulated 

light’  to the background illumination and deconvolute the reflected fluorescence signal, as the 

dimensionless quantity ‘F’  representing leaf-level fluorescence yield [see recent comments and 

refinements: (Harbinson, 2013, Loriaux et al., 2013, Schansker et al., 2014, Stirbet & Govindjee, 

2011)]. The photochemical yield of PSII (Y(II)) can be measured under continuous PPFD (Genty et 

al., 1989) by comparing the steady state F (FS) to a maximum (FM′) obtained by artificially 

‘quenching’ Y(II)  using an instantaneous ‘saturating pulse’ (8 – 20 mmol photon m-1 s-1 PPFD) 

which completely reduces QA (Baker, 2008, Maxwell  & Johnson, 2000, Murchie & Lawson, 2013, 

Papageorgiou, 2004). Gas exchange can provide additional information if measured in a low O2 

(1.5-2%) background instead of air. Low O2 suppresses Rubisco oxygenase activity (Eckardt, 

2005), thus allowing the rate of Rubisco carboxylation (VC) to be derived from A and RLIGHT (the 

rate of ‘day’  respiration). These techniques can be augmented by real-time isotopic discrimination 

measurements (Bellasio & Griffiths, 2014b, Cernusak et al., 2013, Gu & Sun, 2014, Tazoe et al., 

2011, von Caemmerer et al., 2014), but are not considered further in this paper. 

IRGA outputs can be analysed ‘descriptively’  using photosynthetic models. These describe an 

output variable (e.g. assimilation AMOD) using 1) measurable input variables (e.g. Ci); 2) a 

mathematical expression; and 3) parameters representing physiological traits (for instance Rubisco 

CO2-saturated rate of carboxylation VCMAX). Parameters may be constant or differ between different 

groups of plants, depending on the rationale of the experiment. To find the parameter values which 

‘describe’  the response of a given plant, models are ‘f itted’ , i.e. the sum of squared residual (SSE) 

between the model output and a consistent set of measured data is minimised by iteratively trying 

different parameter values. These iterations are generally aided by specific software (e.g. we used 

the Excel package ‘Solver’) . The fitted parameters provide useful proxies which summarise 

contrasting photosynthetic responses, and can be statistically treated to highlight differences 

between plants or treatments. The work of experimental physiologists may be completed at this 

stage, although models and parameters can be used in a third phase, which we call  ‘predictive’. 

Here, photosynthetic characteristics are calculated for conditions which will  differ, in space, time or 



3 
 

for environmental factors, to those of the original gas exchange experiment(s). Predictive modelli ng 

is important when photosynthesis cannot be measured directly, for instance at the field scale 

(Bernacchi et al., 2013, Boote et al., 2013, Keurentjes et al., 2013, Yin & Struik, 2010), or at the 

global scale (Melton et al., 2013, Woodward & Lomas, 2004).  

There are a variety of descriptive modelli ng approaches, and recent research has refined classical 

models to account for mesophyll  diffusion resistances and variable enzyme kinetics (Ethier & 

Livingston, 2004, Gu et al., 2010, Tholen et al., 2012b). There is a need for these new approaches 

to be incorporated in predictive models in order to refine estimates of global net productivity (Sun 

et al., 2014b). However, updating existing data analysis tools with new sub-routines can be diff icult 

because they may not be freely downloadable, use proprietary software, and coding skill s are often 

required to implement modifications (Gu et al., 2010, Laisk et al., 2002, Yin et al., 2009). 

Furthermore, different modelli ng logics need to work together, and parameters derived under 

different experimental conditions may need to be recruited from unrelated studies. The goals of this 

work were to 1) develop an updated and accessible comprehensive data treatment tool for 

descriptive modelli ng; 2) describe the general logic and theory of data analysis including classical 

and modern approaches; and 3) succinctly demonstrate the current best practices of data analysis 

and fluorescence-gas exchange measurements. 

We implemented an Excel based fitting tool (EFT) that is freely available to download from 

Supporting Materials. The use of macros is avoided so that all  calculations appear in spreadsheet 

cells, allowing greater transparency and straight forward modification. The EFT derives a suite of 

advanced photosynthetic parameters using standard gas exchange-fluorescence datasets, and 

therefore represents a significant advancement for many molecular biologists and ecologists. In 

addition, the EFT accommodates a wide range of methodological variations for more advanced 

applications. We first review the theory of gas exchange data analysis then describe how the EFT 

outputs allow detailed comparisons of photosynthetic characteristics to be made – whether for 

natural vegetation or plants with engineered photosynthetic traits. A worked analysis of gas 

exchange data measured on tobacco plants is discussed in the second part of the paper and we detail 

the gas exchange experiment settings and potential pitfalls in Supporting Information. Finally, we 

provide a link to a demonstration video tutorial. Although predictive modelli ng goes beyond the 

scope of this work, we will  mention how the EFT outputs can be used by current or next-generation 

models. 

Measurements and rationale for different O2 levels 

To derive a complete set of physiological parameters with this EFT, four response curves (A/Ci and 

light-response curves each measured under both ambient and low O2) are measured consecutively 

on the same portion of the leaf. Detailed settings and potential issues of gas exchange measurements 

are provided for guidance in Supporting Information Notes 1 and 2. The rationale for repeating gas 
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exchange measurements under low O2 is to suppress photorespiration. In these conditions VC can be 

resolved from gross assimilation GA (GA=A+RLIGHT) as VC=GA. Since the main sink for reducing 

power is CO2 assimilation, the rate of electron transport (J) can then be stoichiometrically derived 

as J=4VC. Different definitions for J coexist in the literature on photosynthetic modelli ng, which has 

led to some ambiguity. Here we define J as the rate of electron transport delivered to NADP+ and 

used by the photosynthetic RPP and the PCO cycles. The factor 4 results from knowing that 

reducing each fixed CO2 requires 2 NADPH, each carrying 2e-. With J, a calibration factor between 

J and Y(II) can be established (Valentini et al., 1995, Yin et al., 2009). That calibration factor 

allows J to be predicted under photorespiratory conditions, using values of Y(II) measured under 

ambient O2. 

Development of Theory embedded within the Excel-based Fitting Tool (EFT) 

Description of the procedure for deriving parameters  

We modified the overall  logical path proposed by Yin et al. (2009), from concurrent multi -curve 

fitting to a cascade ‘step-by-step’  fitting protocol. This was then integrated with recent 

developments and alternatives proposed by other investigators. Cascade ‘step-by-step’  means that 

data analysis is divided into 13 discrete steps (EFT sheets are numbered 1 – 13 accordingly) and 

each step extracts a new piece of information using parameters previously derived. Light-curves, 

fluorescence and low O2 increase the available information eight-fold compared to an ordinary A/Ci 

curve, provide better model constraints, and reduce the risk of deriving many parameters from a 

limited number of datapoints (overparameterisation). Discrete steps allow greater control over the 

output and flexibil ity in choosing which parameters to derive. The steps are summarised as follows:  

1 Data are entered into the EFT and limitations are selected manually. 

2 Respiration in the light (RLIGHT) is derived using the initial light-limited portion of the 

fluorescence-light-curves (Yin et al., 2011a). 

3 The initial yield of photosystem II (Y(II)LL) is extrapolated under zero PPFD by linear regression 

of Y(II) in the initial light-limited portion of the fluorescence-light-curves (Yin et al., 2009).  

4 Gross assimilation (GA), the net biochemical CO2 uptake, a key quantity of photosynthetic 

modelli ng, is calculated by summing RLIGHT plus A and the PPFD dependence of GA is 

described empirically by a non-rectangular hyperbola. The maximum quantum yield for CO2 

fixation (Y(CO2)LL) and the light-saturated GA (GASAT) are estimated by curve-fitting. The 

PPFD‒A compensation point (LCP) is calculated from the fitted curve. 

5 An empirical non-rectangular hyperbola is fitted to the A/Ci curves under ambient and low O2 to 

estimate the maximal carboxylating efficiency (CE), the Ci‒A compensation point (Γ, i.e. the Ci 

at which A is zero) and Ci‒GA compensation point (Ci*, i.e. the Ci at which GA is zero) and CO2-
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saturated A (ASAT). The fitted curve is used to assess stomatal limitation to photosynthesis (LS). 

The rate of triose phosphate utili sation is calculated (variants available). 

6 The fraction of PPFD harvested by PSII is derived using two different approaches: the approach 

of Yin (Yin & Struik, 2009a, Yin et al., 2004) (which fits a quantity called s) and the approach of 

Valentini (Valentini et al., 1995) (which fits a quantity called αβ).  

7 With Y(II)LL and either s or αβ, the initial quantum yield for electron transport (Y(J)LL, 

conversion efficiency of PPFD into J) is calculated (Yin et al., 2009).  

8 J is calculated using PPFD, Y(II), and s or αβ derived in Step 7 or with a point-to-point approach 

directly from GA. 

9 The light-dependence of J under ambient O2 is described by an empirical non-rectangular 

hyperbola (Yin et al., 2009): Y(J)LL derived in Step 7 defines the initial slope while the 

curvature, θ, and the light-saturated JSAT are estimated by curve-fitting.  

10 With J and A, all  quantities associated with Rubisco activity in vivo (rate of carboxylation, 

oxygenation and photorespiration rate) are calculated for each datapoint (Bellasio et al., 2014) 

assuming that reducing power is limiti ng photosynthesis (von Caemmerer, 2000).  

11 The in vivo Rubisco specificity factor (SC/O) is estimated by comparing the previously derived 

CE under ambient and low O2 (Yin et al., 2009).  

12 With SC/O, J and RLIGHT previously derived, assimilation is modelled (AMOD), and mesophyll 

conductance to CO2 diffusion (gM) is estimated by fitting AMOD to A in the light-limited part of 

A/Ci and light-curves (calculation variants are available). 

13 With Γ, gM, and RLIGHT, the CC based Rubisco kinetic parameters VCMAX (CO2-saturated 

carboxylation rate) and KC(1+O/KO) (apparent Michaelis-Menten constant) are estimated by 

fitting the ‘f ull  Farquhar model’  as developed by (Ethier & Livingston, 2004) to the Rubisco-

limited part of the A/Ci curve. By using information derived in previous steps, this procedure, 

avoids uncertainties associated with the overparameterization of the Farquhar model (Gu et al., 

2010).  

Steps 1 – 10 are applicable to any photosynthetic pathway of assimilation such as C3, C4, 

intermediate, C2, and CAM metabolism (see Intermediate and Engineered assimilatory pathways, 

below). This is possible because equations relate to NADPH-limited photosynthesis (von 

Caemmerer, 2000) which are independent of the photosynthetic pathway, and because the 

mathematical formulation of empirical models is purely based on the external behaviour of the 

system (Thakur, 1991). Steps 11 – 13 are based on mechanistic models, which are underpinned by 

the functional mechanisms of the individual biochemical processes and thus will  produce 

meaningful results only for the C3 assimilatory physiology. We will  now describe the practical use 

of the EFT, together with theory and possible alternatives following the step-by-step procedure.  
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1. Data entry, presentation of analysis and selection of rate-limited and saturated datapoints 

For each datapoint of the four response curves, PPFD, A, Ci, and Y(II) are entered as the outputs 

from IRGA software (or, when appropriate, corrected for CO2 diffusion, see example below) in 

Sheet 1. The datasets are automatically plotted graphically below the tables. A colour code is 

maintained throughout the EFT: brown is used to indicate ambient O2 conditions, blue refers to low 

O2, modelled functions appear as continuous lines, modelled points appear as crosses, grey cells 

contain general output and white cells require data input. The data entered in Sheet 1 will  be 

automatically transferred to subsequent sheets in cells with a light-shaded background: for the sake 

of flexibili ty these cells can be overwritten by the user (see also ‘Partial datasets’  below), but in this 

case a copy of the original workbook needs to be saved to preserve the original functionali ty. 

Along with each datapoint, a limitation code (1, 2 or 3) is required, which identifies the 

datapoints to be used in subsequent analyses and manipulations. Automatic routines for the 

limitation selection generally require dedicated software and have been tested only for A/Ci curve 

data selection (Gu et al., 2010) ) under ambient O2. Given the complexity of the EFT and the 

necessity to deal with 3 (or more) limitations in each of 4 curves we implemented a simpler manual 

selection, in-line with Sharkey et al. (2007), that allows maximum transparency of the fitting 

procedures and straight-forward adjustments. For light-curves, ‘1’  is assigned to the initial light-

limited points (e.g. PPFD < 150 μmol m-2 s-1); ‘2’  to the light-limited points (e.g. PPFD < 500 

μmol m-2 s-1); and ‘3’  to the remainder of the points. For A/Ci curves ‘1’  is assigned to the initial 

Rubisco-limited part of the curve (e.g. Ci < 150 μmol mol-1); ‘2’  to the Rubisco-limited part of the 

curve (generally obtained under sub-ambient external CO2 concentration, e.g. Ca < 400 μmol mol-1); 

and ‘3’  to the ribulose regeneration limited part of the curve (generally obtained under above-

ambient external CO2 concentration, e.g. Ca > 400 μmol mol-1). Fitting steps are largely 

independent, meaning limitations can be adjusted between one step and the next. Individual 

datapoints can be excluded from further analysis (see instructions in Sheet 1). 

2. Estimating Respiration in the light (RLIGHT) 

For the sake of this work ‘Respiration’  is primarily mitochondrial CO2 release. Respiration in the 

light (RLIGHT) is very difficult to resolve because of concurrent photosynthetic CO2 uptake and 

photorespiratory CO2 release under ill umination.  

All  methods to estimate RLIGHT involve assumptions. The simplest assumption is a relationship 

with RDARK, which is easily measured, for instance RLIGHT=RDARK [e.g. Kromdijk  et al. (2010)], or, 

following the observation that respiration is down-regulated in the light, RLIGHT=0.5RDARK [e.g. 

Martins et al. (2013)]. Because the magnitude of the down-regulation will  depend on the species 

and environmental conditions (Buckley & Adams, 2011, Gandin et al., 2014, Tcherkez et al., 2008), 

these simple assumptions should be used with caution. 
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The method developed by Laisk (1977) [described in Brooks and Farquhar (1985), e.g. applied 

in Flexas et al. (2007)] identifies RLIGHT as the y-value of the intersection of ≥2 linear A/Ci 

relationships assessed at limiti ng PPFD. The Laisk method assumes that RLIGHT is not affected by 

PPFD, requires dedicated experimental routines, and because it mathematically underestimates 

RLIGHT, has been deemed inadequate (Gu & Sun, 2014). An interesting simpli fication method, 

although based on the same theoretical construct, was presented by Brooks and Farquhar [(1985) 

hereafter BF method]. In the BF method, the y-value of a single linear A/Ci regression (Ci ≤150 

μmol mol−1) in correspondence of x = Ci* is taken as RLIGHT. Ci*, the Ci‒GA compensation point is 

generally assumed to equal Γ*, the CC‒GA compensation point (the CC at which GA is zero), where 

Γ* is derived from in vitro Rubisco specificity (see Step 11). Interestingly, when RLIGHT values 

derived from the BF method are used for A/Ci modelli ng under the same PPFD, the independence 

of RLIGHT on PPFD does not need to be assumed. We note that the mathematical underestimation 

theoretically highlighted by Gu & Sun (2014) is largely outweighed by artefacts dependent on CO2 

diffusion through the IRGA cuvette gaskets (see Supporting information Note 1) and this effect has 

previously resulted in considerable measurement artefacts (Drake et al., 1997, Gu & Sun, 2014, 

Long & Bernacchi, 2003). For these reasons, the use of both the BF and Laisk methods should be 

discouraged with small  IRGA chambers.  

Alternatively, RLIGHT can be estimated from light-response data, with the benefit of using 

measurements taken under a CO2 concentration close to ambient or external to the cuvette (typically 

400 ‒ 550 μmol mol-1). The earliest method of Kok estimated RLIGHT as the y-intercept of a linear 

regression between A and PPFD. A very limited portion of the light-curve can be used because 

linearity is soon lost (e.g. PPFD > 100 μmol photons m-2 s-1) and the initial part has to be discarded 

[it has a different slope: the ‘K ok effect’  (Kok, 1948), see for review and examples Yin et al. (2009) 

and Yin et al. (2011a)]. The Kok method has recently been developed by Yin et al. (2011a) in a gas 

exchange-fluorescence method which corrects for non-linearity using chlorophyll  fluorescence data: 

A is plotted against ¼ Y(II)  PPFD yielding a linear relationship in a wider data range (e.g. < 300 

μmol photons m-2 s-1). Following this approach, in Sheet 2, RLIGHT is independently estimated under 

low and ambient O2 as the y-intercept of the fitted line:  

 

 

where s is a lumped conversion coefficient (see Step 6). 

Eqn 1 is valid under non-photorespiratory conditions [an expression analogous to Eqn 1 can 

be derived for photorespiratory conditions see Eqn 7a in Yin et al. (2009), and Yin et al. (2014)]. 

This gas exchange-chlorophyll  fluorescence method has been theoretically demonstrated (Yin et al., 

 =   ¼  (  )       −        1 
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2004) and experimentally validated for C3 and C4 plants (Bellasio & Griffiths, 2014b, Yin et al., 

2009, Yin et al., 2011a). Note that the estimate for RLIGHT is obtained under low PPFD and the 

independence of RLIGHT from PPFD is assumed. The derivation of RLIGHT in Sheet 2 was separated 

from the derivation of s in Sheet 6a to allow additional features in Sheet 2, including the possibili ty 

to add additional data to the regressions (the light-limited part of the A/Ci curve and RDARK, 

measured under ambient and/or low O2); and the possibili ty to fit a value for RLIGHT concurrently to 

ambient and low O2 data, since in practical terms, any O2 effect may be considered negligible (Yin 

et al., 2009). Results can be compared with the BF method in the additional features embedded in 

Sheet 11. 

3. Initial photochemical yield of PSII , Y(II)LL  

Y(II)LL represents the initial (and maximal) photochemical yield of PSII obtained under 

conditions of steady state ill umination and accounts for conversion losses occurring under 

operational conditions. Based on the observation that Y(II) increases monotonically at decreasing 

PPFD (Yin et al., 2014), Sheet 3 calculates Y(II)LL as the y-intercept of a function fitted to Y(II) 

plotted against PPFD. In Sheet 3 a straight line is fitted to the initial light-limited portion of the 

light-response curve, and additional features in Sheet 3 allow comparison with quadratic and 

exponential functions fitted to any combination of datapoints. FV/FM [Y(II) measured on dark-

adapted leaves, (Baker, 2008, Maxwell  & Johnson, 2000)] does not reflect PSII  operational 

conditions under ill umination (Schansker et al., 2014, Stirbet & Govindjee, 2011) and therefore 

FV/FM is not a good proxy for Y(II)LL (Yin et al., 2014). 

4. Light dependence of gross assimilation (GA), light-saturated gross assimilation (GASAT), initial 

quantum yield for CO2 fixation (Y(CO2)LL), and PPFD‒A compensation point (LCP)  

The dependence of GA on PPFD can be modelled empirically. The derived parameters are 

informative, but no longer used in predictive modelli ng having been surpassed by mechanistic 

predictions based on J (von Caemmerer, 2013, Yin & Struik, 2009a). In sheets 4a and 4b we 

modified an equation from Prioul and Chartier (1977) to empirically describe GA as: 

 

 

 

Eqn 2 is a non-rectangular hyperbola parameterised by GASAT, Y(CO2)LL and m, an empirical 

factor (0≤ m ≤1) defining the curvature. GASAT defines the horizontal asymptote (GA=GASAT) and 

represents the light-saturated rate of GA under the CO2 concentration used for measurements. 

     =
 (   )       +      −  ( (   )       +      ) − 4    (   )             

2  
 

2 
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Y(CO2)LL corresponds to the maximal quantum yield for CO2 fixation (Y(CO2) i.e. the conversion 

efficiency of PPFD into fixed CO2, often referred to as ΦCO2) under the CO2 concentration used for 

measurements, and defines the inclined asymptote (GA=Y(CO2)LL PPFD). To facilit ate the 

physiological interpretation of m, Sheet 4 calculates the PPFD which half saturates GA (PPFD50), 

analogous to a K1/2 kinetic parameter. The values of Y(CO2)LL, m and GASAT are found by iterative 

fitting of GAMOD to GA. A recently proposed linear alternative for the derivation of Y(CO2)LL (Yin 

et al., 2014) can be compared in the additional features of Sheet 6a. From Sheet 4a onwards we 

included the possibili ty to log-transform residuals. By partially correcting for proportionali ty 

between residuals and GA, this feature increases the weight of initial datapoints (e.g. low PPFD) in 

determining the characteristics of the fitted curve. The opportunity to log-transform depends on the 

structure of the dataset and the characteristics of error and should be considered on a case-by-case 

basis. 

The fitted hyperbola is used to calculate the PPFD‒A compensation point (LCP, i.e. the PPFD at 

which A is zero). The LCP is a versatile index expressing the metabolic cost of basal metabolism, 

related to the degree of shade acclimation or adaptation (Timm et al., 2002, Walters & Reich, 1996) 

and represents the capacity of crops to perform well  under limited light (Bellasio & Griffiths, 

2014a, Craine & Reich, 2005, Yongjian et al., 1998). Stress events affecting respiration or the 

photosynthetic capacity will  readily be mirrored by the LCP [e.g. Yongjian et al. (1998)]. The LCP 

is easily determined and, since it relies on light-response data and is generall y measured under 

external CO2 concentration, is inherently more accurate than the Ci‒A compensation point Γ. Sheets 

4a and 4b calculate the LCP by solving Eqn 2 for PPFD under the condition of A=0, i.e. 

GA=RLIGHT: 

 

 

A linear alternative to derive LCP from the initial region of the light-response curve can be 

compared in the additional features of Sheet 3. 

5. CO2 dependence of assimilation (A), CO2-saturated assimilation (ASAT), initial carboxylating 

efficiency for CO2 fixation (CE), Ci‒A (Γ) and Ci‒GA (Ci* ) compensation points  

The relationship between A and Ci can be modelled mechanistically to derive Rubisco CO2-

saturated rate of carboxylation (Step 13), however, important information can also be acquired by 

empirical modelli ng without the need for any particular physiological constraint. Farquhar and 

Sharkey (1982) mathematically described the initial part of the A/Ci curve with a linear relationship 

between A and Ci as A=CE (Ci-Γ), where Γ is the Ci‒A compensation point. It has been noted that 

   =
           −       

 

 (   )        −  (   )        
 

3 
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the relationship between A and Ci is never linear, even at very low Ci (Gu & Sun, 2014). To account 

for this physiological non-linearity and to avoid arbitrary selection of the part of the curve 

considered linear (selection of cut-off  point), we propose that A should be modelled in terms of Ci 

through a non-rectangular hyperbola (analogous to Eqn 2): 

 

 

Eqn 4 is calculated in sheets 5a and 5b and is parameterised by ASAT, CE, Γ and ω. ASAT 

represents the CO2-saturated rate of A under the PPFD of the measurement, and is the horizontal 

asymptote (A=ASAT). CE is the maximal carboxylating efficiency for CO2 fixation (CE), and defines 

the inclined asymptote, which has the equation A=CE (Ci-Γ), i.e. the asymptote equation 

corresponds to the linear equation of Farquhar and Sharkey (1982). ω is an empirical factor (0≤ ω 

≤1) defining the curvature. To facilit ate the physiological interpretation of ω, sheets 5a and 5b 

calculate the Ci which half saturates A (Ci50) – analogous to a K1/2 kinetic parameter. With RLIGHT 

derived in Step 2, the values of CE, ω, Γ, and ASAT are found by iterative fitting of AMOD to 

measured A. Eqn 4 can be used for all  assimilatory physiologies, meaning CE, ω, Γ, and ASAT, 

which describe the A/Ci response, can diagnose enhanced or disrupted photosynthetic traits (see 

‘ Intermediate and Engineered assimilatory pathways’ , below).  

The fitted Eqn 4 can be useful to assess stomatal limitation (LS) imposed by stomatal 

conductance (gS) in analogy with the graphical method (Farquhar & Sharkey, 1982, Long & 

Bernacchi, 2003). Stomatal limitation LS is generall y assessed by comparing a value of assimilation 

rate A′ measured under ambient CO2 concentration (i.e. when   =   −
 

  
) with the hypothetical A′′ 

that would be obtained if the mesophyll  had free access to the CO2 in the ambient air (i.e. when 

Ci=Ca). For additional flexibili ty in Sheet 5a Ca and Ci can be specified so that stomatal limitation 

can be calculated under ambient or any other CO2 concentration. Sheet 5a calculates LS as   =
      
   

, where A′ is calculated by solving Eqn 4 for the specified Ci and A′′ is calculated solving Eqn 

4 for the specified Ca.  

If a value for RLIGHT is available, sheets 5a and 5b calculate the Ci‒GA compensation point Ci* 

(also referred to as the CO2 compensation point in absence of RLIGHT). Ci* is a useful proxy in 

comparative studies, having the advantage over Γ of not being susceptible to variabili ty in RLIGHT 

which responds readily to environmental conditions (Bellasio & Griffiths, 2014a, Bellasio & 

Griff iths, 2014b, Buckley & Adams, 2011). Ci* is solved in sheets 5a and 5b as the x-value of the 

fitted Eqn 4 in correspondence with AMOD=-RLIGHT (Ethier & Livingston, 2004), similarly to Eqn 3.  
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The rate of triose phosphate use (TPU) can be calculated directly from GA under conditions of 

TPU limitation (when A is saturated, or decreases, under increasing CO2). Such a condition is most 

frequently encountered under high Ci and low O2 partial pressures (see Figure 1), but can be 

observed under ambient O2 (Sharkey et al., 2007). Sheet 5a 5b calculate TPU as TPU = GA/3 

(Harley & Sharkey, 1991), using a selection of appropriate datapoints at the high Ci end of the A/Ci 

curve to initially derive GA. 

6. Fraction of PPFD harvested by PSII:  Valentini and Yin calibrations 

The fraction of PPFD harvested by PSII is used to calculate J, and it is derived for each 

individual plant using the data obtained under low O2 conditions (see ‘Measurements and rationale 

for different O2 levels’  above). Two calibration approaches have been proposed: the mechanistic 

approach of Yin (Yin et al., 2009, Yin et al., 2004) and the empirical approach of Valentini 

(Valentini et al., 1995).  

The Yin approach is based on the linear relationship between A and ¼ Y(II) PPFD (Eqn 1) of 

which the y-intercept, RLIGHT, was derived in Sheet 3. In Sheet 6a, the slope s is derived. s is a 

conversion coefficient lumping the fraction of PPFD harvested by PSII  with several other diff icult 

to measure quantities (Yin et al., 2004), which depend on leaf absorptance, PSII  optical cross-

section, alternative electron pathways and engagement of cyclic electron flow (Yin et al., 2009). 

Alternatively, in Sheet 6b the approach of Valentini fits an empirical linear relationship between 

Y(CO2) and Y(II):  

 

 

where Y(II) is measured directly and Y(CO2) is calculated as 
  
    

, k is the slope and b is the 

intercept of the fitted line. b represents the fraction of Y(II) not used by RPP + PCO cycles. The 

fraction of PPFD harvested by PSII (αβ) is calculated as αβ=4/k. 

In many applications following the approach described in (von Caemmerer, 2000), a calibration 

factor was derived as leaf absorptance × PSII optical cross-section, where leaf absorptance may be 

measured, and the PSII optical cross-section is generally assumed (0.45 – 0.5). Negligible 

engagement of alternative sinks and cyclic electron flow are also implicitly assumed (von 
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Caemmerer, 2000, von Caemmerer, 2013, Yin et al., 2004). These assumptions and simpli fications 

introduce uncertainties and errors, particularly if the same calibration factor is used for plants from 

contrasting treatments (light quali ty changes chloroplast orientation, drought influences leaf 

reflectance, high PPFD may result in the engagement of alternative sinks, etc.). 

7. Initial quantum yield for electron transport J (Y(J)LL) 

The initial quantum yield for electron transport (Y(J)LL) is the maximal conversion efficiency of 

PPFD into J measured under limiti ng light (‘K2LL ’  in the notation of Yin). In principle Y(J)LL could 

be derived as the initial slope of the curve describing the PPFD dependence of J (see Step 9), 

however, in line with Yin et al. (2014) and Yin et al. (2009), we found it more reliable to derive 

Y(J)LL separately. In Sheet 6a with the calibration of Yin Y(J)LL is calculated as:  

 

 

In Sheet 6b Y(II)LL is calculated using the calibration of Valentini: 

 

 

Eqn 7 and 8 are entirely based on data obtained during experimentation, and because they do not 

rely on assumptions or external parameterisation, are of general applicabil ity.  

Y(J)LL should be independent of background O2 concentration but it varies between different 

plants. In many applications following the approach of Farquhar et al. (1980) Y(J)LL is not explicit, 

but calculated as: leaf absorptance×½(1-f), where leaf absorptance may be measured, ½ is the 

assumed PSII  optical cross-section (see Step 6) and f is an empirical correction factor (0.85) (Evans, 

1987, Farquhar et al., 1980, von Caemmerer, 2000). As noted in 6, invariant values may bias 

comparative studies. 

8. Electron Transport Rate (J) 

The importance of determining J accurately cannot be overstated (Martins et al., 2013) because 

further derivations (rates of photorespiration and carboxylation, mesophyll  conductance to CO2 

diffusion see Eqn 13, 14, 18, 19) assume that J is entirely partitioned between RPP and PCO cycles, 

without accounting for any ‘overflow’  diverted to alternative sinks. There are various formulations 

for calculating J (Bellasio & Griffiths, 2014b, Valentini et al., 1995, von Caemmerer, 2000, Yin et 

 ( )  =    (  )   7 
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al., 2004). We implemented three approaches that can be selected depending on the particular 

modelli ng requirements.  

Firstly, following the approach of Yin, sheets 8, 9, 10 and 12 calculate J as:  

 

 

Alternatively, following the approach of Valentini, sheets 8, 9, 10 and 12 calculate J as: 

 

 

where parameters were previously defined.  

Although Eqn 9 and 10 inherently differ they have often been considered equivalent. Eqn 9 

compares to ‘ the potential rate of electron transport’  in the notation of Farquhar (Buckley & Adams, 

2011, Farquhar et al., 1980)], includes ‘additional PET’  [‘PETa’ in the notation of Yin et al. 

(2009)], which is the fraction of J used by RPP and PCO under limiti ng PPFD that gets diverted to 

alternative sinks under high PPFD. Conversely Eqn 10 is corrected by the parameter b, and does 

therefore not include the electron demand by alternative sinks. It is comparable with ‘ the actual rate 

of electron transport’  in the notation of Farquhar (Buckley & Adams, 2011, Farquhar et al., 1980). 

The difference is negligible under limiti ng PPFD, but, under moderate or high PPFD, the Yin 

approach tends to overestimate J as we defined it in ‘Measurements and rationale for different O2 

levels’ , and Eqn 10 is generally preferred [e.g. (Flexas et al., 2007, Flexas et al., 2006, Long & 

Bernacchi, 2003)]. Eqn 9 and 10 are underpinned by three assumptions: 1) RLIGHT does not vary 

much with light level; 2) if triose phosphate utili sation is limiting, it is entirely mirrored by 

feedback on Y(II); and 3) s, αβ and b are constant, that is, the degree of engagement of alternative 

sinks and cyclic electron flow do not vary with PPFD. Of these, in line with (Martins et al., 2013), 

we highlight how (3) is the most criti cal. In fact, deviations from linearity have been reported for 

both the Yin and Valentini approaches in C3 and C4 plants (Bellasio & Griff iths, 2014b, Gilbert et 

al., 2012). These may depend on the differential engagement of alternative sinks, or biases 

introduced by sub-saturating flash intensities (Harbinson, 2013). Further, we add that any vertical 

difference in Y(II)  quenching down the leaf profile, caused either by changes in light intensity 

(Terashima et al., 2009) or light quali ty (Bellasio & Griffiths, 2014c) will  similarly affect linearity 

[C.B. unpublished analysis from (Bellasio & Griffiths, 2014c) data]. 

Both the Valentini calibration (Gilbert et al., 2012) and the Yin calibration (Bellasio & Griffiths, 

2014b) were modified to account for non-linearity, and here we implemented the simple approach 
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presented by Bellasio (Bellasio & Griffiths, 2014a, Bellasio & Griff iths, 2014b) in the 

experimentally validated C3 version (Bellasio et al., 2014). sheets 8, 9, 10, and 12 calculate J for 

each point of the light and A/Ci curve as:  

 

 

where Y(II)AMB and Y(II)LOW are the values of Y(II) measured under ambient and low O2, 

respectively. Eqn 11 relies on assumptions (1) and (2), but not on (3) and it can therefore be used 

flexibly, however, Eqn 11 is experimentally more demanding than Eqn 9 and 10 in terms of 

precision of Y(II) (experimental noise is not statistically smoothed), and the number of required 

datapoints (the PPFD and CO2 levels need to be symmetrical under low and ambient O2). 

9. PPFD dependence of J 

The process of photosynthetic electron transport is driven by light and displays a saturating 

response to increasing PPFD. Although some of the processes responsible for the saturation 

kinetics are known (e.g. non photochemical quenching), the light dependence of J is generally 

described empirically by a non-rectangular hyperbola analogous to Eqn 2 (Farquhar & Wong, 

1984), implemented in Sheet 9:  

 

 

Eqn 12 describes the relationship between JMOD and PPFD in terms of JSAT, Y(J)LL and θ. JSAT 

(JMAX in the notation of Farquhar) represents the value of J under infinite PPFD and defines the 

horizontal asymptote (JMOD=JSAT). Y(J)LL represents the initial (and maximal) quantum yield for 

electron transport, defining the inclined asymptote (JMOD= Y(J)LL PPFD). θ is an empirical factor 

(0≤ θ ≤1) defining the curvature. To facilit ate the physiological interpretation of θ, Sheet 9 

calculates the PPFD which half saturates JMOD (PPFD50) in analogy to a kinetic parameter K1/2. 

With Y(J)LL found in Step 7, JSAT and θ are derived in Sheet 9 by fitting JMOD (Eqn 12) to empirical 

values of J (Eqn 9, 10 or 11) calculated at each PPFD. This operation is limited to ambient O2, 

because under low O2, by assuming non-photorespiratory conditions, JMOD = 4 GAMOD, Y(J)LL ≈ 4 

Y(CO2)LL, JSAT ≈ 4 GASAT (quantities derived in Sheet 4b).  

Y(J)LL, JSAT and θ are commonly used in predictive modelli ng to estimate J under a given PPFD. 

Buckley and Diaz-Espejo (2014) recently highlighted the differences between JSAT and the value of 
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J derived in the Sharkey fitting tool (Sharkey et al., 2007). While JSAT is mathematically 

extrapolated to infinite PPFD, J (Sharkey) is a CO2-saturated value found under a particular PPFD 

used for the data collection (e.g. 1500 μmol m-2 s-1, for comparison J values appear in Sheet 10). 

JSAT is particularly suitable for predictive purposes which relate to a specific CO2 concentration 

(e.g. ambient CO2), although, in principle, JSAT should be independent of CO2 concentration 

(Farquhar et al., 1980). In addition JSAT does not mathematically bias predictive models unlike when 

values of J derived under a finite PPFD level are used (Buckley & Diaz-Espejo, 2014). 

10. Photorespiratory CO2 release (F), Rubisco rate of Carboxylation (VC) and Oxygenation (VO) 

VO and VC cannot be measured directly, but can be resolved from J and GA under the assumption 

that NADPH is entirely used by the RPP and PCO cycles. Knowing that: 1) the RPP cycle requires 

2 NADPH per each Rubisco carboxylase event; 2) the PCO cycle requires 2 NADPH per each 

oxygenase event [1 NADPH for the reduction of the PGA directly produced by Rubisco, 0.5 

NADPH to recycle glycolate and 0.5 NADPH to reduce the PGA regenerated (Bellasio et al., 2014, 

Bellasio & Griff iths, 2014c, von Caemmerer, 2000)]; and 3) two electrons are carried per NADPH, 

Sheet 10 calculates VO as [for derivation see Bellasio et al. (2014)]:  

 

 

Where J can be derived alternatively with Eqn 9, 10 or 11. Sheet 10 calculates VC from the leaf 

mass balance as: 

 

 

And the rate of photorespiratory CO2 release, or photorespiration rate (F) as  = ½  . 

Sheet 10 calculates Eqn 13 and 14 for each point of the light and A/Ci curves under ambient O2. 

Under low O2, by assuming non-photorespiratory conditions, VO and F are zero and VC=GA. 

Since the NADPH requirements and the overall  CO2 mass balance are the same for all  pathways 

of carbon assimilation (Bellasio et al., 2014, von Caemmerer, 2013), Eqn 13 and 14 are universally 

valid and can be used to screen disrupted or manipulated photosynthetic phenotypes (see 

‘ Intermediate and Engineered assimilatory pathways’ , below). Regarding experimental conditions, 

it is appropriate to limit  the application of Eqn 13 and 14 within a valid range of s or αβ, however, if 

VO, VC, and F are desired for different conditions (e.g. lower temperature) s or αβ can be 

recalibrated with a point-measurement under low O2 (Bellasio et al., 2014).  

  = 1
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11. Rubisco specificity factor SC/O 

Rubisco specificity combines the maximum reaction rates and the affinity for the substrates CO2 

and O2, and it is defined as [Eqn A3 in (von Caemmerer, 2013)]: 

 

 

Where VOMAX is the O2-saturated oxygenation rate, KC is the Michaelis-Menten constant for 

carboxylation, VCMAX is the CO2-saturated carboxylation rate and KO is the Michaelis-Menten 

constant for oxygenation. SC/O was suggested to vary across species [e.g. (Delgado et al., 1995, 

Parry et al., 1989)] and environmental conditions (Galmés et al., 2005) but some variation may be 

associated with methodological approaches. Accuracy of SC/O is criti cal because of the sensitivity of 

gM to SC/O. SC/O is often measured in vitro [e.g. Cousins et al. (2010)], conditions which are 

somewhat idealised and may differ from those at leaf-level (von Caemmerer, 2000). In vitro SC/O 

values are available only for a limited number of species, and since a rapid determination would 

benefit high throughput genotype screening (Carmo-Silva et al., 2014), estimating SC/O from gas 

exchange measurements is highly desirable. 

SC/O can be calculated from Γ* (the Cc‒GA compensation point) as   / =
 
  ∗

 (where O is O2 

concentration at the carboxylating sites), however, the derivation of Γ* requires gM, which is still 

unknown at this step (see Table 1). In the work of Laisk (1977), described in Step 2, infinite gM was 

assumed and Γ* was calculated as Γ*=Ci*. Although under this assumption SC/O can be slightly 

misestimated (Gu & Sun, 2014), Galmés et al. (2006) confirmed the general validity of method: the 

SC/O estimates compared well  with in vitro measurements in control plants and under mild stress (c. 

5% difference). 

The method of Yin et al. (2009) addresses the shortcomings of the Laisk method by deriving an 

actual CC-based SC/O without requiring gM, and has the additional benefit of being less susceptible to 

CO2 diffusion (see supporting information Note 1 and 2). We implemented a non-linear upgrade of 

the Yin method in Sheet 11: assimilation is modelled under ambient O2, AAMB as a function of 

assimilation measured under low O2, ALOW, as: 
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Where CEAMB and CELOW are the initial slopes of the A/Ci curves under ambient and low O2 

determined non-linearly in Step 5. OAMB and OLOW are the ambient and low O2 concentration at the 

site of carboxylation. With RLIGHT estimated previously, ALOW, CiLOW (Ci values measured under 

low O2), and CiAMB (Ci value measured under ambient O2) measured by gas exchange, Sheet 11 

finds SC/O by fitting AAMB to A.  

Bearing in mind that Galmés et al. (2006) reported major errors in estimating SC/O from severely 

stressed plants and in line with the recommendations of Yin et al. (2009), it is appropriate to 

estimate SC/O on an adequate number of control (or healthy) plants and then average across them to 

retrieve a single estimate of SC/O which may then be used in subsequent modelli ng steps. Note that 

the EFT allows values of SC/O to be overwritten (see instructions in the EFT), so that in vitro values 

can be added if preferred. 

For comparison, the original linear method of Yin et al. (2009) (CEAMB CELOW are determined 

by linear fitting to the initial portion of A/Ci curves), is implemented as an additional feature in 

Sheet 11 (but see the shortcomings highlighted in Step 5). Further, in the additional features of 

Sheet 5a, SC/O is calculated using the Laisk approach, using the non-linear Ci* values from step 5. 

12. Mesophyll  conductance to CO2 diffusion (gM) 

Photosynthetic CO2 fixation (A), results in the depletion of [CO2] in the vicinity of Rubisco 

located in the chloroplast stroma, thus driving a CO2 concentration gradient between the 

substomatal cavity and carboxylating sites Ci-CC (Evans et al., 2009, Evans & Loreto, 2000, Evans 

& von Caemmerer, 1996, Parkhurst & Mott, 1990). The diffusion path comprises the intercellular 

air spaces, the liquid phase, the cell  walls, the plasmalemma, the cytosol, the chloroplast envelope 

and finally the stroma (Tholen et al., 2012b, Tholen & Zhu, 2011). The overall  abili ty to conduct 

CO2 through this path is mathematically expressed as the mesophyll  conductance:  

 

 

Despite the complexity of CO2 diffusion, for simplicity, early reports assumed infinite gM 

(Farquhar et al., 1980), but it is clear that gM has a finite value and co-limits A together with 

stomatal conductance over a wide range of environmental conditions (Flexas et al., 2012, Flexas et 

al., 2009, Niinemets et al., 2009a, Niinemets et al., 2009b). gM depends on anatomical traits, such 

as cell  wall  thickness, chloroplast distribution, surface area of cells (Terashima et al., 2011), and 

biochemical traits, such as the activity of carbonic anhydrases or aquaporins (Heckwolf  et al., 

2011). In addition, environmental factors, such as CO2 concentration, temperature, PPFD, nutrient 

availabili ty and stress (Flexas et al., 2012) are known to affect gM. Remarkably, gM (as defined 
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above and expressed by Eqn 17) is a flux-weighted quantity and depends on VO/VC: an increased 

rate of photorespiration lowers gM even if the physical resistances in the diffusion pathway do not 

change (Tholen et al., 2014, Tholen et al., 2012b). We distinguish two types of variabili ty which are 

relevant for data analysis: a component of gM which does not change during the gas exchange 

experiment (e.g. as affected by N level), and a component of gM which does change during the gas 

exchange experiment [e.g. as affected by VO/VC; for recent review see (Flexas et al., 2008, Tholen et 

al., 2012b, Warren, 2006)]. 

Detecting short-term variations requires that gM be resolved for each datapoint (hereafter defined 

as the point approach). The theoretical framework has been described by (Harley et al., 1992): if 

SC/O is known, CC can be calculated from VO/VC as   =
 

  /      
 (where     =

      
      ), then gM is resolved 

by Eqn 17, or, in the equivalent notation of (Harley et al., 1992): 

 

 

 

Sheet 12 calculates Eqn 18 for each light-limited datapoint. Because experimental noise (Evans, 

2009, Gilbert et al., 2012, Gu & Sun, 2014, Pons et al., 2009) and true gM variabili ty may co-occur, 

Eqn 18 often yields unrealistic gM values, which have to be filtered out using arbitrary criteria 

(Harley et al., 1992, Martins et al., 2013). Furthermore, systematic patterns of gM variation and 

biases are generated solely as a consequence of error in the estimation of input parameters (Gilbert 

et al., 2012, Gu & Sun, 2014). As a result, the magnitude of true gM variabili ty is still  debated and a 

conclusive theoretical interpretation remains lacking (Buckley & Warren, 2014, Gu & Sun, 2014, 

Tholen et al., 2012b). For these reasons, it is probably not appropriate to study the instantaneous 

response of gM through Eqn 18, while it is more productive to limit  the use of gas exchange-

fluorescence data to resolving long term effects (Gu & Sun, 2014).  

Long-term effects on gM (e.g. the influence of anatomical and stable biochemical traits) are not 

affected by the gas exchange routine, and can be resolved by averaging gM over the course of the 

experiment. The availabili ty of values of J for all  datapoints allows the variable J method (Harley et 

al., 1992), to be used in Sheet 12, including a recent refinement by (Yin et al., 2009). We adopted 

the special case where gM is constant for the duration of gas exchange measurements (δ=0 in Yin’s 

notation), Eqn 12 in Yin et al. (2009), simpli fies to the equation derived by von Caemmerer and 

Evans (1991), see Eqn A23 in von Caemmerer (2013): 
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Eqn 19 models A with Ci measured by gas exchange, Γ* derived from SC/O (Step 11), J 

calculated with either Eqn 9, 10 or 11 (Step 8) and RLIGHT estimated in Step 2. Sheet 12 finds gM by 

iteratively fitting AJ to A. In this way the experimental noise is statistically smoothed without losing 

information and a wide portion of the dataset can be included in the curve-fitting. In selecting the 

points to include in the fitting procedure it has to be noted that Eqn 19 is valid whenever J mirrors 

the reducing power demand for RPP + PCO cycles, that is, whenever VO and VC fully feedback on 

Y(II). This condition is generally satisfied (even under low Ci, see the plot of Y(II) / Y(CO2) in Sheet 

6b, and when TPU regeneration is limiti ng photosynthesis, see Figure 1 and the example below). 

Although it is not advisable to fit low Ci data (Gilbert et al., 2012, Gu & Sun, 2014), points 

spanning ambient Ca, and light-curve data, may be fitted (Yin et al., 2009, Yin & Struik, 2009b). 

These datapoints are less prone to the issue of CO2 diffusion in small  IRGA chambers (see 

Supporting information Note 1) and will  improve the reliabili ty of the gM estimate. The selection of 

the fitted data will  influence gM, because, as noted above, gM changes continuously between 

datapoints, and it is therefore criti cal to maintain consistency in experimental conditions (PPFD and 

Ca) and determine cut-off points beforehand in a pilot experiment.  

The values of gM found with this procedure may highlight manipulated leaf anatomy or disrupted 

photosynthetic phenotypes and will  be useful to parameterise updated predictive models which take 

into account this important physiological trait (Sun et al., 2014b). 

13. Rubisco kinetics – In vivo maximum carboxylation rate (VCMAX) amd in vivo effective 

Michaelis-Menten constant for CO2 [KC(1+O/KO)] 

A model to interpret leaf-level assimilation was initially developed by Farquhar et al. (1980), 

referred to as the FvCB model, and has since been refined (Ethier & Livingston, 2004, Gu et al., 

2010, von Caemmerer, 2013). Briefly, the FvCB is a mechanistic model based on the in vitro 

kinetics of fully-activated, RuBP-saturated Rubisco described in O2-free media by a Michaelis-

Menten type saturating response. Leaf-level processes are then incorporated (Ethier & Livingston, 

2004). These include firstly, the competitive inhibition of O2 on Rubisco catalytic activity, which 

increases the apparent Rubisco KM; secondly, photorespiratory and respiratory CO2 release, which 

introduce a finite compensation point; and finally, the effect of a finite gM, which further changes 

the shape of the modelled function. The effect of limiti ng RuBP supply manifests at a threshold CC 

value above which the equations for Rubisco-limited photosynthesis are no longer valid. RuBP-
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limited (and, at higher Ci, also TPU-limited) datapoints are therefore excluded from this fitting by 

assigning a limitation > ‘2’  [see Step 1, and Gu et al. (2010)].  

Although all  curve-fitting approaches from the li terature use the FvCB model, several 

simpli fications and assumptions are unavoidable due to the limited information available for 

individual plants. Of the complete FvCB model, as formulated by Ethier and Livingston, the only 

unknown parameters yet to derive by the EFT are VCMAX and KC(1+O/KO), which can be fitted 

concurrently in Step 13. As compared to traditional curve-fitting, this approach uses 1) the gM value 

derived in Step 12, thereby eliminating a source of VCMAX underestimation; 2) fits KC(1+O/KO) for 

each individual plant; and 3) does not rely on literature values for Γ*, instead using the value for 

Ci‒A compensation point (Γ) empirically derived in Step 5, resulting in a better fit between A and 

AC (Gu et al., 2010). This approach has several benefits. Firstly, differences in photosynthetic 

capacity between plants are not uniquely attributed to differences in VCMAX: leaves operating at the 

same Ci can achieve different A with different gM or KC(1+O/KO). Secondly, this method is less 

susceptible to errors introduced by treatments affecting gM or KC(1+O/KO) [e.g. stress (Ethier & 

Livingston, 2004)], and is therefore better for resolving effects on Rubisco enzymatic activity (Sun 

et al., 2014a). In Sheet 13, A is expressed as a function of Ci (Ethier & Livingston, 2004) as: 

 

Eqn 20 is a non-rectangular hyperbola parameterised to gM, VCMAX, RLIGHT, KC(1+O/KO) and Γ. 

VCMAX represents the horizontal asymptote (GA=VCMAX); KC(1+O/KO) defines the curvature and 

corresponds to the CO2 concentration which half saturates GA; while Γ is the Ci‒A compensation 

point. With Ci measured by gas exchange, RLIGHT, Γ, and gM derived in Sheet 5a), 3, and 12 

respectively, VCMAX, and KC(1+O/KO) are found by fitting AC to A. Methodological alternatives 

include the possibili ty of concurrently fitting gM [similarly to the tool of Sharkey et al. (2007)], 

and/or Γ, and/or, if preferred, using literature values for KC(1+O/KO) (see instructions in Sheet 13 

and video tutorial).  

In addition to fitting Eqn 20 to ambient O2 A/Ci data (Sheet 13a), we propose Eqn 20 to be fitted 

to low O2 A/Ci data (Sheet 13b). This procedure provides an independent estimate for VCMAX, and 

KC(1+O/KO), and can potentially ameliorate accuracy. These two estimates for VCMAX can be 

reconciled in additional features of Sheet 13b (VCMAX depends solely upon Rubisco characteristics 

and should not be affected by O2 level) where a single VCMAX value can be derived by concurrent 

fitting to ambient and low O2 A/Ci data. KC and KO can be varied or set to literature values. 

  =
− + √  − 4  

2  

 

where  = −  
  ;  =

(            )

  +   +    1 +
 
   ;  = −

(            )

    . 

20 



21 
 

VCMAX, and KC(1+O/KO) can parameterise modern predictive models, but mathematical 

consistency has to be maintained: if predictive models implement an old formulation of the FvCB 

model (which for instance does not account for gM), VCMAX, and KC(1+O/KO) have to be derived 

with a consistent set of equations. Further, here we have assumed that all  datapoints assigned the 

limitation ‘1’  and ‘2’  are actually Rubisco-limited. If a more sophisticated selection of the cut-off 

point is desired, the routine of (Gu et al., 2010) can be followed, perhaps inputting gM, RLIGHT and 

Γ* derived from our EFT. Finally, consistency in the experimental routine between different plants 

is criti cal because too many low Ci levels and/or a slow acclimation routine can contribute to 

Rubisco inactivation, resulting in a linearization of the initial part of the A/Ci curve, and artefacts in 

deriving VCMAX and KC(1+O/KO) (Ethier & Livingston, 2004). 

Adjusting for temperature  

Fitted parameters strongly depend on temperature and are generally adjusted using empirical 

exponential functions [e.g.Sharkey et al. (2007)]. Here, because the EFT is self-contained, there is 

no need to reciprocally adjust parameters for temperature. However, if parameters are to be 

compared to fitted values measured at different temperatures, then temperature-adjustment should 

be undertaken (Bernacchi et al., 2003, Bernacchi et al., 2002, Bernacchi et al., 2001, June et al., 

2004, Scafaro et al., 2011, Yamori & von Caemmerer, 2009).  

Partial datasets and use of the EFT 

If datasets are incomplete due to unavoidable constraints on the original experimental design, or 

if re-analysing existing datasets, it is still  possible to use the EFT to derive a more limited number 

of parameters. Individual spreadsheets are generall y self-contained and all  automatically populated 

data, placed in cells with a light background, can be overwritten. It is suggested that the minimum 

requirements listed in Table 2 are met, and to ensure that all  datapoints and parameters used in the 

calculations are available. If some values are taken from the literature, consistency with the dataset 

should be checked. Individual sheets may be copied and used separately for convenience.  

Intermediate and Engineered assimilatory pathways 

Concerns for global warming and increasing human population have directed considerable effort 

towards improving plant photosynthetic eff iciency. The possible improvement strategies (Singh et 

al., 2014, Zhu et al., 2010) together with the most relevant indicators for detecting variabili ty 

through the EFT can be summarised as follows:  

Carbon assimilation 

Rubisco CO2 fixation capacity and CO2/O2 specificity (Carmo-Silva et al., 2014) are targets for 

improvement in a C3 plant, and the EFT can be used to mechanistically derive Rubisco 
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specificity SC/O (or Γ* ), and Rubisco affinity KC(1+O/KO) in sheets 11 and 13. These C3 

mechanistic models cannot be used when the goal is to modify the CO2/O2 ratio at the 

carboxylation sites by introducing an active biochemical or biophysical carbon concentrating 

mechanism (CCM), and any associated anatomical modifications (Kajala et al., 2011, Maurino 

& Weber, 2013, Meyer & Griffiths, 2013). In fact, assessing the efficiency of a CCM involves 

screening populations of C3-C4 hybrids, C2-cycle variants, C3 plants (or algae) displaying 

intermediate C4 traits, or C4 mutants lacking a fully functional CCM. In this case, data analysis 

cannot assume ‘C3ness’  and sheets 11, 12 and 13, cannot be used. However, empirical modelli ng 

and J values are valid (sheets 1 – 10), as the NADPH demand is the same for all  pathways of 

assimilation. CE will  promptly detect different relative affinities for CO2 or activities of Rubisco 

and/or PEPC. Ci50 is often used as an apparent in vivo indicator of affinity for CO2 analogous to 

K1/2 [for instance, to follow CCM induction in aquatic photosynthesis (Mitchell  et al., 2014)]. 

CO2/O2 specificity correlates with Ci* , which, because it is independent of the dynamics of 

RLIGHT (Bellasio & Griff iths, 2014a, Gandin et al., 2014), is more appropriate to follow than Γ. 

VO/VC shows the final effect of the CCM on photorespiratory suppression (Bellasio et al., 2014). 

If VO/VC calculated with the EFT is to be compared to VO/VC calculated with a conventional C4 or 

C3-C4 model, note that limiting NADPH is assumed via the EFT, whilst limiti ng ATP is often 

assumed for C4 and C3-C4 photosynthesis (Bellasio & Griffiths, 2014c, von Caemmerer, 2000, 

Yin et al., 2011b). 

CO2 recapture  

The reciprocal position of mitochondria and chloroplasts have been targeted to increase 

photorespiration recapture (Busch et al., 2013). The quantities of interest in this case are VO/VC 

and Ci*  for the reasons highlighted above. 

Photochemistry  

Optimisation strategies include reducing the fraction of light harvested by PSII  in the upper 

layers of chloroplasts or leaves of a canopy (Tholen et al., 2012a), and can be investigated using 

the EFT through s or αβ, the overall  fraction of light harvested by PSII. Stress events affecting 

the electron transport chain can be followed through the quantities JSAT and PPFD50, which 

describe the PPFD dependence of J. Permanent PSII  inhibition will  influence Y(II)LL. Y(J)LL and 

Y(CO2)LL aggregate the effect of s or αβ and Y(II)LL.  

CO2 diffusion 

Optimisation strategies include facilit ating CO2 penetration in the chloroplast to increase CC/Ci. 

The most significant quantity to follow is gM, the derivation of which using the EFT is valid only 

for C3 plants.  
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Shade tolerance 

Optimisation strategies may act on plant acclimation plasticity or modify permanent traits 

(adaptation) with the final goal of improving eff iciency of the considerable fraction of crop 

photosynthesis carried out in the shade (Bellasio & Griff iths, 2014a, Bellasio & Griffiths, 2014b, 

Craine & Reich, 2005, Sage, 2013). The most significant quantities to follow are LCP and 

RLIGHT. 

Induction of CAM metabolism 

Some of the EFT features have proved useful for studying CAM metabolism (Jamie Males, 

personal communication). Sheets 1-13 are fully functional during phase IV (late afternoon CO2 

fixation) when CAM plants are functioning as C3. Under these conditions αβ or s could be 

calibrated and then used to resolve C3 and CAM contributions to CO2 fixation in other CAM 

phases, for instance by inputting Y(II) and a set of simulated Ci values (Owen & Griff iths, 2013) 

to Eqn 19 (Sheet 12). 

Worked example applying the EFT to primary data from Nicotiana tabacum L. 

Tobacco plants were grown in controlled environment growth rooms (BDR 16, Conviron Ltd, 

Winnipeg, Canada) set at 14h day length, PPFD = 350 μmol m-2 s-1, temperature of 27 °C / 18 °C 

(day / night), 70 % relative humidity. Plants were manually watered daily, with particular care to 

avoid overwatering. Four photosynthetic response curves (an A/Ci and a light-curve under ambient 

and low O2) were measured on n=4 plants with an infra-red gas analyser (IRGA, LI6400XT, LI-

COR, USA), fitted with a 6400-40 leaf chamber fluorometer, details are reported in Supporting 

Information Note 2. Primary data were corrected for CO2 diffusion through the gaskets (Boesgaard 

et al., 2013) as: 

 

Where Photo is the uncorrected assimilation as calculated by the LI-COR software, 400 is the 

external CO2 concentration, Ca is the CO2 concentration in the cuvette (CO2S in the LI-COR 

notation) and Area is the leaf area (2 cm2 in this example). Ci was recalculated using the LI-COR 

equations inputting A calculated with Eqn 21. Diffusion-corrected data are shown in Figure 1 

(individual values are reported in Supporting Information). Under high PPFD, A was lower under 

ambient O2 (closed symbols) than under low O2 (open symbols) because of the operating PCO 

cycle. Under low O2, Y(II) was slightly lower (dotted line) reflecting lower reducing power demand 

 =  ℎ   +
0.46 (400−   )

100     
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(Figure 1A). Under low Ci, A was higher under low O2 (open symbols) than under ambient O2 

(closed symbols) because of O2 competitive inhibition of Rubisco. Under high Ci, A was unaffected 

by CO2 concentration and slightly higher under ambient O2, suggesting that assimilation was TPU-

limited. Under these conditions Y(II) was slightly lower under low O2 (dotted line) for the lower 

reducing power demand (Figure 1B), showing a tight feedback on Y(II) even under TPU limitation. 

Data were analysed using the 13-step approach of the EFT, summarised below. Rather than 

providing a recipe for data analysis we aimed at showing some of the numerous available 

alternatives, the choice of which may vary depending on the experimental requirements.  

1. Thresholds used to assign datapoints to limited regions of the response curves (entered as 1, 2) or 

regions of saturating inputs (3) were, for light-curves: ‘1’ PPFD ≤ 100 μmol m-2 s-1; ‘2’ PPFD 

=150 and PPFD = 200 μmol m-2 s-1; ‘3’ PPFD ≥ 500 μmol m-2 s-1. For A/Ci curves: ‘1’ Ci ≤ 100 

μmol mol-1; ‘2’  100 < Ci < 260 μmol mol-1; ‘3’ Ci ≥ 260 μmol mol-1 

2. RLIGHT was derived under ambient and low O2 using linear regressions (Eqn 1), values did not 

substantially differ from RDARK which may be added to the regressions to increase constraint. RLIGHT 

derived with the BF method (under high PPFD) was slightly lower than RDARK, but note that the BF 

method is subject the effect of CO2 diffusion (see Supporting Information Note 1). 

3. Y(II)LL did not vary between plants. For comparison, we present the results of linear, exponential 

and quadratic regressions. The quadratic regression yielded slightly higher Y(II)LL especially under 

low O2 with a better fit (c. 1.000 vs c. 0.999), and may be considered in further studies, however in 

the following steps for consistency with Yin et al. (2014) we used the linear Y(II)LL. 

4. GA was calculated under ambient and low O2 using the values of RLIGHT derived in Step 2. The 

PPFD dependence of GA was modelled and GASAT, PPFD50 and Y(CO2)LL were derived by non-

linear curve-fitting. The LCP was higher under ambient O2 reflecting the additional light 

requirements for operating the PCO cycle. GASAT was higher under low O2 because of the 

additional ATP and NADPH availabili ty for CO2 assimilation. Y(CO2)LL was higher under low O2 

reflecting the higher conversion efficiency of light into fixed CO2, the alternative liner fitting of 

(Yin et al., 2014) yielded similar Y(CO2)LL; a lower PPFD50 under low O2 reflected a steeper light-

curve.  

5. The Ci dependence of A was modelled under ambient and low O2 and CE, ASAT, Ci50 and Γ were 

derived by non-linear curve-fitting. Residuals were log-transformed to correct for proportionali ty 

between residuals and A, thus providing a better fit in the low Ci region of the modelled curve. CE 

was higher under low O2, reflecting the slope of the A/Ci curve. Ci50 was lower under low O2 

reflecting a faster saturation. Ci* was calculated from the fitted curve using RLIGHT derived in Step 2 

under ambient or low O2 respectively. LS was assessed from the fitted curve. TPU was calculated 

from the last datapoint of A/Ci curves under ambient and low O2. 

6a. The Yin calibration was performed with standard settings. 
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6b. The Valentini calibration was performed using RLIGHT estimated in Step 2 and pooling all 

datapoints measured under low O2. The parameter, b, which is responsible for differences between 

the Valentini and Yin J values at high PPFD (see 9), was substantially different from 0.  

7. Y(J)LL did not vary between O2 levels or the calibration approach, in good agreement with 

theoretical considerations (Farquhar et al., 1980), however, it did differ from the generally assumed 

value of 0.361 [0.85×½×0.85 (von Caemmerer, 2000)], confirming the importance calibrating each 

leaf. 

8. J was calculated with Eqn 9, 10 and 11 (individual values not shown in Table 3). 

9. The PPFD response of J was modelled to derive JSAT, θ and PPFD50. The three approaches gave 

different results: the Yin calibration resulted in the highest JSAT and PPFD50 while the Bellasio and 

Valentini calibration yielded lower values, as theoretically expected (see Step 8 above). 

10. All  quantities associated with Rubisco rate of carboxylation and oxygenation were calculated 

for each datapoint using three approaches to calculating J (individual values not shown in Table 3). 

11. SC/O was derived in Sheet 11 with the (suggested) non-linear variant of the method of Yin 

described above, using the fitted value for RLIGHT and the non-linear estimates of CE derived under 

ambient and low O2 in Sheet 5. Residuals were log-transformed to correct for proportionali ty 

between residuals and A. SC/O was averaged, the average value was in good agreement with 

published values (Ethier & Livingston, 2004, von Caemmerer, 2000) and was used in steps 12 and 

13. For comparison SC/O was derived with the original method of Yin, using linear estimates for CE 

(shown in additional features of Sheet 11). Because, under ambient O2, the linear fit gave slightly 

lower CE,  SC/O was slightly overestimated (Table 3). For additional comparison, SC/O was derived 

as   / =
 .  

  
∗  (Laisk), which tends to overestimate SC/O for the reasons previously described.  

12. gM was determined by fitting data pooled from the light limited region of the light and A/Ci 

curves, using RLIGHT derived under ambient O2 in Sheet 2, J calculated with the three approaches 

described in Step 8, and the average value of SC/O found in 11. Overall gM values are in line with 

literature reports (Flexas et al., 2012), however, the calibration of Yin resulted in a lower gM and R2 

li kely for the theoretical reasons highlighted in Step 8. 

13. VCMAX and KC(1+O/KO) were estimated by fitting Eqn 20 to ambient O2 A/Ci curves, using 

RLIGHT, and Γ derived in Step 2 and 5a respectively, and gM derived in Step 12 using three different 

calculations of J. The higher gM values obtained with the Bellasio calibration yielded KC(1+O/KO) 

estimates similar to those of Ethier and Livingston (2004), whereas the lower gM values obtained 

with the Yin calibration prevented to fit KC(1+O/KO). In addition, VCMAX and KC(1+O/KO) were 

estimated from low O2 A/Ci curves, with RLIGHT and Γ derived under low O2 in Step 2 and 5b 

respectively. Under low O2 KC(1+O/KO) values differed from the expected (c. 350 μmol mol-1), 

could not be fitted with the Yin estimates for gM and reflected on VCMAX values. When the values 
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for KC(1+O/KO) appear not to be physiologically realistic (in this example under low O2 and under 

ambient O2 when gM is lower than 0.3) it is probably appropriate to constrain KC(1+O/KO) with a 

literature value (see instructions in Sheet 13). As an additional feature, VCMAX was fitted 

concurrently to ambient and low O2 A/Ci curves after constraining KC(1+O/KO) with values from 

Ethier and Livingston (2004). This simple and reliable procedure (C.V. was as low as 9 %) may be 

highly valuable for future studies. 

Conclusion 

Using combined fluorescence-A/Ci and fluorescence-light-response curves, measured under 

ambient and low O2, the Excel-based fitting tool (EFT) can be used to derive a comprehensive suite 

of physiological parameters. The EFT uses step-by-step logic to derive parameters, which are then 

used in the following steps, thus avoiding many of the uncertainties associated with the 

conventional A/Ci fitting and concurrent multimodel applications. All  steps are implemented in a 

freely downloadable Excel workbook that is easily modified by the user. The derived parameters 

summarise the physiological traits of the plant(s) measured and can be used to compare different 

plants or to parameterise predictive models. Overall , the EFT integrates the latest developments in 

the theory of gas exchange, fluorescence and mesophyll  limitations, and provides advanced 

analytical outputs. This allows both specialist and non-specialist researchers to apply EFT outputs 

when screening plant populations for phenotypic or genotypic impacts upon photosynthetic 

operating efficiencies, or the complete parameterisation of modern predictive models. 
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Figures. 

Figure 1. Example of primary data obtained on tobacco plants. Panel A: light-response curves. 

Symbols show the response of A to decreasing PPFD measured under ambient O2 (closed circles) 

or 2% O2 (open circles). Lines show the response of Y(II) under ambient O2 (solid line) or 2% O2 

(dotted line). Mean ± SE. Panel B: A/Ci response curves. Symbols show mean A ± SE plotted 

against mean Ci ± SE measured under ambient O2 (closed circles) or 2% O2 (open circles). Lines 

show mean Y(II) ± SE for the same datapoints. n=4. 
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Tables. 

Table 1. Acronyms, definitions, variables, and units used. 

Symbol Definition Values /  Units /  References 
   
A, ALOW Measured net assimilation, unspecified or under low O2 respectively μmol m-2 s-1 
AMOD, AAMB, AJ, 
AC 

Net assimilation under ambient O2 modelled through Eqn 4, 16, 19, and 20 respectively μmol m-2 s-1 

ASAT CO2 saturated A, under the PPFD of the A/Ci curves μmol m-2 s-1 
b y-intercept of the linear fit of Y(II) against Y(CO2), it represent the fraction of Y(II) not used for RPP + PCO cycles, i.e. the fraction 

of Y(II) used by alternative electron sinks 
dimensionless (Valentini et al., 
1995) 

Ca CO2 concentration in the cuvette as measured by the IRGA μmol mol-1 
CC CO2 concentration at the site of Rubisco carboxylation     =     − 

  
  

 μmol mol-1 

CCM Carbon Concentrating Mechanism  
CEAMB, CELOW Initial slope of the A/Ci curve under ambient O2, or low O2 respectively mol m-2 s-1 
Ci*  Ci‒GA compensation point, i.e. Ci in which GA=0    

∗ =  Γ∗ −       

  
  μmol mol-1 [Eqn 2.41 in (von 

Caemmerer, 2000)] 

Ci, CiAMB, CiLOW CO2 concentration in the substomatal cavity as calculated by the IRGA, unspecified, under ambient or low O2 respectively μmol mol-1 (Eqn 1-18 in the Li-
COR 6400 manual) 

Ci50 Ci which half-saturates A  
EFT Excel based Fitting Tool  
F Photorespiration rate, or rate of photorespiratory CO2 evolution  = 0.5 ∙      μmol m-2 s-1 
F Chlorophyll a fluorescence signal (corresponding to fluorescence yield because normalized to measuring light) μmol m-2 s-1 
FV/FM Y(II) measured on dark adapted leaves dimensionless 
GA Gross assimilation    =   +        . GA represents the net biochemical CO2 uptake GA=VC-F  μmol m-2 s-1 
GAMOD Gross assimilation under ambient or low O2 modelled through Eqn 3 μmol m-2 s-1 
GASAT Light-saturated GA, under the CO2 concentration of light-curves μmol m-2 s-1 
gM Mesophyll conductance to CO2 mol m-2 s-1 
IRGA Infra-Red Gas Analyser  
J Electron transport rate delivered to NADP+ and used by the RPP and PCO cycles μmol m-2 s-1 
JSAT Light-saturated Electron transport rate under the CO2 concentration of light-curves, JMAX in the notation of Farquhar μmol m-2 s-1 
k Slope of the linear fit of Y(II) against Y(CO2) dimensionless (Valentini et al., 

1995) 
KC Rubisco Michaelis-Menten constant for CO2 μmol mol-1 
KC(1+O/KO) Rubisco Michaelis-Menten constant for CO2 in the presence of O2 competitive inhibition, without respiratory and 

photorespiratory CO2 release 
μmol mol-1  

KO Rubisco Michaelis-Menten constant for O2 μbar 
LCP PPFD‒A compensation point, i.e. PPFD when A=0. At the LCP the rate of Rubisco carboxylation equals the rate of respiration + 

photorespiratory CO2 release (VC=RLIGHT+F). In non-photorespiratory conditions, when VC=RLIGHT, the LCP is lower. 

μmol m-2 s-1 

LS Stomatal limitation to photosynthesis dimensionless 
m Curvature of the non-rectangular hyperbola fitted to describe the PPFD dependence of GA dimensionless 
O, OAMB, OLOW O2 concentration in mesophyll cells (in air at equilibrium): unspecified, under ambient or low O2 respectively OH 210000 μmol mol-1 OL 20000 

μmol mol-1 
PCO Photosynthetic Carbon Oxygenation (cycle)  
PGA 3-phosphoglyceric acid  
PPFD Photosynthetic Photon Flux Density μmol m-2 s-1 
PPFD50 PPFD which half saturates either GA or J μmol m-2 s-1 
PSII Photosystem II  
QA Primary quinone acceptor of PSII  
RDARK Dark respiration  RDARK >0 μmol m-2 s-1 
RLIGHT Respiration in the light; also known as respiration in the day RLIGHT >0 μmol m-2 s-1 
RPP Reductive pentose phosphate (cycle); also known as Calvin-Benson-Bassham cycle or photosynthetic carbon reduction cycle  
Rubisco Ribulose bisphosphate carboxylase oxygenase  
RuBP Ribulose-1,5-bisphosphate  
s Fraction of PPFD harvested by PSII obtained by curve fitting according to Yin, it depends on leaf absorptance, PSII optical cross 

section, and accounts for engagement of alternative electron sinks and cyclic electron flow 
dimensionless (Yin et al., 2004) 

SC/O Rubisco specificity factor    /  =
       

       
 dimensionless 

TPU Triose Phosphate Utilisation  
VC Rubisco carboxylation rate  μmol m-2 s-1  
VCMAX CO2-saturated Rubisco carboxylation rate μmol m-2 s-1 
VO Rubisco oxygenation rate  μmol m-2 s-1 
VOMAX O2-saturated Rubisco oxygenation rate  μmol m-2 s-1 
Y(CO2)  Quantum yield for CO2 fixation  (   ) =

  

    
; also known as ΦCO2 dimensionless 

Y(CO2)LL Initial (or maximum) quantum yield for CO2 fixation; ΦCO2LL in the notation of Yin  
Y(II), Y(II)AMB, 
Y(II)LOW 

Yield of photosystem II  (  ) =
  
    

  
 ; also known as Φ2 or ΦPS2, unspecified, under ambient or low O2 respectively dimensionless (Genty et al., 

1989) 
Y(II)LL Initial Y(II) extrapolated to PPFD=0 dimensionless  
Y(J)LL Initial (or maximum) quantum yield for electron transport, i.e. conversion efficiency of PPFD into J; K2LL in the notation of Yin dimensionless 
αβ Fraction of PPFD harvested by PSII according to Valentini, it lumps leaf absorptance and PSII optical cross section   =

 

 
 dimensionless (Valentini et al., 

1995) 
Γ Ci‒A compensation point, i.e. Ci at which A=0 and VC=RLIGHT+F μmol mol-1 
Γ*  CC‒GA compensation point, i.e. CC at which GA=0 and VC= F  Γ∗ = 0.5

 

  / 
 μmol mol-1 

θ Curvature of the non-rectangular hyperbola describing the PPFD dependence of J dimensionless 
ω Curvature of the non-rectangular hyperbola describing the Ci dependence of A dimensionless 
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Table 2. Minimum data required to obtain a desired output  

 

Desired output Minimum data necessary Notes 

   

s Low O2 fluorescence-light-response curve  

αβ 
RLIGHT, low O2 fluorescence-A/Ci response curve 

or low O2 fluorescence-light-response curve  
In the EFT if both curves are available they can be pooled 

Y(CO2)LL, LCP, GASAT, 
PPFD50 (GA) 

Light-response curve, RLIGHT If RLIGHT is not available it can be derived in the same fitting  

   

JSAT, PPFD50 (J) Fluorescence-light-response curve, s or αβ  

Y(II)LL Fluorescence-light-response curve  

Y(J)LL Y(II)LL, s or αβ  

KC(1+O/KO) and 

VCMAX 
A/Ci response curve, RLIGHT, gM, Γ 

If Γ is not available it can be derived in the same fitting. 
Ambient and low O2 A/Ci curves if available can be fitted 

concurrently 

Γ, CE, ASAT, Ci50, LS A/Ci response curve under ambient or low O2  

Ci*  A/Ci response curve, RLIGHT  

LCP Light-response curve 
RLIGHT is preferably required if LCP is derived non-linearly 

(together with GASAT) 

gM 
Fluorescence-A/Ci response curve, SC/O, RLIGHT, s 

or αβ 
 

RLIGHT Fluorescence-light-response curve  

VC, VO, F 
A and Y(II) for each desired datapoint, RLIGHT, s 

or αβ   
  

SC/O, Γ*  
Low O2 A/Ci response curve, A/Ci response 

curve, RLIGHT 
 

   

   

 

 



33 
 

Table 3. Output obtained by analysing the primary responses of tobacco plants reported in 

Figure 1. R2 was >0.99, n=4. †additional output, ‡methodological variants, n.f. no fit. 

   Ambient O2 Low O2 

Logical Step Output Method Mean C.V. /  % 
EFT Location 
sheet, cell Mean C.V. /  % 

EFT Location 
sheet, cell 

- RDARK Measured 1.94 7 - 2.05 11 - 

2 RLIGHT Fluorescence-Light (Yin) 1.75 17 2-3, N6 2.05 11 2-3, P6 

2 RLIGHT Fitted (ambient O2=low O2) 1.96 10 2-3, Z12† 1.96 10 2-3, Z12† 

2 RLIGHT Brooks-Farquhar 1.20 11 11, V14† 0.897 29 11, X14† 

3 Y(II)LL Linear 0.723 2 2-3, N7 (AR11) 0.721 2 2-3, P7 (AT11) 

3 Y(II)LL Quadratic 0.729 2 2-3, AR12† 0.738 2 2-3, AT12† 

3 Y(II)LL Exponential 0.724 2 2-3, AR13† 0.723 2 2-3, AT13† 

4 LCP Hyperbola 31.8 14 4a, G5 27.5 12 4b, G5 

4 LCP Linear 30.8 14 2-3, AD48† 25.8 11 2-3, AF48† 

4 GASAT Hyperbola 26.0 13 4a, M3 39.9 7 4b, M3 

4 Y(CO2)LL Hyperbola 0.0562 7 4a, M2 0.0760 5 4b, M2 

4 Y(CO2)LL Linear 0.0576 9 6a-7, Q22‡ 0.0791 5 6a-7, S22‡ 

4 PPFD50 Hyperbola 296 12 4a, G6 339 4 4b, G6 

4 m Hyperbola 0.726 8 4a, M4 0.706 1 4b, M4 

5 CE Hyperbola 0.123 15 5a M2 0.186 12 5b M2 

5 CE Linear 0.120 7 11 X26‡ 0.186 14 11 X33‡ 

5 ASAT Hyperbola 37.1 7 5a M3 34.3 7 5b M3 

5 ω Hyperbola 0.913 3 5a M4 0.971 1 5b M4 

5 Γ Hyperbola 56.3 1 5a M5 8.96 44 5b M5 

5 Γ Linear 56.4 1 11 W40† 9.23 17 11 Y40† 

5 Ci*  Hyperbola 42.0 4 5a G7 -2.10 237 5b G7 

5 Ci50 Hyperbola 222 7 5a G3 104 5 5b G3 

5 LS Hyperbola 0.274 20 5a Z17† 0.104 26 5b Z17† 

5 TPU Horizontal maximum 12.5 7 5a Z25† 12.2 8 5b Z25† 

6 s Yin - - - 0.439 3 6a-7, J6 

6 k Valentini - - - 8.51 4 6b-7, G5 

6 b Valentini - - - 0.0514 20 6b-7, G6 

6 αβ Valentini - - - 0.471 4 6b-7, G7 

7 Y(J)LL Yin 0.317 5 6a-7, J8‡ 0.316 5 6a-7, L8‡ 

7 Y(J)LL Valentini 0.317 4 6b-7, G8‡ 0.316 4 6b-7, G9‡ 

9 JSAT Valentini 241 18 8-9, M2‡ - - - 

9 θ Valentini 0.673 11 8-9, M3‡ - - - 

9 PPFD50 Valentini 508 21 8-9, H6‡ - - - 

9 JSAT Yin 289 19 8-9, M2‡ - - - 

9 θ Yin 0.600 14 8-9, M3‡ - - - 

9 PPFD50 Yin 641 23 8-9, H6‡ - - - 

9 JSAT Bellasio 223 16 8-9, M2‡ - - - 

9 θ Bellasio 0.523 22 8-9, M3‡ - - - 

9 PPFD50 Bellasio 524 22 8-9, H6‡ - - - 

11 SC/O CE from Hyperbola 2290 10 11, N6 - - - 

11 SC/O CE from Linear (Yin) 2404 4 11, N6†‡ - - - 

11 SC/O From Ci* , variant of Laisk 2501 4 5, Z9†    

12 gM J from Valentini 0.239 21 12, G6‡ - - - 

12 gM J from Yin 0.154 18 12, Q6‡ - - - 

12 gM J from Bellasio 0.307 20 12, Q6‡ - - - 

13 VCMAX gM from J Valentini 92.8 24 13a, M4‡ 54 18 13b, M4‡ 

13 KC(1+O/KO) gM from J Valentini 278 35 13a, M5‡ 45 47 13b, M5‡ 

13 VCMAX gM from J Yin n.f. - 13a, M4‡ n.f. - 13b, M4‡ 

13 KC(1+O/KO) gM from J Yin n.f. - 13a, M5‡ n.f. - 13b, M5‡ 

13 VCMAX gM from J Bellasio 114 38 13a, M4‡ 90 49 13b, M4‡ 

13 KC(1+O/KO) gM from J Bellasio 476 50 13a, M5‡ 152 59 13b, M5‡ 

13 VCMAX VCMAXAMB=VCMAXLOW, gM from J Bellasio, KC and KO from Ethier 144 9 13b, AI15† 144 9 13b, AI15† 
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