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This paper investigates the problem of obtaining a state-space model of the disturbance evolution that precedes turbulent flow
across aerodynamic surfaces. This problem is challenging since the flow is governed by nonlinear, partial differential-algebraic
equations for which there currently exists no efficient controller/estimator synthesis techniques. A sequence of model approx-
imations is employed to yield a linear, low-order state-space model, to which standard tools of control theory can be applied.
One of the novelties of this paper is the application of an algorithm that converts a system of differential-algebraic equations into
one of ordinary differential equations. This enables straightforward satisfaction of boundary conditions whilst dispensing with
the need for parallel flow approximations and velocity-vorticity transformations. The efficacy of the model is demonstrated by
the synthesis of a Kalman filter that clearly reconstructs the characteristic features of the flow, using only wall velocity gradient
information obtained from a high-fidelity nonlinear simulation.

Keywords: Turbulence, nonlinear equations, partial differential equations, descriptor systems, model approximation, boundary
conditions.

1 Introduction

In a recent research agenda, the Advisory Council for Aeronautics Research in Europe (ACARE) rec-

ommended a 50% reduction in fuel consumption (per passenger kilometre) of all new aircraft by the

year 2020 (Argüelles et al. 2001), for obvious economic and environmental reasons. However, it is

widely accepted that this target is unlikely to be met unless novel flow control technologies emerge,

which are capable of manipulating the surrounding airflow to reduce the drag force exerted on an air-

craft (Gad-el-Hak 2000). In practice, it is likely that the sensors and actuators of such a scheme (Arthur

et al. 2006) will be located on the aircraft surfaces, thus necessitating the use of an observer to estimate

flow parameters away from the wall. Knowledge of these estimates may subsequently enable improved

actuation towards a more desirable flow-field.

In order to synthesise an observer, a model of the system is required. In the present work the system

is taken to be a boundary layer (Schlichting and Gersten 2000, White 2003) evolving over a flat plate,

as depicted in Figure 1. The term ‘boundary layer’ simply refers to the layer of fluid next to a bounding

surface. Here, the bounding surface is a flat plate, which can be considered a simplified aircraft wing. At

subsonic velocities this type of flow is governed by the incompressible Navier-Stokes equations:

ρ
∂~v

∂ t
= µ∆~v−ρ~v ·∇~v−∇p+~f, (1a)

0 = ∇ ·~v, (1b)
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with initial and boundary conditions:

~v(ζ ,0) =~v0(ζ ) ∀ ζ ∈ Ω, (1c)

~v(ζ , t) =~g(ζ , t) ∀ (ζ , t) ∈ ∂Ω× [0, t f ], (1d)

where the velocity of the fluid is~v : Ω×R+ 7→ R
3, p : Ω×R+ 7→ R is the pressure,~f : Ω×R+ 7→ R

3

is a vector of external forces,~g : ∂Ω×R+ 7→ R
3 is a vector of boundary conditions, and~v0 ∈ R

3 is a

vector of initial velocities. The density and viscosity of the fluid (here assumed constant) are ρ,µ ∈R+,

respectively, and t f ∈ R+ is the endpoint of the time interval. The gradient operator is denoted by ∇

whilst ∆ and ∇· denote the Laplace and divergence operators, respectively. The flow evolves within a

domain Ω ⊂ R
3 with three spatial dimensions and a boundary ∂Ω, and ζ ∈ Ω is a point within the

domain. Throughout this paper sans serif fonts will represent parameters used to describe the flow

system, whilst serif fonts will denote (discretised) vectors and matrices.

The Navier-Stokes equations (1) are a coupled system of nonlinear, partial differential-algebraic equa-

tions, for which no general controller/estimator synthesis techniques currently exist. In order to simplify

analysis, the majority of researchers have focussed their efforts upon relatively well understood flows.

A particular case that has received much attention is that of channel flow, e.g. Hoepffner et al. (2005),

Hogberg et al. (2003), Baramov et al. (2004), McKernan et al. (2007), Chughtai and Werner (2010),

where the mean (time-averaged) flow is parallel to the walls and fully developed in the sense that it is

invariant in the streamwise direction. A convenient consequence of this fact is that it enables a relatively

straightforward analytic reformulation of (1) into an equivalent system expressed in terms of so-called

‘divergence-free’ variables of wall-normal velocity and vorticity. These variables implicitly satisfy the

incompressibility constraint (1b) thus allowing the flow dynamics, after spatial discretisation, to be de-

scribed by ordinary differential equations (ODEs), rather than differential-algebraic equations (DAEs).

Hence, the flow can be modelled as a conventional state-space system, rather than a descriptor (or im-

plicit) state-space system for which far fewer established control-theoretic tools exist.

In contrast, the mean flow of a boundary layer is non-parallel since it varies with distance travelled in

the streamwise direction. In an effort to recast the system in terms of a divergence-free basis, a parallel

flow assumption is commonly employed, e.g. Hoepffner and Brandt (2008). In the present work the need

for this assumption is avoided by employing a more flexible modelling technique that produces a state-

space model without the need for an analytical reformulation of the governing equations. To complete

the state-space model, a disturbance model is included as well as Direct Numerical Simulation (DNS)

based measurements of the streamwise and spanwise wall shear (wall-normal velocity gradient) at three

evenly spaced locations along the plate. Based on this model, a time-varying Kalman filter is synthesised

that produces estimates of the in-plane velocity fields. The overall scheme is sketched in Figure 1.

Two-dimensional control of boundary layers has been considered (Baker et al. 2002), as has Tollmien-

Schlichting wave cancellation (Sturzebecher and Nitsche 2003), but to the best of the authors’ knowl-

edge, this is the first work to attempt flow estimation of a three-dimensional, non-parallel and unsteady

boundary layer by employing an estimator derived from a physically based model and using practically

implementable sensors mounted in the bounding surface. For the special case where disturbances are

time-independent, one can view perturbation growth within a (non-parallel) boundary layer as a process

that evolves in space, rather than in time, and control of such a system has been considered (Cathalifaud

and Bewley 2004). However, in practical control terms, the temporal dynamics of sensors and actua-

tors will likely form an important part of any model used for controller/estimator synthesis, and so in

this paper, the growth of boundary layer disturbances is viewed as a process that evolves in time (i.e. is

unsteady), within a fixed volume of space.

The sequence of modelling steps described in this paper, namely linearisation, spatial discretisation

and the numerical conversion of DAEs into ODEs, are very general in nature and thus can be applied to

a wide range of fluid flow systems to obtain simple control models.

The concept of modelling for the exclusive purposes of control or estimation has yet to permeate the

mainstream fluid-mechanics community, where research effort is typically invested in refining the open-

loop behaviour of models. Explaining ever more complicated and subtle features of these models has
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Figure 1. Sketch of the estimation problem. The observer constructs estimates x̂(t) of the true velocity perturbation (shown in red) above the
sensors, using only measurements y(t) of the streamwise and spanwise wall shears. Note that in realistic flows, the boundary layer interface is
not as smooth and well defined as sketched here.

necessarily spawned a large body of complex terminology and phraseology that can be discouraging

to control practitioners interested in controlling fluid flows. Therefore, the current exposition aims to

employ and define only those fluid mechanics concepts most relevant to obtaining a model for control

or estimation. At the same time, and for the benefit of a fluid mechanics audience, every effort has been

made to ensure the references are as complete and the paper as self-contained as possible.

This paper is organised as follows. Section 2 describes the boundary layer DNS database and the

underlying physical model. Section 3 discusses the validity of a linear approximation to the boundary

layer equations. In Section 4 the linearised system is spatially discretised to yield a finite-dimensional

descriptor state-space model, together with a technique for easily enforcing boundary conditions. Sec-

tion 5 describes a method for converting this descriptor state-space system into a standard state-space

system, which, in Section 6 is augmented with a disturbance model and wall shear measurements. Based

on the resulting model, a time-varying Kalman filter is synthesised and the velocity field estimates are

presented in Section 7, with conclusions in Section 8.

As a final note in this section, it is stressed that the control and estimation of fluid flows poses chal-

lenging research questions, many of which are not tackled in this paper. For example, this paper does

not address the issue of optimal location of sensors and actuators. Nor does it address the issue of

guaranteeing that controllers and estimators based on approximate models of finite state dimension will

actually perform well on the underlying infinite-dimensional plant. These issues are addressed, for exam-

ple, in Naguib et al. (2010), Bagheri et al. (2009), Reinschke and Smith (2003) and Jones and Kerrigan

(2010).

2 Description of the DNS Database

In the present investigation data is obtained from a boundary layer DNS (Zaki and Durbin 2005, 2006).

The domain extends 525δ0, 40δ0, 30δ0 in the streamwise (x), wall-normal (y) and spanwise (z) direc-

tions, where δ0 = 1 length unit is a reference boundary layer thickness (defined as the height at which the

mean streamwise velocity is 99% of the free-stream velocity) at an inlet location marked by the origin of

the Cartesian coordinate system in Figure 2. Note that this is some distance away from the leading edge.

The data were generated by spatially discretising (1) using a central, second order finite-volume method

on a staggered grid of 1798×194×194 nodes in x, y and z, and advancing the resulting system in time

by using Adams-Bashforth, Crank-Nicolson and implicit Euler schemes for the convective, viscous and

pressure terms, respectively (Rosenfeld et al. 1991). In total, 1201 snapshots of the streamwise, wall-

normal and spanwise velocity components were available at each grid point, separated by a sampling pe-

riod of Ts = 2 (nondimensional time units). The available fields spanned a time interval required by a fluid
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Figure 2. Sketch of the computational domain and coordinate system. Figure from Naguib et al. (2010).

Figure 3. DNS snapshot. The flow is from left to right. Shaded regions represent streamwise velocity perturbations at three different heights
above the wall. The lower two planes are within the boundary layer whilst the upper plane is in the free-stream.

particle to travel a total distance of 2400δ0 at the free-stream velocity U∞. A snapshot of the DNS data

is shown in Figure 3 and depicts three planes parallel to the wall. The lower planes are inside the bound-

ary layer whilst the uppermost is in the free-stream. The contours depict velocity perturbations in the

streamwise direction. The flow is initially laminar and characterised by long streamwise perturbations,

or ‘streaks’, that are initiated by disturbances in the free-stream penetrating the boundary layer (Zaki and

Saha 2009). The streaks grow in magnitude and develop secondary instabilities (Vaughan and Zaki 2011)

that lead to localised breakdown into turbulent spots, with the spots merging to form a fully-turbulent

boundary layer. Transition to turbulence via this mechanism is known as ‘bypass’ transition since, for

moderate sizes of disturbances, the Tollmien-Schlichting (‘modal’) wave development (Sturzebecher and

Nitsche 2003) is bypassed. This process can lead to the transient growth phenomenon, explained in the

next section, as opposed to the exponential growth of Tollmien-Schlichting waves.

Laminar-to-turbulent transition is accompanied by a large increase in skin friction. Therefore, the key

to devising control strategies to suppress this phenomenon lies in understanding the streak dynamics.

Fortunately, this transition mechanism can be explained by a linear model, as explained in the next

section. Note that since the streaks are confined to the boundary layer, for the purposes of drag reduction

it is likely that only the velocity estimates in the near-wall region need be accurate.



May 20, 2011 11:7 International Journal of Control IJC

5

3 Transient Growth and Linearisation

Transition to turbulence has traditionally been investigated by linearising the flow system around an

equilibrium and inspecting the eigenvalues of the linearised system. However, the predictions of this

hydrodynamic stability theory are well known to contradict physical experiments (Butler and Farrell

1992), with the latter often displaying instability (turbulence) despite the eigenvalues of the linearised

system residing in the complex left-half-plane. In recent years, a reconciliation of these findings has been

provided by non-modal stability theory, e.g. Butler and Farrell (1992), Trefethen et al. (1993), Schmid

(2007), whereby the eigenfunction alignment of the linearised flow system is analysed. These eigen-

functions are known to by highly nonorthogonal. Consequently, small, three-dimensional perturbations

to the mean flow can be amplified by several orders of magnitude via a linear mechanism, despite all the

eigenvalues being stable. This transient growth, if large enough, can initiate so-called ‘bypass’ transition

to turbulence.

A linear, transient growth model of the current boundary layer is obtained as follows. The Navier-

Stokes equations (1) are first made nondimensional by scaling all parameters by the inlet boundary layer

thickness δ0 and the free-stream velocity U∞. Subsequent linearisation about a nominal mean flow yields

the following set of perturbation equations (Aamo and Krstic 2003, p. 16):

∂u

∂ t
=−u

∂U

∂x
−U

∂u

∂x
− v

∂U

∂y
−V

∂u

∂y
−w

∂U

∂z
−W

∂u

∂z
− ∂p

∂x
+

1

R

(
∂ 2u

∂x2
+

∂ 2u

∂y2
+

∂ 2u

∂z2

)

,

∂v

∂ t
=−u

∂V

∂x
−U

∂v

∂x
− v

∂V

∂y
−V

∂v

∂y
−w

∂V

∂z
−W

∂v

∂z
− ∂p

∂y
+

1

R

(
∂ 2v

∂x2
+

∂ 2v

∂y2
+

∂ 2v

∂z2

)

,

∂w

∂ t
=−u

∂W

∂x
−U

∂w

∂x
− v

∂W

∂y
−V

∂w

∂y
−w

∂W

∂z
−W

∂w

∂z
− ∂p

∂z
+

1

R

(
∂ 2w

∂x2
+

∂ 2w

∂y2
+

∂ 2w

∂z2

)

,

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (2)

where R :=U∞δ0/ν is the Reynolds number, ν := µ/ρ is the kinematic viscosity of the fluid, U, V and W

are the average streamwise, wall-normal and spanwise velocities, respectively, whilst u, v, w and p are

the corresponding perturbation velocities and pressure. For clarity, the spatial and temporal dependence

of each of the variables is not shown here, but it should be noted that u,v,w and p are each real-valued

functions of x,y,z and t, whereas the mean-flow velocities are real valued functions of x,y and z, only.

Since the system of interest is the transient growth region of a laminar, flat-plate boundary layer subject

to zero streamwise pressure gradient, the following simplifying assumptions can be employed:

• Two-dimensional mean flow, i.e. W, ∂U
∂z

, ∂V
∂z

, ∂W
∂ z

= 0.

• Negligible streamwise pressure gradient, i.e. ∂p
∂x

≈ 0.

• Negligible second-order streamwise velocity gradients, i.e. ∂ 2u
∂x2 , ∂ 2v

∂x2 , ∂ 2w
∂x2 ≈ 0.

Note that the second and third assumptions are valid since the streamwise variation of the streaky distur-

bances is much smaller than in the wall-normal and spanwise directions. Under these assumptions, the
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system (2) reduces to:

∂u

∂ t
=−u

∂U

∂x
−U

∂u

∂x
− v

∂U

∂y
−V

∂u

∂y
+

1

R

(
∂ 2u

∂y2
+

∂ 2u

∂z2

)

,

∂v

∂ t
=−u

∂V

∂x
−U

∂v

∂x
− v

∂V

∂y
−V

∂v

∂y
− ∂p

∂y
+

1

R

(
∂ 2v

∂y2
+

∂ 2v

∂z2

)

,

∂w

∂ t
=−U

∂w

∂x
−V

∂w

∂y
− ∂p

∂z
+

1

R

(
∂ 2w

∂y2
+

∂ 2w

∂z2

)

,

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
. (3)

where the mean-flow velocities U,V are now functions of x,y only. The interested reader may wish to

compare (3) with the linearised equations obtained for channel flow (Aamo and Krstic 2003, p 21). For

boundary conditions of (3), the following are assumed (Andersson et al. 1999):

u(x,0,z, t) = 0, v(x,0,z, t) = 0, w(x,0,z, t) = 0,

u(x,ymax,z, t) = 0, p(x,ymax,z, t) = 0, w(x,ymax,z, t) = 0, (4a)

where ymax → ∞, although in practice this is set to a large but finite value. In a realistic estimation

problem, the initial condition of the flow will be unknown, in which case it is assumed to be zero:

u(x,y,z,0), v(x,y,z,0), w(x,y,z,0), p(x,y,z,0) = 0. (4b)

The equations in (3) are known as the Linearised Boundary Region Equations (LBRE) (Leib et al. 1999),

and have been shown to accurately predict the evolution of streaky boundary layer disturbances in re-

sponse to external forcing.

The mean flow quantities U and V in (3) are computed by solving the Blasius equation for F(η) and

its derivatives:

2F′′′(η)+F(η)F′′(η) = 0, (5a)

where η := y (νx/U∞)
−1/2

, F′(η) := dF(η)
dη and (5a) has the boundary conditions:

F(0) = F′(0) = 0, F′(η)→ 1 as η → ∞. (5b)

The Blasius equation (5a) is a nonlinear ODE that can be solved in a number of different ways. The

most straightforward is via numerical integration from the initial conditions in (5b) and the extra initial

condition F′′(0)≈ 0.332 (Boyd 1999). The mean velocities and their derivatives were then calculated as
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Figure 4. Mean-square streamwise velocity perturbations versus x, for y = 0.69. Linear growth occurs in the region 20 / x / 60. Recall
that x(0) corresponds to the origin of the axes in Figure 2.

follows:

U(x,y) = F′(η),

V(x,y) =
1

2

√
ν

U∞x

(
ηF′(η)−F(η)

)
,

∂U(x,y)

∂x
=− η

2x
F′′(η),

∂V(x,y)

∂x
=− 1

4x
3
2

√
ν

U∞

(
η2F′′(η)+ηF′(η)−F(η)

)
,

∂U(x,y)

∂y
=

√

U∞

νx
F′′(η),

∂V(x,y)

∂y
=

η

2x
F′′(η). (5c)

The streamwise region of validity for the linear model can be deduced from the DNS data by studying

the downstream evolution of the kinetic energy of the u perturbations. Figure 4 shows the streamwise

evolution of the mean-square u perturbations at a height above the wall of y= 0.69, corresponding to the

wall-normal location of maximum disturbance energy. Linear (algebraic) growth appears for 20 / x /
60 (Naguib et al. 2010).

4 Spatial Discretisation

The set of equations (3) represents a system of linear, partial differential-algebraic equations. These can

be approximated by a finite dimensional system by spatial discretisation in the x, y and z directions.
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4.1 Spanwise discretisation

Referring to Figure 3, since the flow is periodic in the spanwise direction, the Fourier transform can be

employed as follows:

u(x,y,z, t)≈R

(
Nz−1

∑
nz=0

ũ(x,y, t)eiβz

)

, (6)

where i :=
√
−1, nz is the harmonic number, β := 2πnz/Lz is a wavenumber, Lz is the wavelength in

the spanwise direction and Nz is finite and represents the truncation of the series. Similar expressions

are obtained for the remaining perturbation variables. Substituting these into (3), yields the following

system for each wavenumber β :

∂ ũ

∂ t
=−ũ

∂U

∂x
−U

∂ ũ

∂x
− ṽ

∂U

∂y
−V

∂ ũ

∂y
+

1

R

(
∂ 2ũ

∂y2
−β 2ũ

)

,

∂ ṽ

∂ t
=−ũ

∂V

∂x
−U

∂ ṽ

∂x
− ṽ

∂V

∂y
−V

∂ ṽ

∂y
− ∂p

∂y
+

1

R

(
∂ 2ṽ

∂y2
−β 2ṽ

)

,

∂ w̃

∂ t
=−U

∂ w̃

∂x
−V

∂ w̃

∂y
− iβp+

1

R

(
∂ 2w̃

∂y2
−β 2w̃

)

,

0 =
∂ ũ

∂x
+

∂ ṽ

∂y
+ iβ w̃. (7)

Thus, the Fourier transformed perturbation variables ũ, ṽ, w̃, p̃ are complex-valued functions of x,y, t, for

a given spanwise wavenumber. Since the DNS data were available at discrete points, all Fourier coeffi-

cients were computed using the discrete Fourier transform (DFT). A 32-point DFT of the data revealed

the majority of the perturbation kinetic energy to be contained in the fourth Fourier mode (nz = 4), corre-

sponding to a wavelength of Lz = 2.5 (see Naguib et al. (2010) for further details). Thus, for the purposes

of this paper, attention was restricted to a single model with a spanwise wavenumber of β = 10. Note

that the use of the Fourier transform in the spanwise direction enables separate controllers/estimators to

be synthesised independently of one another, based on models of individual spanwise wavenumber.

4.2 Wall-normal discretisation

In the wall-normal direction it is advantageous to employ a higher clustering of grid points within the

boundary layer compared to the free-stream. This ensures that the boundary layer is adequately resolved

whilst keeping the state-dimension of the overall system reasonably low. One method of achieving this

favourable distribution of grid points is as follows. Firstly, the perturbation variables are computed on a

grid of Ny Chebyshev collocation nodes:

yny
ch

:= cos

(
(ny−1)π

Ny−1

)

, ny = 1, . . . ,Ny. (8a)

The wall-normal derivatives ∂
∂y
, ∂ 2

∂y2 are approximated by Chebyshev differentiation matrices Ych,Y
2
ch

,

respectively (Weideman and Reddy 2000). Naturally, one could construct analogous finite differencing

matrices on the same set of grid points, but spectral differentiation (of which Chebyshev methods are an

example) are known to be more accurate for fewer grid points (Trefethen 2000), thus helping to reduce

the state-dimension of the model.

In order to use Chebyshev differentiation matrices for the boundary layer (3), the interval 0 ≤ y ≤
ymax is mapped to the canonical Chebyshev interval −1 ≤ ych ≤ 1. The following algebraic mapping is
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employed (Hanifi et al. 1996):

yny :=
a(1+ yny

ch
)

b− yny
ch

, (8b)

where:

a :=
ymidymax

ymax−2ymid

and b := 1+
2a

ymax

. (8c)

This mapping is convenient as it places half the nodes in the region 0 ≤ y ≤ ymid. By setting ymid = 4

(twice the approximate height of the boundary layer in the transient growth region of the DNS)

and ymax = 14, a reasonable tradeoff is obtained between resolving the boundary layer whilst not wasting

too many points in the free stream. Lastly, the chain rule and (8b) are used to obtain:

∂ ũ(x,yny , t)

∂y
≈ Y1ũny

ch
(x, t),

∂ 2ũ(x,yny , t)

∂y2
≈ Y2ũny

ch
(x, t), (8d)

where ũny
ch
(x, t) := ũ(x,yny

ch
, t), and:

Y1 :=
dych

dy
Ych, Y2 :=

d2ych

dy2
Ych+

(
dych

dy

)2

Y 2
ch, (8e)

with similar expressions for the other perturbation variables. Substituting (8d) into (7) yields:

∂ ũny
ch

∂ t
=

(

−
∂Uny

ch

∂x
−Uny

ch

∂

∂x
−Vny

ch
Y1 +

Y2 −β 2

R

)

ũny
ch
−

∂Uny
ch

∂y
ṽny

ch
, (9a)

∂ ṽny
ch

∂ t
=−

∂Vny
ch

∂x
ũny

ch
+

(

−Uny
ch

∂

∂x
−

∂Vny
ch

∂y
−Vny

ch
Y1 +

Y2 −β 2

R

)

ṽny
ch
−Y1p̃ny

ch
, (9b)

∂ w̃ny
ch

∂ t
=

(

−Uny
ch

∂

∂x
−Vny

ch
Y1 +

Y2 −β 2

R

)

w̃ny
ch
− iβ p̃ny

ch
, (9c)

0 =
∂ ũny

ch

∂x
+Y1ṽny

ch
+ iβ w̃ny

ch
, (9d)

where the perturbation variables at a spanwise wavenumber β and at each Chebyshev node are now

complex-valued functions of x and t only. The results presented in Section 7 employed a model with Ny =
15 wall-normal grid-points. It was found that using fewer grid-points led to a significant deterioration

in estimator accuracy, owing to the model being unable to spatially resolve the streaks, whilst little was

gained from employing more points.

4.3 Streamwise discretisation

As was stated earlier, this work makes no attempt to address the issue of optimal sensor location. For a

discussion of boundary layer sensor/actuator placement, the reader is referred to Bagheri et al. (2009).

The present streamwise sensor locations were chosen purely on the basis that they lay within the transient

growth region and were spaced closely enough to resolve first-order velocity gradients in the streamwise

direction. With this in mind, spanwise arrays of wall sensors were placed at streamwise locations x1 = 49,

x2 = 50 and x3 = 51. This separation is close to the actual resolution of the DNS and it is worth noting

that a separation of five times the current value was tested with only a modest resulting degradation
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


















E1,1

E2,2

E3,3

0

E5,5

E6,6

E7,7

0

E9,9

E10,10

E11,11




















︸ ︷︷ ︸

EDnoBCs

d

dt




















ũx1,nych
(t)

ṽx1,nych
(t)

w̃x1,nych
(t)

p̃x12,nych
(t)

ũx2,nych
(t)

ṽx2,nych
(t)

w̃x2,nych
(t)

p̃x23,nych
(t)

ũx3,nych
(t)

ṽx3,nych
(t)

w̃x3,nych
(t)




















︸ ︷︷ ︸

xD(t)

=




















A1,1 A1,2 A1,5 A1,9

A2,1 A2,2 A2,4 A2,6 A2,10

A3,3 A3,4 A3,7 A3,11

A4,1 A4,2 A4,3 A4,5 A4,6 A4,7

A5,1 A5,5 A5,6 A5,9

A6,2 A6,4 A6,5 A6,6 A6,8 A6,10

A7,3 A7,4 A7,7 A7,8 A7,11

A8,1 A8,6 A8,7 A8,9

A9,1 A9,5 A9,9 A9,10

A10,2 A10,6 A10,8 A10,9 A10,10

A11,3 A11,7 A11,8 A11,11




















︸ ︷︷ ︸

ADnoBCs




















ũx1,nych
(t)

ṽx1,nych
(t)

w̃x1,nych
(t)

p̃x12,nych
(t)

ũx2,nych
(t)

ṽx2,nych
(t)

w̃x2,nych
(t)

p̃x23,nych
(t)

ũx3,nych
(t)

ṽx3,nych
(t)

w̃x3,nych
(t)




















(11)

in the Kalman Filter estimates of Section 7. A semi-staggered grid was used to evaluate the velocities

at these streamwise locations, whilst pressures were resolved at intermediate spacings x12 = 49.5 and

x23 = 50.5. This separation of the velocity and pressure grids helped prevent unphysical oscillations in

either field (Ferziger and Perić 1997, p. 158). Adopting the notation ũx1,nych
(t) := ũ(x1,yny

ch
, t) etc., the

following three-point finite-differencing scheme was employed to approximate the (first-order) stream-

wise derivative terms in (9a–9c):

∂ ũx1,nych
(t)

∂x
≈ 1

2∆x

(

−3ũx1,nych
+4ũx2,nych

− ũx3,nych

)

, (10a)

∂ ũx2,nych
(t)

∂x
≈ 1

2∆x

(

−ũx1,nych
+ ũx3,nych

)

, (10b)

∂ ũx3,nych
(t)

∂x
≈ 1

2∆x

(

ũx1,nych
−4ũx2,nych

+3ũx3,nych

)

, (10c)

where ∆x = 1 is the separation between the streamwise locations. Similar expressions were obtained for

the other perturbation velocities. The streamwise derivative term in the divergence constraint (9d) was

approximated at the pressure nodes as follows:

∂ ũx12,nych
(t)

∂x
≈ 1

∆x

(

−ũx1,nych
+ ũx2,nych

)

, (10d)

∂ ũx23,nych
(t)

∂x
≈ 1

∆x

(

−ũx2,nych
+ ũx3,nych

)

. (10e)

Substituting these into (9) yields the finite-dimensional system of ordinary differential and algebraic

equations (11), where xD ∈ C
m is the state vector, m = 11Ny, A·,· ∈ C

Ny×Ny are the submatrices

of ADnoBCs
(defined in the appendix), E·,· := INy are the submatrices of EDnoBCs

(where I is the iden-

tity matrix), 0 is a matrix of zeros and all other unmarked entries are zeros. The subscript ‘D’ denotes

vectors and matrices associated with a descriptor state-space system, while the subscript ‘noBCs’ indi-

cates that boundary conditions (4) have yet to be satisfied.

Enforcing these boundary conditions is straightforward and amounts to modifying the relevant rows

of (11). For example, to enforce the condition ũ(x1,ymax, t) = 0, the top rows of E1,1, A1,1, A1,2, A1,5

and A1,9 are set to zero, except for the (1,1) element of A1,1 (corresponding to ũx1,1ch(t)), which is set

equal to unity. This ease of enforcing boundary conditions is one of the main benefits of the descriptor

system approach to modelling. By comparison, traditional velocity-vorticity methods require impracti-
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cal boundary conditions where considerable care must be taken in constructing wall-normal derivative

operators of up to fourth order. Unless the basis functions of these operators each implicitly satisfies the

boundary conditions, the discretised system will be contaminated by so-called ‘spurious eigenvalues’

that typically reside in the complex right-half-plane (Bewley and Liu 1998).

The next section describes a method for converting the autonomous descriptor state-space system;

EDẋD(t) = ADxD(t), (12)

where ED and AD are the matrices in (11) after the inclusion of boundary conditions, into a standard

state-space system of the form ẋ(t) = Ax(t).

5 Dealing with Descriptor Systems

The divergence constraint (1b) and imposition of boundary conditions (4) causes ED to be rank deficient.

Therefore, it is not possible to obtain a standard state-space system by simply premultiplying both sides

of (12) by ED
−1. The system (11) is an example of a descriptor state-space system (also known as a

singular, implicit or generalised state-space system), the control and estimation of which are still an open

research field. In this section an algorithm is summarised for converting (11) into a standard state-space

system (Schön et al. 2003, Gerdin 2006, Shahzad et al. 2011).

Let ED, AD ∈ C
l×m. The pair (ED,AD) is defined as regular if l = m and there exists an s ∈ C such

that det(sED −AD) 6= 0 (Dai 1989). Regularity of a matrix pair ensures the transfer function of a system

is well-defined, and is easily checked using the shuffle algorithm of Luenberger (1978).

Next, a result is employed that reveals how the slow and fast subsystems of (12), containing the finite

and infinite generalised eigenvalues, respectively, can be decoupled to yield the so-called standard form.

According to Gerdin (2006, Lem. 2.3), if the pair (ED,AD) in (12) is regular, there exist nonsingular

matrices T,S ∈ C
m×m such that the transformation:

T EDSS−1ẋD(t) = TADSS−1xD(t), (13a)

gives the system in standard form:

[
I 0

0 N

][
ẋ(t)
ż(t)

]

=

[
A 0

0 I

][
x(t)
z(t)

]

, (13b)

where N ∈ C
(m−n)×(m−n) is nilpotent (meaning that Ninp = 0 for some inp ∈ N), A ∈ C

n×n, I are iden-

tity matrices of compatible dimensions and
[

x(t)
z(t)

]

= S−1xD(t). The matrices in (13) are computed as

follows (Gerdin 2006, Schön et al. 2003, Shahzad et al. 2011):

(i) Compute the generalised Schur form of the matrix pencil λED −AD so that:

T1(λED −AD)S1 = λ
[

E1 E2
0 E3

]

+
[

A1 A2
0 A3

]

, (14)

where T1 and S1 are unitary matrices i.e. T ∗
1 T1 = T1T ∗

1 = I, and are not to be confused with T

and S in (13a). The generalised eigenvalues should be sorted so that the diagonal elements of E1

contain only non-zero elements. Computation of the generalised Schur form and the subsequent

reordering can be accomplished using a QZ algorithm (Golub and Van Loan 1996).

(ii) Solve the following coupled Sylvester equation to obtain the matrices L and R:

E1R+LE3 =−E2, (15a)

A1R+LA3 =−A2. (15b)
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The solution to (15) can be obtained by solving for L in:

A1E−1
1 LE3A−1

3 −L−
(
A2 −A1E−1

1 E2

)
A−1

3 = 0, (16a)

and substituting to obtain R:

R =−E−1
1 E2 −E−1

1 LE3. (16b)

An efficient algorithm for solving (16) is described in Shahzad et al. (2011).

(iii) Form the matrices in (13) as follows:

T =

[
E−1

1 0

0 A−1
3

][
I L

0 I

]

T1, S = S1

[
I R

0 I

]

, (17a)

A = E−1
1 A1, N = A−1

3 E3. (17b)

Thus, the autonomous state-space system ẋ(t) = Ax(t) is obtained from the top row of (13b). Temporal

discretisation of the resulting system yields the following discrete-time system:

xk+1 = Āxk, (18)

where xk is the state of the system at time tk and Ā := eATs , where Ts = 2 is the sample period. The next

section augments this system with a disturbance model and measurements of the velocity gradients at

the wall, to produce a system of the form;

xk+1 = Āxk + B̄wk, (19a)

yk = C̄xk + D̄wk + vk. (19b)

Again, the approach will be to model in terms of the states of the descriptor system, before transforming

to those of (18).

6 Disturbance model and wall-shear measurements

With respect to a disturbance model, it was assumed that the states xDk
and the measurements yk of the

system were perturbed by zero-mean, Gaussian, white noise sequences, wk and vk, with covariances Qw

and Rv, respectively. For simplicity, it was further assumed that the noises wk and vk were uncorrelated.

Furthermore, since yk were obtained from the DNS data, the covariance of vk was assumed to be small

and set at Rv = 10−5I6. A process noise model was obtained from the DNS data as follows. First, the

state covariance matrix Qx̃D
was computed from the data:

Qx̃D
:=

1

Nk

Nk

∑
k=1

x̃Dk
x̃∗Dk

, (20a)

where Nk is the total number of time samples, x̃Dk
is the state at the k-th sample, the tilde represents

values obtained from (spanwise Fourier transformed) data, and the asterisk denotes complex conjugate

transpose. In most physical applications, the number of disturbances entering the system is typically

less than the number of states. This was found to be the case in the present work, as deduced from the

singular-value decomposition of Qx̃D
:

Qx̃D
=
[
U1 U2

]
[

Σ1

Σ2

][
U1

∗

U2
∗

]

, (20b)
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Figure 5. (a) First 10 singular values of Qx̄D
, (b) wall-normal variation (real part) of the ũx1 ,nych

(red), ṽx1 ,nych
(blue), and w̃x1 ,nych

(green)

components of the first column of B̄D.

in which U1 ∈ C
m×g, Σ1 ∈ R

g×g and g is the number of ‘significant’ disturbance inputs, obtained by

inspecting the diagonal elements of Σ1, shown in Figure 5(a). Based on this Figure, a disturbance model

with just two inputs was selected, i.e. g = 2. A disturbance input matrix B̄D ∈ C
m×g was then defined as

follows:

B̄D :=U1

√

Σ1. (20c)

Note that B̄DB̄∗
D ≈ Qx̃D

. Of course, the question of whether or not this was the ‘best’ disturbance model

for the purposes of control or estimation is open for debate. The present model was chosen purely on the

grounds of convenience and the fact that it is physically plausible. For example, it is interesting to plot the

wall-normal variation of the elements of the first column of B̄D, since this represents the ‘shape’ of the

principal disturbance entering the state. Figure 5(b) shows this variation for the real part of the elements

corresponding to ũx1,nych
, ṽx1,nych

and w̃x1,nych
. As expected, the disturbances are mainly confined to the

boundary layer. The forcing term B̄ in (19a) was obtained from the following;

[
B̄

Ḡ

]

= T B̄D, (21)

where Ḡ ∈ C
(n−m)×g and T is the transformation matrix in (13a).

With respect to measurements, the wall-normal gradients at the wall of the streamwise and spanwise

velocities were used, in the sensor location planes x1, x2 and x3:

















∂ ũx1,Nych
∂y

(k)

∂ w̃x1,Nych
∂y

(k)

∂ ũx2,Nych
∂y

(k)

∂ w̃x2,Nych
∂y

(k)

∂ ũx3,Nych
∂y

(k)

∂ w̃x3,Nych
∂y

(k)

















︸ ︷︷ ︸

yk

=

















Y1∗ 0 0 0 0 0 0 0 0 0 0

0 0 Y1∗ 0 0 0 0 0 0 0 0

0 0 0 0Y1∗ 0 0 0 0 0 0

0 0 0 0 0 0Y1∗ 0 0 0 0

0 0 0 0 0 0 0 0Y1∗ 0 0

0 0 0 0 0 0 0 0 0 0 Y1∗

















︸ ︷︷ ︸

C̄D

xDk
, (22)

where yk ∈ C
p, with p = 6, C̄D ∈ C

p×m, and Nych
denotes the Ny-th Chebyshev node (corresponding to
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the node at the wall). The notation Y1∗ is to be interpreted as ‘row Ny and all columns of the matrix Y1’,

and each zero entry is a row vector of Ny zeros. The output equation (19b) was formed as follows:

yk = C̄DS

[
xk

zk

]

+ vk = [C̄ H̄]

[
xk

zk

]

+ vk

= C̄xk + D̄wk + vk. (23)

where H̄ ∈ C
p×(m−n) and D̄ := −H̄Ḡ (Schön et al. 2003). Note that, although difficult to obtain ex-

perimentally, wall-shear stress information was employed in this study since this is sufficient to enable

estimation of the flow-field above the wall, at least in the linear (transient growth) case (Bewley and

Protas 2004).

Thus, with all terms in (19) defined, a discrete-time-varying Kalman filter (Franklin et al. 1997, p.

391) was synthesised for the system. Note that this filter produces estimates x̂k, but it is straightforward

to interpret these states in terms of the velocities and pressures in x̂Dk
via the transformation:

x̂Dk
= S

[
x̂k

ẑk

]

. (24)

where S is the transformation matrix in (13a). The results are described in the next section.

7 Results and Discussion

The streamwise velocity perturbation fields above each of the sensing locations are shown in Figure 6

for the initial and three subsequent sample times. It should be noted that the initial state of the estimator

is zero. Clearly, the Kalman filter, employing a low-order, linear model of the Navier-Stokes equations,

a noise model with only two stochastic inputs, and measurements obtained solely from wall shear in-

formation, is reconstructing the characteristic streaky disturbances within the transient growth region of

the boundary layer. It should be noted that the estimated streaks are of approximately the correct shape,

location and magnitude, despite uncertainty in the initial conditions. Thus, the main aim of this paper is

achieved.

Quantitatively, the estimates differ slightly from the DNS data. Figures 7, 8 and 9 shows the estimated

versus actual streamwise velocity components at three different heights above the wall (and within the

boundary layer) in the central streamwise sensing plane. As is to be expected, as distance above the wall

(where the sensors are located) increases, so too does the error between the estimates and the DNS data.

Convergence of the Kalman Filter was deduced by studying the convergence of the variance-related

quantity ‖R‖2,y,[0 k], where R :
[
w∗

k v∗k
]∗ 7→ x̂Dk,y,u

− xDk,y,u
, for k ∈ [0 Nk]. Here, x̂Dk,y,u

denotes the es-

timate of a streamwise velocity Fourier component at a particular height above the wall. The quan-

tity ‖R‖2,y,[0 k] was defined as follows:

‖R‖2,y,[0 k] :=

√
√
√
√1

k

k

∑
n=0

{(

x̂Dk,y,u
− xDk,y,u

)∗(
x̂Dk,y,u

− xDk,y,u

)}

. (25)

Figure 10 shows a plot of this quantity against sample time tk as k is increased from zero to Nk = 1201,

for the three different heights in Figures 7, 8 and 9. This plot clearly shows that the variance of the error

between estimates and DNS data is lower closer to the wall, and also suggests convergence for tk ' 1000.

It is also interesting to observe from Figures 7, 8 and 9 the presence of a delay between estimates

and data that appears to increase with height. The cause of this apparent delay is not clear, but could

pose implications for the design of feedback controllers, since these would need to compensate for the
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Figure 6. Streamwise velocity perturbations ũx,y at four different times. DNS data is on the left and Kalman filter estimates are on the right.
Red (blue) contours are regions of relatively high (respectively, low) streamwise velocity.
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Figure 7. Real and imaginary parts of the streamwise velocity perturbations ũx at a height above the wall of y = 0.23. Actual velocity
components are shown in blue, whilst estimates are shown in red.

Figure 8. Real and imaginary parts of the streamwise velocity perturbations ũx at a height above the wall of y = 0.35. Actual velocity
components are shown in blue, whilst estimates are shown in red.

delay. However, it is encouraging to observe that this delay is small close to the wall, and so may not be of

significant cause for concern given that the actuators of any practical scheme are most likely to be located

on the wall. Ultimately, assessing how good the estimates are clearly depends on the model employed

and the underlying objectives for that model. With respect to closed-loop control, given that feedback

reduces the effects of uncertainties such as plant/model mismatch, then depending on the particular

closed-loop performance specifications, a model such as the one employed to produce the estimates in

the present study could well prove satisfactory.
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Figure 9. Real and imaginary parts of the streamwise velocity perturbations ũx at a height above the wall of y = 0.69 (streak-centre height).
Actual velocity components are shown in blue, whilst estimates are shown in red.

Figure 10. Variance related measure versus sample time of streamwise velocity Fourier components at heights y = 0.69 (solid line), y = 0.35
(dashed line) and y = 0.23 (dashed dotted line).

It is worth stating that the quality of the estimates is dependent on a number of modelling parameters

such as level of spatial discretisation, choice of noise model and sample rate. With respect to the latter,

the current rate was clearly sufficient to yield estimates that resolved the temporal streak dynamics

with a fair degree of accuracy. However, it is reasonable to expect that sampling at a faster rate might

improve the quality of the estimates and so it would be of interest to resample the data at a higher rate.

This would be computationally expensive, particularly since the DNS data employed in this study for the

full nonlinear problem (including statistical convergence of the turbulent region) took approximately one
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week of wall-clock time on 96 processors of the HLRB-II Supercomputer to compute. Even the transient

growth region, which is computationally less expensive, requires significant computational resources to

compute. This is in stark contrast with the real-time speed at which the current Kalman Filter computes

estimates.

Finally, it should be noted that in the present study the Kalman Filter employed a noise model de-

rived directly from the DNS data of the entire flow-field. However, in practice it is more likely that one

would only possess a small sub-set of this data, provided by sensor based measurements. Future work

may therefore attempt to construct a noise model from measurement data alone (Odelson et al. 2006,

Rajamani and Rawlings 2009).

8 Conclusions

Motivated by the problem of drag reduction via flow control, this paper began with the Navier-Stokes

Equations and employed a series of modelling approximations to yield a linear, low-order state-space

model describing disturbance evolution within the transient growth region of a boundary layer. Using

this model, together with DNS-based wall shear measurements, a Kalman filter was synthesised that

reproduced the characteristic streaky disturbances that are known precursors of turbulence, and hence

increased skin-friction drag. Such a model could easily be used for closed-loop controller synthesis.

Furthermore, it was argued that the numerical method described in this paper, for converting a system

of DAEs into an equivalent system of ODEs, significantly reduced the modelling burden by allowing

straightforward satisfaction of boundary conditions whilst dispensing with the need for commonly em-

ployed parallel-flow assumptions and velocity-vorticity transformations.

Given the complexity of the underlying system, the limited measurements and the simplicity of both

the model and the estimator, the velocity-field estimates were very encouraging. Future work could focus

on integrating wall actuators as part of a complete closed-loop feedback scheme within the existing DNS

of the flow, and also deriving noise models solely from measurement data.
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Appendix A: Submatrices of (11)

The submatrices of ADnoBCs
in (11) are defined as follows:

A1,1 :=−
∂Ux1,nych

∂x
−Vx1,nych

Y1 +
3

2∆x

Ux1,nych
+

Y2 −β 2

R
,

A1,2 :=−
∂Ux1,nych

∂y
, A1,5 :=− 2

∆x

Ux1,nych
,

A1,9 :=
1

∆x

Ux1,nych
, A2,1 :=−

∂Vx1,nych

∂x
,

A2,2 :=−
∂Vx1,nych

∂y
−Vx1,nych

Y1 +
3

2∆x

Ux1,nych
+

Y2 −β 2

R
,

A2,4 :=−Y1, A2,6 :=− 2

∆x

Ux1,nych
, A2,10 :=

1

2∆x

Ux1,nych
,
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A3,3 :=−Vx1,nych
Y1 +

3

2∆x

Ux1,nych
+

Y2 −β 2

R
,

A3,4 :=−iβ I, A3,7 :=− 2

∆x

Ux1,nych
, A3,11 :=

1

2∆x

Ux1,nych
,

A4,1 :=− 1

∆x

I, A4,2 :=
1

2
Y1, A4,3 :=

1

2
iβ I,

A4,5 :=
1

∆x

I, A4,6 :=
1

2
Y1, A4,7 :=

1

2
iβ I,

A5,1 :=
1

2∆x

Ux2,nych
, A5,6 :=−

∂Ux2,nych

∂y
,

A5,5 :=−
∂Ux2,nych

∂x
−Vx2,nych

Y1 +
Y2 −β 2

R
,

A5,9 :=− 1

2∆x

Ux2,nych
, A6,2 :=

1

2∆x

Ux2,nych
,

A6,4 :=−1

2
Y1, A6,5 :=−

∂Vx2,nych

∂x
,

A6,6 :=−
∂Vy2,nych
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−Vx2,nych

Y1 +
Y2 −β 2

R
,

A6,8 :=−1

2
Y1, A6,10 :=− 1

2∆x

Ux2,nych
, A7,3 :=

1

2∆x

Ux2,nych
,

A7,4 :=−1

2
iβ I, A7,7 :=−Vx2,nych

Y1 +
Y2 −β 2

R
,

A7,8 :=−1

2
iβ I, A7,11 :=− 1

2∆x

Ux2,nych
, A8,1 :=− 1

2∆x

I,

A8,6 := Y1, A8,7 := iβ I, A8,9 :=
1

2∆x

I,
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A9,1 :=− 1

2∆x

Ux3,nych
, A9,5 :=

2

∆x

Ux3,nych
,

A9,9 :=−
∂Ux3,nych

∂x
−Vx3,nych
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+
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R
,
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2∆x

Ux3,nych
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A11,3 :=− 1

2∆x

Ux3,nych
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Ux3,nych
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Ux3,nych
+

Y2 −β 2

R
.


