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‘Abstract. Frequency domain techniques for computer-aided design of multi-

; variable feedback systems are now well established in the form of several,

! apparently distinct, design techniques. It is shown that a unified design
structure can be developed based on the theoretical concepts of precompensa-
tion, eigenvalue approximation and permissible, constant, input/output
transformations. .

Keywords. Computer-aided system design, multivariable control systems,
control system analysis, feedback, linear systems, multivariable systems.

INTRODUCTION . separately controlled by the diagonal con-
‘ troller K(s) = diag{kl(s).kz(s),..,k (s)}

The use of frequency domain ideas in the and X L .
analysis and design of output feedback con- m .
figurations for the control of a linear : ]T(s)| = I (1+g.(8)k.(s)) (1)
time-invariant plant described by the mm j=1 J d
transfer function matrix (TFM) G(s) is now :
well established (Owens, 1978; Rosenbrock, g.(8)k.(s) -
~1974) . A number of apparently distinct H (8) = diag{ ——1—?——l-z——} : (2)
design techniques have been introduced based ¢ 1+gj s)kj 5)Msism

on reduction of the multivariable problem to

ia sequence of essentially independent scalar where T(s) 4 Im+G(s)K(s) is the matrix
.designs. Particular examples of such tech- i . .
hdques sks the duverss Nyquist array (INA) return—difference and Hc(s) is the closed-
(Rosenbrock, 1974, Munro, 1979), the method loop TFM (CLTFM). In effect the closed-loop
{of dyadic expansion (MDE) (Owens 1975, 1978, system is noninteracting and its stability
11979) and the use of characteristic loci and transient performance is only 'as good as'
(CL) and approximately commutative conmtrol the responses of the scalar systems
(ACC) (MacFarlane and Kouvaritakis 1977, . A g.(8)k.(s)
Postlethwaite 1979, Kouvaritakis 1979). : h.(8) = T G lfjfm (3)
-Although the techniques have a fundamentally J gj 8 3 B
‘different conceptual basis it is clear that
the design operations have an algebraic and Although trivial, this problem does underline
‘numerical similarity. This paper describes the observation that the presence of off-
ia unified structure encompassing the appar- diagonal/interaction terms in the plant are
ently distinct design techniques based on a major source of design problems. It is
‘the ideas of Pprecompensation, eigenvalue therefore assumed that design procedures will,
'E?groximation and the use of a class of in practice, attempt to reduce or eliminate
permissible input/output transformations. (in some sense) the need to consider inter-
‘Not only do these concepts provide a theore- action effects in the design process and
itical unity, they can enable the construc- hence reduce the design to a sequence of in-
tion of general design programmes of great dependent scalar designs. The theoretical
iflexibility containing the above named tools developed will, of course, reflect
design techniques simply as special cases. this general design philosophy.
! GENERAL DESIGN PHILOSOPHY ' TRANSFORMATION OPERATIONS
For simplicity, consider the unity negative The natural approach to the diagonalization
'feedback system of Fig, 1{a). The special of a square matrix is the use of eigenvector
case of the diagonal plant G(s) = diag methods as in the CL design method. AIn
{gj(s)}l<j<m represents m non-interacting Fig. 1(a) let the forward path TFM Q = 6K

have eigenvector matrix W(s) with inverse

i ,EECh of these systems can be V(s) and corresponding eigenvalues qj(s),

5 06377 01




P

~ 1gj<m ie Q(s8) = W(s) dlag{q (8)} s ¥ (8) or

J
. m
|T(s)| = m (1+q,(s)) (4)
=104 :
L Eaks 3 ; : q,(s)
Hc(s) = W(s) diag { T—:JEt;T}1<j<mV(S)
s Ry

In effect eigenvector transformations form—
ally reduce the design problem to the analy-
sis and design of the 'characteristic trans-
fer functions' qJ(s), 1<j<m, (subjected to

- un1ty negative feedback) and the eigenvector

matrix W(s).

The pseudo-classical nature of this analysis
is deceptive in its simplicity as it provi-
‘des few explicit design algorithms. It

does however establish transformation tech-—
niques as an important component in the gen=-
:eral design philosophy.

1

'For conceptual and numerical simplicity, the
transformations suggested here (Owens 1979)
(a) introduce no extra dynamics into the sys-—
tem and (b) have a meaningful physical inter—
pretation. _The transformations take the
form G(s)r+ G(s) defined by

G(s) = P, G(s) P, (6)

fwhere PI’PZ are square, nonsingular matrices.

Such transformations certainly. introduce no "
new dynamics and the TFM G(s) can be inter-

_preted as the TFM between u(s) = P u(s) and

]y(s) = Pl y(a) s

lIt is a natural first step to demand that
‘the transformation pair (P 2 ) be real.

In such a case the operatlons are a general-
ization of many previously defined design
operations:

]

Constant precompensatlcn' The map G(s)+C(s)K
(where K is a constant, nonSLngular control-
ler) can be regarded as the map GG = GK
induced by the transformation pair (I K )
and describes such operations ag alignment
of high frequency eigenvectors in the CL and
‘ACC method and pseudodiagonalization in the
‘direct Nyquist array (Rosembrock 1974).

| 5 i
Constant pre- and post-compensation: Writ-
|1ng equatlon (6) in the form

f &) = ¥, G(s) B )
'(uhere L(s) denotes the inverse of the TFM
'L(s)) it is seen that the pair (PysP,) can

be given an interpretation in terms of con-
‘stant post- and pre-compensation operations
‘a8 used, for example, in the INA.

1

There are sound theoretical and physical
reasons (Owens 1979) for permitting the
transformation matrices to have complex

elements in a restricted form, just as it is
necessary to allow complex conjugate pair
eigenvectors in spectral analysis of oscil-
latory linear systems. This device also
allows many basic operations of the MDE
(Owens 1979) to be described by transforma-
tions of the form described. The class of
transformations permitted are as follows:

Definition (Owens (1979)

The mxm nonsingular complex matrices
B,
T
Pl = [ul,az,..,am] » P2 = BZT
B
m

(8)

are said to be permissible if the columns
(resp. rows) of P (resp. P ) are real or

exist in complex cunlugate pairs and if

. = : . = % 1<j<m.,
BJ BE(J) whenever aJ GQ(J)’ <j<m

(Note: the map j~ £(j) is a one-to-one map
of the integer set (1,2,3,...,m) onto itself
by the structure and nonsingularity of P1

and £(2(j)) = j, 1<j<m). ’The potential
benefit of introducing complex transforma-
tions can be illustrated by examples (Owens
1979) and the basic theorem of the MDE.

Theorem 1 (Owens 1979)

1f ]G(im1)| # 0 and G(—iml)G-l(iml) has a

complete set of eigenvectors then there
ex1sts a permissible transformation (P (w ),

? (m )) such that G(s) is diagonal at the
point g = 1w1 and diagonally dominant in an

open frequency interval containing that
point.

Equivalently, under mild (generic'!) condi-
tions, permissible transformations can be
used to transform a given system into a sys-
tem possessing no lnteraction at a specitied
frequency point, Moreover it follows that
the class of permissible transformations is
the smallest class that can achieve this

objective.

We now describe some properties of permis-
sible transformations (the proofs are
straightforward and omitted here):

Theorem 2

If the transformation paxr (P 2) is per-

missible, then (a) P 4 P P, is real and non-

1 2
sxngular and (b) (P Pl ). (c) (P PZ) and
(d) (P M 1 ) are perm1551b1e.




TRANSFORMATION OF THE CONTROL
PROBLEM

The previous section has shown that constant
plant and controller operations can be re—
garded as permissible transformations and
that this is true of all three design tech-
niques considered. Another major applica~
tion of the ideas is in complete transforma-
tion of the design problem. More precisely
(Owens 1979), the analysis and design of the
configuration of Fig. 1(a) can be replaced
by that shown in Fig. 1(b), provided that

K(s) = Pz'li(s)pl'l (9)

ie if the forward path control systems are
related by the permisslble (Theorem 2(d))
-transformation (P ). In particular,

the relations 2 1 i
|1m+c(s)K(s)| = [rm+é(a)ﬁ(s)| (10)
-1 _ P e |
(1m+c:x) & = P1(1m+a<) GKP, (11)

indicate that the closed-loop stability of
the two systems is identical and that the
CLTFM's are related by the perm1551b1e
(similarity) transformation (PI'P b= )
(Theorem 2(b)).

The unifying influence of this transforma-
tion can be illustrated as follows:

Constant precompensation. The design of the
.factored controller K(s) = Kch(s) (where Kp

is a real, nonsingular precompensator) for
the plant G(s) can_be regarded as the design

“of the controller K(s) = K (s) for the trans-

‘formed plant G(s) = G(B)K .

transformation in this case is (I KP
Constant pre— and post-compensation. Con-
sider Fig. 1(c) with real, nonsingular con-
stant postcompensator L and forward path
controller K (s) = K K (s) The design

process can be regarded as the design of the
controller K(s) = Kc(s) for the transformed

The permissible
o

" plant G(s) = LG(s)KP generated by the per=-

missible transformation (L-I,K -1). The
itransformation of equation (9) then genera-
‘tes the configuration of Fig. 1(a) with for-
ward path controller K(s) = K K (s)L =

K (I)L derived from Fig. 1(c) by ‘moving L

around the loop'.

Approx1mate1y commutative control. An appox-
imately commutative controller takes the

form K(s) = Wldlag{k (s)}1<3< Vl where Wl

(resp. v ) is a real approximation to the

elgenvector (resp. inverse eigenvector) mat-
rix of G(s) at some desired frequency point

8= iwl. Comparing this with equation (10)
it is seen that K(s) can be regarded as gen=-
erated from K(s) = dlag{k (s)}1<j<m and

induced by the permissible transformation

(P ,P ) w I—I,Wl-l). The corresponding

:ransformed plant is G(s) = vc(s)w

Method of dyadic expansion. This is the
only method (at this stage) that explicitly
makes use of complex permissible transforma-
tions. The pair (PI’PZ) are computed

(Owens 1978) to generate (Theorem 1) a trans—
formed plant G that is diagonal at a desired
frequency point s = iml. The controller

K(s) is set equal to a diagonal matrix
dlag{kj(a))1<j(m and the controller K(s)

generated by equation (10).

REALIZABILITY CONDITIONS

In practice, both G and K have rational poly-
nomial elements. For physical realizability
these polynomials must have real coefficients.
These conditions are satisfied (for G say)

iff

G(s) = 6(s) : (12)

Sheorem 3

1f (PI'PZ) is permissible, then eqn. (12)
holds iff

G5 ®) = 6y (5540 @ Y j.x (13)

Proof Substitute eqns (6) and (8) into (12)

Z G (s)ag(J) E(k)E E G (B)u B
(14)

and equate coefficients of uijT\jj,k.

It is important to note that this theorem can
also be applied to constructsuitable con-
straints on K(s) to ensure the physical
realizability of K(s). More precisely, as

(Pz_l,Plul) is permissible (Theorem 2(d)),
then:
Lorallary

K(8) = K(s) iff K (5) = KE(J)Z(k)( s)

Y ik

The following result is also important:

Theorem 4

The set of TFM's G satisfying equation (13)
is clesed under multiplication and inversion.

Proof Suppose that G and K satisfy (13) and
let Q = GK thenm

Q,, (8) = izlsji(S) K, (8)




m . - Ve
7 EGn(;)z(;)(“)“z(i)a(k)m

: = Q000 @ o
If G satisfies (13) with inverse K then

m < ——
§,, = 21 Gji(s) Kik(s)

¥ ears IR g i
P ; +.m S
Ty - T
: 12 z(;)z(lfs) Ky, () (16)
: AT - m = o -
- S ® izl Gi(j)z(i)(s)Kz(i)zgiggs)

The result follows from the uniqueness of
‘the inve?se and ij = 6E(j)ﬂ(k)\/ Jske

DIAGONAL DOMINANCE

The choice of (Pl,sz can be based on physi-

.cal grounds, trial and error or theoretical
synthesis procedures. In all cases a well-
defined objective is required., Our atti-
tude is that permissible transformation
techniques can only be of value if the
. transformed plant G is 'easier to control'
"than G. Within our general design philo-
sophy, design problems reduce as interaction
effects are reduced, Therefore the atti- .
tude taken here is that permissible trans-
formations will normally be constructed to

: - reduce interaction effects in G over a

3 desired frequency band.

.The natural (but non—unlque) measure of
interaction effects in € in a given frequency

(15)

'proximately diagonal in the frequency inter-

does not guarantee the d.d. of E over a
frequency interval large enough to have

practical value. In such cases we can
follow the INA by writing K(s) = K (E)K (s)

vwhere K (s) is a ggpamlc precompensator in-

troduced to ensure that GK (or its inverse)

is d,d. over a desired frequency interval
and Kc is a compensator introduced to inject

phase and gain compensation._ We will
assume that the compensator K is diagonal,
Hdi s )

which is the natural choice if &KP is ap=-

val of interest.

The only constraint on the choice of ﬁ and
Kc is the physical realizability of K.
This is ensured (theorems 3 and 4) if EP

and K (or their inverses) satisfy con-
A ™

;8traints of the form of equation (13).

error basis of row or colum operations or ol

4 interval is its degree of diagonal dominance

The choice of KP can proceed on a trial and

algorithmic bases as in pseudodxagonallza— '
tion. The precise method is not relevant
here. If, however, Kp is generated as a

product of trial precompensators, theorem &
indicates that each factor must satisfy
constraints of the form of equation (13).
The resulting controller K can be implemen-
ted directly or in the form of cascaded
blocks K =K K where (Theorems 2 3)

K, (8) 4 2, ~lg (s)P o RO sp K RS

P1 = are physlcally reallzable.

A GENERAL DESIGN ALGORITHM

The basic building blocks of permissible
transformation, diagonal dominance checks

(Rosenbrock 1974, Owens 1978, 1979). In
practical terms, if we can choose permis-
1 sible (PI’PZ) such that G (or its inverse)

is diagonally dominant (d.d.) on the Nyquist
D-contour the basic theorems of the INA
‘method can be used to design a diagonal K(s).
'If attention is restricted to real (P »P )

then the alignment and pseudodlagonallzatlon
ialgorithms (say) can be applied, but success
‘is not guaranteed even over a finite fre-
quency interval, The potential benefit of
accepting complex permissible transforma-
tions is illustrated by the basic theorem
.(Theorem 1) of the MDE ie diagonal dominance
.over a frequency interval containing a speci-
fied point is (almost) always possible. In
the case of dyadic transfer function matrices

and Erecomgensatlon have been shown to pro-

vide a unified desctlptlﬂn of most of the
basic operations in the INA, CL and ACC and
MDE design techniques. We now show that
they do, in fact, generate these algorithms
and can generate new algorithms by (a) new
combinations of these building blocks and
(b) 1ntr0duc1ng new algorlthms for con-
structing (P ), o and KC.

A common feature in the three design tech-
niques is manipulation and compensation of
plant behaviour in an open, connected sub-
set Q of the Nyquist D-contour. A general
design algorithm for this purpose is pro-
posed in Fig. 2. The INA, CL and ACC, and
the MDE are simply special cases of this
algorithm generated by specific choices of

(DTFM's) (Owens 1978, 1979), when G is
_diagonal, the design approach is particularly
;simple.

5 PRECOMPENSATION N

= Constant perm:.ssﬂ:le transformat].on of G

=INA: Take R = D and the design algorithm

‘respectively to achieve row dominance of

(PI’PZ)’ Kp and Kc:

in terms of inverse systems. 1Choose real

pre~ and post-compensators P2 and Pl"

Next choose an inverse

_G = Pngl onrﬂ.




dynamic precompensator KP to improve the

_dominance of KpG if necessary. Next

" choose a diagonal compensator K. to compen-

" gate the diagonal terms and satisfy the d.d.
conditions of the INA stability theorem.

Lt s -1
- Finally, construct K P2 KchPl by mov-

ing the postcompensator P1'1 around the
loop. ’ ' '

ACC: Consider the representative case of
high frequency alignment and intermediate
. frequency compensation. Set 2 = {5 = jw:
Q;MBmm} where w is an intermediate frequency

" above which compensat%on ii re?uired.
Choose (Pl,Pz) = (Vm ,Wﬁ Kh ) where Kh

is a real nonsingular matrix constructed to
-align the characteristic directions of GKh

:at high frequencies and Wm (resp. Vm) are

i real, nonsingular approximations to the

i eigenvector (resp. inverse eigenvector)
‘matrix of G(imm)Kh. As originally des-

' cribed (MacFarlane and Kouvaritakis, 1977)
the technique can be regarded as choosing
Kp(a) = Im and Kc(s),E dlafikj(fi}lfjﬁm on
i the assumption that G = P1 GP2 is

' diagonal with diagonal terms equal to the
"CL of GKh. The general design algorithm

jenables the testing of this assumption by

1 examination of the degree of d.d. of & in Q

;and also suggests that the inclusion of a -
 precompensator K may improve the success -

.of the technique' :

o ¥

iMDE: Consider, for simplicity, the situa-

"tion of an intermediate frequency point

8 = iwm around which compensation of system

Choose (pI’PZ) such that

iG is. diagonal at s = imm and hence d.d. in
Set K (S)Elm
jand then Kc(s) - diag{kj(ﬁ)]lfjfm’ choosing

{CL is desired.
‘a vicinity @ of this point.

“the {k.(s)} to produce the desired compensa-

ftion to the diagonal terms of G (regarded as
rational approximations to the CL If

successful the controller K = PZ-{KCPIFI is

!conatructed. As with the ACC the general
‘design algorithm suggests that the MDE can
be extended by inclusion of a precompensator

to increase the interval f of diagonal
dominance and hence extend the frequency
interval over which accurate CL compensation
.can be achieved. ;

"(Note: the ACC and MDE algorithms are, in
practice,applied at high-intermediate and

low frequencies and the controllers com=
;bined in a standard manner (Owens 1978,1979).

i bISCUSSION AND CONCLUSIONS

.The apparently diverse nature of several

.compensators,

frequency domain multivariable design tech-
niques has been unified in the theoretical
framework of permissible transformations,
diagonal dominance checks and precompensation.
A general design algorithm for system com-
pensation in a subset @ of the Nyquist D-
contour has been constructed from these

three modules and it has been seen that the
INA, CL and ACC and the MDE fit into this
framework simply as special cases.

A major step is the introduction of complex
permissible transformations and, hence,
TFM's with rational polynomial elements with
complex coefficients. This departure from
normal engineering practice is meaningful
and, moreover, vital if further progress in
design methods is to be made at a theoreti-
cal level. Examples (Owens 1979a) certain-
ly suggest that the benefits can outweigh
any apparent difficulties and the basic
theorem of the MDE (Theorem 1) also implies
that, if diagonality/diagonal dominance is
taken as an important part of our design
philosophy, then the acceptance of complex
permissible transformations is necessary if
design algorithms are to have any (generic)
guarantee of success! o

The structure of the general design algorithm
suggests that any division of the three
design techniques (in design programme terms)
is purely artificial. In particular, the
general design algorithm could be realized

as a general design package of great flexi-
bility, containing these techniques simply

as alternative routes through the package
obtained by specialized choices of trans-
formation and the use (or otherwise) of pre-
Such a programme would need
a reconsideration of data handling to allow
complex elements but the potential benefits
obtained by (a) breaking down the barriers
between established techniques and (b) the
generation of new algorithms by, for example,
the introduction of precompensation and
diagonal dominance checks into the ACC and
MDE, will, in the authors opinion, far out-
weigh the initial interpretive difficulties.

Finally, the emergence of a root-locus theory
for multivariable systems (Owens 1678,1979b,
Postlethwaite 1979) has focussed attention on
the configuration of Fig. 1(d). Minor loop
feedback H plays an important role in com-
pensation studies for multivariable root—
loci (Owens 1979b) and can be a great help

in achieving diagonal dominance as is easily
seen by examining the inverse forward path
system KC{KPG+H}. The introduction of per-

missible transformations into this picture
is achieved by performing the transformations

pe ) B | ]
G PlgPZ:le 7, 1KPP1 R =B R
H = PIHP1 and considering the configuration

with G,KP.Kc and H replaced by G,KP,KC and H

respectively. The identities (c.f. eqns

(10), (11))




=1

v S II (LG ) cx Kol = 1 e B

GE K | (18)

=1 =1
(Imf(;m+GKpH) GKch) (ImfGK H) "GK Kc

.. = 7Y _1"" . e
B P1(1m+(1m+a<pn) cxpicc) (I +GK H)
= e
! Fupastoior
; : K 1 (19)
: i e W n i :
e NG ! . indicate that the two configurations have

g T "' ! identical stability characteristies with

+ CLTFM's related b{ the permissgible trans-

) i formation (P B ) : 2
i}U'f'IEI.‘..':r' T G !
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Fig. 2. General Design Algorithm




