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Abstract. Pressure-dependent 13C chemical shifts have been measured for aliphatic 

carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, 

demonstrating pressure-independent compressibilities. CH3, CH2 and CH carbon shifts 

change on average by +0.23, -0.09 and -0.18 ppm respectively, due to a combination of 

bond shortening and changes in bond angles, the latter matching one explanation for the 

γ-gauche effect. In addition, there is a residue-specific component, arising from both local 

compression and conformational change. To assess the relative magnitudes of these 

effects, residue-specific shift changes for protein G were converted into structural 

restraints and used to calculate the change in structure with pressure, using a genetic 

algorithm to convert shift changes into dihedral angle restraints. The results demonstrate 

that residual 13Cα shifts are dominated by dihedral angle changes and can be used to 

calculate structural change, whereas 13Cβ shifts retain significant dependence on local 

compression, making them less useful as structural restraints. 
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Introduction 

The application of hydrostatic pressure to protein solutions leads to changes in both 

structure and dynamics of the proteins, because pressure favors states with smaller partial 

molar volume. High pressure has only a small effect on internal energy, and is therefore a 

much less drastic perturbation than for example temperature (Akasaka 2006; Meersman 

and Dobson 2006). It is thus a powerful method for investigating protein structure and 

dynamics. Structural changes in several proteins have been determined as a result of 

pressure (Iwadate et al. 2001; Kitahara et al. 2005; Refaee et al. 2003; Williamson et al. 

2003; Wilton et al. 2008b), and have allowed characterization of low-energy excited 

states and of protein compressibility, which in turn relates to volume fluctuations of the 

protein at ambient pressure. Using pressure it has been possible to characterize the initial 

stages of pressure denaturation (Kitahara and Akasaka 2003; Refaee et al. 2003; Wilton 

et al. 2008b), and it was demonstrated that slow concerted motions such as ring flips are 

slowed at high pressure, whereas more rapid motions such as those probed by backbone 

15N relaxation are unaffected (Li et al. 1999; Orekhov et al. 2000; Sareth et al. 2000).  

 One of the most useful and sensitive parameters for characterizing structural 

change has been chemical shift. 1H shifts can be used to obtain detailed structural 

information (Refaee et al. 2003; Williamson et al. 2003; Wilton et al. 2008a; Wilton et al. 

2008b), while 15N shifts also provide structural information (Akasaka and Li 2001; 

Akasaka et al. 1999). So far, 13C chemical shifts have not been investigated. They are 

however expected to be very useful, because there is a clear relationship between 13Cα 

and 13Cβ shifts and backbone dihedral angles (Iwadate et al. 1999; Spera and Bax 1991; 

Wishart and Sykes 1994), and therefore changes in 13C shift should be useful for 
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describing changes in protein structure with pressure, for example pressure denaturation. 

We therefore present here studies on the pressure dependence of 13C shifts, aimed at 

determining what information they carry and how this can be used to characterize 

structures at high pressure. Pressure-dependent chemical shifts also offer a unique way of 

detecting the effects of bond and orbital compression. 

 

Materials and Methods 

 

Staphylococcal protein G B1 domain was expressed as the double 13C, 15N-labeled form 

and purified as described (Tunnicliffe et al. 2005), while double labeled barnase was 

expressed and purified as described (Cioffi et al. 2009). Chemical shift assignments were 

taken from Tunnicliffe et al. (2005) and Korzhnev et al. (2001) respectively, and 

confirmed using standard triple resonance NMR experiments. All NMR measurements 

were carried out on a Bruker Biospin DRX-800 operating at 800 MHz for proton, using a 

quartz cell connected to a hand pump, as described (Kamatari et al. 2004). 13C chemical 

shifts were measured using constant-time HSQC spectra with folding in the carbon 

dimension to increase resolution. Spectra were acquired at 3 MPa (rather than at 

atmospheric pressure, 0.1 MPa, to avoid the risk of getting small bubbles in the solution), 

and at 50, 100, 150 and 200 MPa. Data were processed using FELIX (Accelrys Inc., San 

Diego, CA), and peaks were picked into a database which was analyzed using Excel 

(Microsoft Corp, Seattle, WA). 

 Cα and Cβ chemical shifts were calculated from the protein structure using the 

relationships described (Iwadate et al. 1999). The 20 amino acids (minus histidine and 
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cyst(e)ine, for which there were not enough experimental data) are grouped into five 

groups ([trp, leu, met, phe, tyr], [glu, gln, lys, arg, asp, asn], [val, ile, thr, pro], [ala, ser] 

and [gly]). Each group has a different dependence of secondary chemical shift (ie 

experimental shift minus random coil shift) on the backbone dihedral angles ϕ and ψ, 

with different distributions for Cα and Cβ. In addition, the (ϕ, ψ) chemical shift surface 

is different depending on whether the carbonyl and amide nitrogen are hydrogen bonded, 

implying that there are four possible surfaces for each residue, with carbonyl or amide 

hydrogen bonded or not. A full prediction of conformation-dependent shift therefore 

requires a total of 20 (ϕ, ψ) chemical shift surfaces (16 for Cβ since there is no glycine 

Cβ surface). The XPLOR program, using the 13C restraints implemented by Kuszewski et 

al. (1995), was therefore modified to include 20 surfaces, and is available on request. For 

the XPLOR calculations, the crystal structure 1pga (Gallagher et al. 1994) was refined 

using multiple molecular dynamics trajectories at 200 K in the absence of chemical shift 

restraints followed by averaging of the structures until it reached equilibrium, as 

described (Wilton et al. 2008b). Heavy atom masses were set to 100, and after an initial 

energy minimization, a dynamics trajectory was calculated at 200 K using 1000 steps of 1 

fs followed by 6000 steps of 2 fs (for the direct shift restraints, only 2000 steps were 

necessary), followed by slow cooling over 20 stages to 0 K, each consisting of 50 steps of 

0.5 fs, and a final energy minimization. For the direct shift restraints, a carbon shift force 

constant of 1250 kcal mol-1 ppm-2 was used, while the dihedral angle restraints followed 

standard protocols. Each calculation was repeated 50 times and the resultant structures 

were averaged. 
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 The genetic algorithm (GA) used a population of 200 chromosomes. Each 

chromosome contains 168 ‘genes’ (one for each backbone atom) which define the 

position of a backbone atom relative to its neighbors by using backbone dihedral angles. 

Mutation of the gene changes the position of one backbone atom whilst keeping the bond 

lengths to its neighbors unchanged. For the three-atom fragment A-B-C, mutation of the 

gene B moves atom B to a different location but keeps the distances rAB and rBC fixed: it 

therefore moves B on a circle defined by the intersection of two spheres with radii rAB and 

rBC. This will therefore change the two dihedral angles corresponding to rotations about 

the AB and BC bonds. Mutations produced a random change in dihedral angles in the 

range ± 20º. The GA was run using a crossover probability of 0.1, which was turned off 

after 200,000 iterations. A crossover means that the genes of residues 1 to m are 

combined with the genes of residues m+1 to n, where n is the number of residues. It was 

run for a total of 106 iterations, and each run was repeated a total of 10 times with 

different starting random seeds in order to check for good sampling of conformational 

space. At each iteration, the fitter chromosomes were selected for mutation/crossover to 

make daughters, using a random selection such that the fittest was picked 50% of the time, 

the second fittest 25% of the time, the third fittest 12.5%, etc. Similarly, unfit 

chromosomes were replaced by fitter ones on the same random basis but inverted such 

that the least fit is picked 50% of the time, the 2nd least fit 25% of the time, etc. If the 

iteration produced a fitter solution, this replaced the unfit chromosome. 

 The fitness function was based on the chemical shifts of Cα and Cβ, and 

compared the calculated shifts (based on the (ϕ, ψ) chemical shift surfaces) with the 

experimental shifts. If the calculated Cα and Cβ shifts for a particular residue are Ca and 
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Cb respectively, and the target experimental shifts are Ta and Tb, then the fitness for each 

residue is 
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−

=+
−

=
b

bb
b

a

aa
a T

TC
F

T
TC

F  

and the calculated fitness is given by  
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where the summation runs over all residues. If the target shift is undefined, then Fi is set 

equal to 1 (i = a or b). In addition, penalties are applied for changes in ϕ or ψ of more 

than 15º from the starting value, and changes in ω of more than 5º from 180º. If the 

difference in ϕ or ψ is more than 15º, then  

Fn
’ = Fn(1 + 0.2{[difference in angle-15]/15}2) 

and if the difference in ω is greater than 5º (ie if -175 < ω < 175), then 

Fn
’ = Fn + 3(1-|ω/180|) 

 

Results and Discussion 

 

13C chemical shift changes 

 

13C chemical shifts were measured from CH HSQC spectra of staphylococcal protein G 

B1 domain and the H102A mutant of barnase (Bacillus amyloliquefaciens 

endoribonuclease) at 25 ºC, and at a range of pressures from 3 MPa (30 bar) up to 200 

MPa in steps of 50 MPa (Fig. 1). For both proteins, the majority of chemical shift 

changes were linear with pressure (Fig. 2). In our previous studies of 1H chemical shift 
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changes with pressure, we have shown that linear shift changes are due to a gradual linear 

compression of the structure, while non-linear changes indicate the presence of 

alternative states with lower partial molar volume, whose relative concentrations increase 

with pressure. Although such states are of great interest for uncovering details of 

pressure-induced unfolding, they are not the focus of this work, and we therefore 

extracted the initial linear shifts by fitting chemical shift changes to a second-order 

polynomial, and using the first-order coefficient as the linear gradient. Figure 2 

demonstrates that there are a range of gradients. However, on closer inspection it is clear 

that pressure-induced shift changes fall into three distinct groups: methyl, methylene and 

methine protons have distinct chemical shift behavior, listed in Table 1. These three 

groups have significantly different shift changes as assessed by t-tests, and there was no 

significant dependence on secondary structure, nor on protein. 

 There are a number of possible explanations for this observation. There is a well 

characterized effect on 13C shift of bond length, that has arisen in quantum-chemical 

calculations of nuclear shielding, because of the need to take into account rovibrational 

effects (Jameson 1977; Laws et al. 1993; Lazzeretti et al. 1987). It is consistently true that 

a shortening of the bond length to any heavy atom produces an increase in shielding, or in 

other words a decrease in the chemical shift (Jameson 1977). Laws et al. (1993) observed 

an effect of approximately 60 ppm/Å for Cα, depending to some extent on the atoms and 

bonds involved: the effect for valine Cα was 60 ppm/Å but the effect for alanine was 57 

ppm/Å. The most buried carbon atom in amino acids is the Cα atom, which is therefore 

most likely to be dominated by this effect, if present. Proteins have a typical volume 

compressibility of approximately 0.5%/kbar (Gekko and Hasegawa 1986; Refaee et al. 
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2003; Williamson et al. 2003; Wilton et al. 2008b). However, in proteins, most of the 

compressibility comes from compression of cavities and hydrogen bonds, not covalent 

geometry. A better model for bond compression is therefore graphite or diamond, which 

have linear covalent bond compressibilities of 0.02% and 0.0055%/kbar respectively 

(Lynch and Drickamer 1966). Assuming that the shielding effect is additive for each 

heavy atom covalent bond, and that bonds to protein Cα have compressibilities 

somewhere between the sp3 value of diamond and the sp2 value of graphite, we may 

therefore expect an effect on Cα shifts of between approximately -0.1 and -0.05 ppm due 

to bond compression over 200 MPa. It therefore appears that a significant fraction of the 

chemical shift changed observed for Cα (and possibly other CH and CH2) carbons arises 

from bond compression. This does of course not explain the deshielding seen for methyl 

carbons. 

 Throughout the 1960’s and beyond, observations of 13C chemical shifts in organic 

compounds consistently observed what is usually known as the γ-gauche effect, in which 

a 13C shift is shielded by γ substituents when they are in a gauche arrangement, ie when 

they are in close 1-4 steric proximity to the carbon. The effect is also observed for other 

heavy nuclei. Furthermore, a β effect was also described, in which β substituents produce 

a deshielding. These are generally explained in a somewhat vague way as a steric effect 

(Wehrli and Wirthlin 1976), although it is clear that the effect is not simply a repulsion 

between hydrogen atoms (Barfield and Yamamura 1990; Seidman and Maciel 1977). 

Early calculations (Marshall and Pople 1960) concentrated on the effect of steric 

compression on orbital geometries, and suggested that van der Waals repulsions should in 

general be shielding until the interacting atoms become very close, at which point they 
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become deshielding. A number of subsequent calculations became more sophisticated, 

but retained the same basic explanation. A popular model proposed by Li and Chesnut 

(1985) suggested that the γ-gauche effect is a weakly attractive term, in which the 

proximity of neighboring atoms leads to an expansion of atomic orbitals and hence a 

small shielding, whereas the β-effect is a stronger deshielding caused by contraction of 

atomic orbitals due to the very close proximity of β substituents. If this effect is 

responsible for the pressure-dependent effects seen here, then we would expect to see a 

relationship between the number of β substituents and the shift change, since we would 

expect that the relatively uniform compression of the protein would affect all local 

geometries roughly equally. Such a correlation is indeed found, but this is primarily 

because methyl groups (which in general have few β substituents) have a markedly 

positive or deshielding shift change (Table 1). If methyl groups are removed from the 

analysis, there is no correlation. We therefore conclude that this explanation does not 

account well for the observed data. In particular, it does not account well for the clear 

relationship between shift change and number of attached protons. To some extent, this is 

also a relationship between shift change and position along the sidechain, since methyl 

groups are always at the end of a sidechain, whereas CH2 are always in the ‘middle’ and 

the largest group of CH are Cα carbons, at the other end. 

 Another popular explanation of the γ-gauche effect is again that it is a steric effect, 

but arises from changes in bond angles due to steric compression (Gorenstein 1977; 

Lambert and Vagenas 1981). A change in bond angle implies a change in bonding orbital 

hybridization, and therefore a change in the shielding of the nucleus. This also explains 

changes in 1JCH coupling constants, which are suggested to have the same origin. A γ-
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gauche substituent thus generally leads to an upfield shift change and a decrease in 1JCH. 

By contrast, the effect of pressure on methyl groups is to cause a downfield shift (Table 

1) and an increase in 1JCH (Jackowski et al. 2007). In other words, whereas a γ-gauche 

substituent leads to a reduction in bond angle, pressure tends to produce a ‘splaying out’ 

of methyl groups, and therefore changes in the opposite direction. This explanation 

accounts for the difference in pressure-dependent shift behavior between CH3 and other 

carbons: the ‘splaying out’ is much greater for methyls not only because they have more 

protons but also because they are at the end of sidechains. 

It therefore appears that a combination of bond shortening and bond angle effects 

best accounts for the observed shift changes. We note that of the popular explanations for 

the γ-gauche effect, our data strongly favor one based on bond angle changes. 

 

Direct structure refinement against chemical shifts 

 

The preceding arguments suggest that the pressure-induced 13C chemical shift changes 

are due to a compressive effect that depends to some extent on the geometry of the 

protein. We would therefore expect that in addition to the average changes listed in Table 

1, the shift change would show significant variation depending on the local geometry, 

particularly for the ends of sidechains. However, one might expect that the more 

‘internal’ atoms would show a more uniform effect of pressure, if their shift changes are 

influenced more by bond compression and effects related to the γ-gauche effect, which 

should be approximately the same for all Cα carbons except glycine and probably proline. 
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In agreement with this expectation, we observe that the standard deviation for the shift 

change is greatest for methyl carbons and smallest for Cα (Table 1). 

 Our studies using 1H shifts (Iwadate et al. 2001; Refaee et al. 2003; Williamson et 

al. 2003; Wilton et al. 2008b) have shown that there is a small but significant structural 

change in proteins on application of the pressures used here, RMS coordinate changes 

being approximately 0.2 Å, and RMS changes in backbone dihedral angles being 

approximately 5º, with a rather larger change in sidechain dihedral angles. Cα and Cβ 

shifts have a well-known dependence on backbone dihedral angle (Iwadate et al. 1999; 

Spera and Bax 1991; Wishart and Sykes 1994), and one would therefore expect that some 

of the Cα and Cβ shift changes should be due to changes in backbone dihedral angles, 

these having a significant contribution to the overall shift change in some cases.  

 We therefore took the measured shift change for Cα and Cβ carbons in protein G, 

subtracted the mean pressure-dependent shift as listed in Table 1, and investigated 

whether the residual shift changes contain any information about the dihedral angle 

changes. We have previously shown how the structure of protein G changes in response 

to pressure (Wilton et al. 2008b), so we have a high-pressure structure for comparison. 

 As a first attempt, we used the Cα and Cβ chemical shift changes directly as 

restraints. Although the relationship between Cα and Cβ backbone dihedral angles ϕ and 

ψ is clearly defined (Iwadate et al. 1999), there is significant standard deviation in the 

relationship, due to uncharacterized local structural effects. This implies that for any 

given amino acid the Cα and Cβ shifts cannot be calculated from the crystal structure to 

better than approximately 1.0 ppm RMS. Conversely, the use of 13C shifts to calculate 

structure has an associated error in the predicted angles. For example, the popular 
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program TALOS has an average uncertainty of approximately 13° for ϕ and 12° for ψ 

(Cornilescu et al. 1999). Similar considerations apply to the programs SHIFTS (Xu and 

Case 2002), PROSHIFT (Meiler 2003), SHIFTX (Neal et al. 2003) and SPARTA (Shen 

and Bax 2007). This error is usually small enough to generate useful structural restraints. 

More recent applications of 13C chemical shifts have combined structural predictions with 

molecular dynamics (Cavalli et al. 2007) or  the structure prediction program ROSETTA 

(Shen et al. 2008) and obtained excellent results, with structures that match the more 

conventionally determined ones to within approximately 1 Å. 

 However, for this study, such methods do not have the accuracy necessary to 

calculate the sub-Å structural changes expected as a result of pressure. We reasoned 

therefore that calculation of a change in structure based on a change in chemical shift is a 

much more accurate calculation, as long as the structural change is small (which it is 

here), and is valid even if the absolute relationship between shift and structure has an 

associated error, because similar errors should apply to both the low- and high-pressure 

structures. We should therefore be able to use the change in shifts directly as restraints on 

the changes in backbone dihedral angles. We therefore took a high-resolution crystal 

structure of protein G, measured the ϕ and ψ angles for each residue, and calculated the 

slope of the (ϕ, ψ) shift map at this point. The change in shift was then applied as a 

restraint on ϕ and ψ within XPLOR, with an initial direction defined by the maximum 

slope, and magnitude of the force proportional to the shift change. Thus, the residue was 

effectively searching for the contour line in the (ϕ, ψ) map where the change in shift from 

the starting value matched the experimental value for Cα and Cβ simultaneously (Figure 

3). Because the exact shape of the (ϕ, ψ) map depends on the amino acid residue type and 
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whether it has hydrogen bonds to the backbone, it was necessary to provide 20 different 

(ϕ, ψ) maps, which required some recoding of XPLOR. 

 This method was largely unsuccessful, as assessed by a number of measures. The 

target 13C shifts were not very well met (mean error 0.07 ppm, compared to an initial 

pressure-induced change of 0.17 ppm: this should be compared to the values for 1H 

calculations, which for protein G were 0.001 and 0.054 ppm respectively). The high-

pressure structures fitted the measured 1H chemical shift changes very badly. The RMS 

structure change was almost twice as large as found using 1H shift restraints (0.4 Å 

compared to 0.2 Å), and some of the backbone dihedral angles changed by over 20º, 

which is much larger than any changes seen for the 1H calculations, and seems 

unreasonably large in view of the relatively small structural changes seen as a result of 

pressure both by NMR (Kitahara et al. 2005; Refaee et al. 2003; Williamson et al. 2003; 

Wilton et al. 2008a; Wilton et al. 2008b) and by crystallography (Colloc'h et al. 2006; 

Girard et al. 2005; Urayama et al. 2002). Figure 4 shows the Cα pseudo-dihedral angle 

(ie, the dihedral angle formed by four successive Cα atoms) for the 13C-based calculation 

compared to our earlier 1H-based calculation. For 1H the high-pressure structure was 

always very similar to the low-pressure structure, whereas the 13C calculations showed a 

number of large deviations, particularly at the start of the α-helix (residues 22-26 in 

Figure 4). And finally, with 1H restraints the high-pressure structure had as expected a 

smaller volume, with the helix moving closer to the sheet, and the edges of the sheet 

wrapping more around the helix, but with 13C restraints there was no consistent change in 

structure and the overall volume was if anything larger. 
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 There are a number of possible reasons for this lack of success, of which the main 

reason is most likely that there are many residues for which a simultaneous fit to the Cα 

and the Cβ restraint is not possible, ie the two contour lines shown in Figure 3 do not 

cross. The molecular dynamics search looks for the best possible match to both restraints, 

and in a number of cases this resulted in a best solution that had moved a long way in ϕ 

and/or ψ, to a physically unreasonable position. Changes in dihedral angles in one residue 

affect the direction of the backbone in adjacent residues, and so large errors propagate 

through the structure. In addition, we note that once a residue has got close to its target 

contours, there is no force to move it along a contour to search for a better global match 

to the restraints, and therefore there is no force to alter one residue ‘sideways’ along a (ϕ, 

ψ) contour to allow its neighbor to achieve a better fit. 

 For both these reasons we decided that rather than using the shifts directly as 

restraints, it would be better to calculate the optimum (ϕ, ψ) combinations represented by 

the chemical shifts first, and then restrain the structure to these dihedral angles. 

  

Refinement against backbone dihedral angles 

 

The aim of this calculation is to use the measured Cα and Cβ chemical shift changes to 

derive optimum target values for the backbone ϕ and ψ dihedral angles, and then use a 

molecular dynamics procedure to calculate a structure based on these target angles. We 

assume that the structure does not change much as a result of pressure, as discussed 

above. Several optimization methods could potentially be used to obtain the (ϕ, ψ) 

restraints, but in each case the aim is to find a combination of  ϕ and ψ that (a) matches 
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the shift change well, (b) is close to the starting structure, and (c) does not perturb the 

local structure too much: subsequent (ϕ, ψ) pairs must allow the backbone to continue in 

roughly the original direction. Thus, a change in (ϕ, ψ) for one residue will in general 

require changes to dihedrals in residues either side. 

 The optimization method used here was a genetic algorithm (GA). A GA 

represents the parameters to be optimized as a number of ‘chromosomes’, and alters these 

by processes inspired by evolution. The fitness of the system that results from the 

parameters, or ‘phenotype’, is computed as a function of the chromosome set, and the 

aim of the GA is to arrive at the fittest system. This is usually done by starting with a 

population containing chromosomes of different fitness, selecting fit parent chromosome 

sets for mutation or crossover, and replacing unfit sets by fitter daughter ones. GAs have 

had a wide range of applications in multidimensional searching (Bayley et al. 1998; Jones 

et al. 1997). 

 The GA represented the structure of protein G using chromosomes composed of 

‘genes’ describing backbone ϕ and ψ angles. In order to allow some flexibility, 

particularly for maintaining the backbone fold, the backbone ω angle was also allowed to 

vary, although only by a few degrees.  

 Having obtained a target set of dihedral angles, these were applied as restraints 

within a standard XPLOR molecular dynamics protocol. Application of restraints derived 

from Cα shifts alone produced structures that appear reasonable (Figure 5b). The overall 

structural changes were smaller than in the direct shift-based calculation and matched the 

target shifts better. The main structural changes seen previously in the 1H-based 

calculations were that the α-helix moved closer to the β-sheet, and strand 2 of the sheet 
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showed an increase in curvature, wrapping itself more around the helix. Strand 3 also 

moved closer to the helix, while the N-terminus moved further away.  All these effects 

appeared in the Cα-based calculation, which implies both that the shift parameters were 

consistent and reasonably accurate, and that the calculation method was successful. The 

changes caused by the Cα restraints were approximately half as large as those previously 

calculated using 1H shift restraints.  In the 1H calculation the helix and sheet moved 

closer by approximately 0.18 Å, whereas in the 13Cα calculation the distance was 0.11 Å. 

The increase in twist in strand 2 was also approximately half as big in the 13Cα-based 

calculation. Structural changes for the other strands were similar. The 13Cα calculation 

also showed a reduction in the moment of inertia of the protein in the helix-sheet 

direction, though again less than that seen for 1H. By contrast to the direct shift 

refinements described in the previous section, the resultant structures have backbone 

dihedral angles almost entirely in the allowed regions of the Ramachandran plot, as 

determined using Procheck (Laskowski et al. 1996). 

 By contrast, structure calculations based on either Cβ shift changes alone or both 

Cα and Cβ shift changes together were much less successful, giving unreasonable 

structures with large structural changes, and in particular a highly bent and unwound 

helix (Figure 5c). On inspection of the (ϕ, ψ) restraints, it is clear that again the GA was 

only able to find solutions that required large changes in dihedral angles, particularly for 

the calculation based on simultaneous Cα and Cβ shifts, despite the imposition of a 

penalty for so doing.  

 We therefore conclude that pressure-dependent Cβ shifts are not suitable as 

restraints for structure calculations, whereas Cα shifts are. The most likely explanation 
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for this observation is that the residual Cβ shifts, after subtraction of the average 

pressure-dependent shift as described above, retain a significant shift contribution from 

local compressions, whereas most of the residual variation in Cα shifts is from the 

desired changes in the backbone dihedral angles. This is not surprising since the Cβ 

atoms are in general more exposed on the surface of the residue and therefore more likely 

to be influenced by neighboring atoms. This does of course imply that it may be possible 

to obtain some information about sidechain packing from the magnitude of the Cβ shift 

changes, but this is unlikely to be the best method for doing so. Cα shifts may have some 

application as structure restraints, although they are likely in addition to contain effects 

from local compression. They can therefore be used together with 1H restraints. 

 The genetic algorithm-based optimization method used here could in principle be 

used for the complete structure calculation, not only for the optimization of target 

backbone dihedral angles. Some success has been obtained using a GA for NMR 

structure calculation (Bayley et al. 1998), but this application required energy 

minimization following the GA calculation, because a GA is not well suited to such 

procedures. It therefore is more efficient to use the GA only for the initial angle 

optimization. 

 In summary, we have shown that there is a general effect of hydrostatic pressure 

on 13C chemical shifts, which is dependent on the number of attached protons, and is 

most easily rationalized as a general effect of bond shortening, together with pressure-

induced changes in bond angles. The latter is compatible with one rationalization of the 

well-known γ-gauche effect, implying that this may be the best general explanation. The 

residual shift changes caused by pressure are dominated for 13Cα by changes in backbone 



 19

structure, and can be used as restraints in calculating the change in structure produced by 

pressure, but the residual effects on 13Cβ (and presumably other aliphatic carbons) are 

dominated by structure-specific shift changes arising from local bond and angle 

compression. 
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Table 1. Chemical shift changes from 3 to 200 MPa, for different groups of carbon atoms 

 Cα (not Gly) Other CH All CH CH2 CH3 

Protein G -0.15±0.14 

(37) 

-0.17±0.14 

(19) 

-0.16±0.14 

(56) 

-0.10±0.17 

(58) 

0.25±0.12 

(31) 

Barnase -0.20±0.13 

(50) 

-0.18±0.18 

(18) 

-0.18±0.16 

(68) 

-0.08±0.17 

(43) 

0.23±0.20 

(49) 

Combined -0.18±0.13 

(87) 

-0.18±0.16 

(37) 

-0.17±0.15 

(124) 

-0.09±0.17 

(101) 

0.24±0.18 

(80) 

 Figures in parentheses are the number of values used. Only 7 Gly Cα could be assigned 

and therefore no statistically significant results could be obtained. 
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Figure legends 

Figure 1.  Overlay of CH HSQC spectra of double labeled barnase H102A. The region of 

the spectrum is shown that contains methyl groups. Spectra are shown for 3, 50, 100, 150 

and 200 MPa, going from blue to red. Residue numbers are labeled. 

 

Figure 2. Pressure-dependent 13C chemical shift changes in protein G, for a selection of 

methyl resonances between 21 and 21.5 ppm.  Some signals fit well to a linear pressure 

dependence, while others require a second-order polynomial fit. For comparison, the 

pressure dependence for a CH carbon is also indicated, folded in from a different region. 

 

Figure 3. Methodology for direct refinement against Cα and Cβ shifts. For each residue, 

the target Cα and Cβ shifts each represent a contour in (ϕ, ψ) space, given by the nearest 

values that match the change in shift with pressure. To match the combined Cα and Cβ 

shifts, the residue must find a location where both the Cα and Cβ values are satisfied, 

represented by the open circles. It initially moves in a direction given by the biggest slope 

in (ϕ, ψ) space (arrow). 

 

Figure 4. Cα pseudo-dihedral angles (the dihedral angle formed by four successive Cα 

atoms) for low- and high-pressure structures of protein G calculated using direct 1H and 

13C shift restraints. 

 

Figure 5. Structural changes in protein G calculated from (a) 1H shift changes, as 

described in Wilton et al. (2008b). The helix is compressed toward the sheet, and strand 2 
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of the sheet (the nearest strand in this orientation) becomes more twisted. The low 

pressure structure is shown in blue, and the high pressure structure in red. (b) Cα shifts, 

using (ϕ, ψ) restraints calculated using a genetic algorithm. Colors as in (a). (c) Cα and 

Cβ shifts combined, using (ϕ, ψ) restraints calculated using a genetic algorithm. Colors 

as in (a). 
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