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Synopsis
Consideration is given to the construction of analytical and
numerical models of xenon-induced nuclear reactor spatial kinetics
suitable for stability and control studies based on eigenvalue

and frequency domain methods,

L. Introduction

The specific problem studied in this chapter is the modelling
of oscillations of the power density in a nuclear reactor, such that
a 'hot spot' moves from one region of the reactor into another and
back again as illustrated schematically in Fig.5.1. It is assumed
that the purpose of the modelling exercize is to investigate the
stability of such oscillations both in the open-loop situation and

-5)

in the presence of feedback or other control action(l regulating
the power distribution about a known steady state.

It is not possible in a chapter of this length to give a detailed
account of the whole modelling exercize from the basic physical
foundations. Rather we take the stance that, as diffusion models
are almost universally used by physicists for static and fuel cycling
calculations, and thaﬁ data is hence often available for such models,
we should take a diffusion model as a basis for control studies.

Such a diffusion model is generally available in the form of a set

of coupled, nonlinear partial differential equations in space and

time representing the coupled hydraulic, thermodynamic and neutron
flux dynamics within the reactor vo lume, The two obvious difficulties
of such models are firstly the nonlinearities and secondly the
distributed nature of the system which, if approximated by the use

of finite-difference schemes, yields very large numbers of ordinary

differential equations if an adequate description of system dynami cs

is required.




The modelling problem considered in this chapter is the

problem of comstructing a low—order linear lumped-parameter model
of xenon-induced spatial power oscillations in a large, cylindrical
nuclear power reactor to replace an (assumed known) nonlinear
distributed parameter model. In this context, the idea of 'low-
order model’ is relative. Typically(6), a '"low-order model' will

consist of several independent sets of 40-90 linear algebraic

and ordinary differential equations!

2. Linearization of the Diffusion Equation

For our purposes a thermal nuclear power reactor will be
regarded as.a cylindrical volume of space (Fig. 5.2) containing
uranium fuel, moderator, coolant, control elements and structural
members required to hold the system together. The primary variable
of interest is the space—~time dependent system power density

p(r,6,z,t) modelled by relations of the form

E
max

plr,0,z4t) 2 E f Ef(r,e,z,E)¢(r,8,z,E,t)dE (Mw.cm_3) (551)

0
E i
min -

where E0 = average energy produced per fission, Zf(r,e;,E) is the
macroscopic fission cross—section at the position (r,6,z) for
neutrons of energy E and the neutron flux at the point (r,0,z)

due to neutrons in any energy range E. < E < E_, is represented by

1 2

B

6(£,0,2,E,E,0) & [ 4(r,0,2,E,0)dE factn = 5ae o) (5.2)
1L

g E

In practice, it is not possible to obtain data on the fission

cross—sections over the whole energy range. The power distribution
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is modelled by supposing that the energy continuum can be

approximated by a number of discrete energy bands Emin = E_<E<E

1 2

E EESE

9 vy B o<E<E = E and averaging over these energy bands.

3 = = A+l max
For example, using the notation

¢j(r,8,z,t) 4 ¢(r,ﬁsz,Ej,Ej+1,t) s 1g3<8 (53)

then equation (5.1) is approximated by the linear form

L

p(r,z,0,8) =B §. ¥.(r,052)4,(r,0,2,t) (5.4)
o o'l 3 J

J—

where the Zj(r,e,z) are average fission cross-sections in the range

EjfESEj+ and are estimated experimentally. The space-—time behaviour

1
of the ¢j are then modelled by the coupled set of 'multi-group'
diffusion equations(lns).

For illustrative purposes consider the one-group case (& = 1)

and the simplified model of the space~time behaviour of ¢l(r,e,z,t)

2 i )
Vig(r,8,z,t) + B (r,0,5,6)8(x,8,2,t) = S5 T (B 246 (555
M

where we have dropped the subscript on ¢1 for notational simplicity.
Term by term
; 2 . ;
(a) the Laplacian term V ¢ represents diffusion of neutrons
throughout the reactor volume
e . ;
(b) the term B"¢ is the net neutron production rate per unit
volume, and
L% 3¢
(c) the term —5 —- represents the rate of change of neutron

M2 ot

population.
The coefficient 2% is the mean neutron-lifetime in the reactor core.

- s ] ]
The parameter M is the position—dependent migration area of neutrons
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in the reactor core. The coefficient Bz(r,e,z,t) is the space-
time (and, as we shall see later, power) dependent geometric
buckling of the flux at (r,0,z) and time t. In principle therefore,
equation (5.5) is a nonlinear partial differential equation!

The system is also subjected to boundary conditions of the

form

]
¢'(R38:z’t) + RzR 3’% (r,e,Z,t) = 0
r=R
J =
¢(I98303t) e Q’Z 'é"g (r,e,z,t) =240
Z=
¢(r,0,H,t) + zz % (r,8,2,t) = 0 (5.6)
z=H
where RR and RZ are the radial and axial extrapolation distances
respectively, and the rotational invariance condition
¢(r,0,z,t) = ¢(r,042m,z,t) (5.7)

The boundary conditions (5.6) are only an approximation to the real
physical situation and are based on the construction illustrated in
Fig. 5.3. for the radial case ie it is assumed that the neutron flux
vanishes at a fixed point R+£LR and that this point coincides with
that obtained by linear extrapolation of the neutron flux from the
reactor boundary.

As the objective is to obtain a linear model of the dynamics
of small spatial power perturbations about a fixed operating point,

the first job is to characterize the reactor steady state. More




precisely, if Boz(r,e,z) and ¢O(r,6,z) are the steady state
buckling and flux distributions respectively, equation (5.5)
reduces to the search for positive solutions of the partial

differential equation

V2¢O(r,e,z)-+ Boz(r,e,z)¢0(r,6,z) =0 (5.8)

with boundary conditions easily derived from equation (5.6).
Note, in particular, that the steady state is characterized and
governed by the geometric buckling and the boundary conditions.
Following normal procedures, write all variables as the sum
of steady state values plus a perturbation from the steady state

¢(rje’z’t) = d)o(r’eiz) + 5¢(r,e,z,t)
B (Rt Boz(r,e,z) £ 885(E 0 2.0 (5.9)

Substituting into equation (5.5), using the steady state condition
(5.8) and neglecting the product term 6B26¢ yields the following
approximate linear model for small transient perturbations about

the specified reactor steady state
2 2 2
V' 84(r,0,z,t) + Bo (r,e,z)6¢(r,e,z,t)+¢o(r,8,z)6B (T8 gl

Lo PR ed. (,0,2,E)

.,5-10)
2 (

The reader should easily verify that ¢ is subject to the boundary
conditions of the form of equation (5.6) with ¢ replaced by the
perturbation &¢.

Finally, if we restrict our attention to slow, long term transicnts

the term &%-%%? can be neglected leaving the model
M

V26¢(r,8,z,t)+B02(r,8,z)6¢(r,6,z,t)+¢0(r,8,z)6B2(r,8,z,t) =0
{5.11)




2 Linearization of the Iodine/Xenon Equations

(4-6)

A major destabilizing influence on large thermal reactor
systems is the slow dynamic effect of the fission xenon-135 produced
by the decay chain shown in Fig. 5.4. The significance of xenon
lies in the dual property of being produced by neutron bombardment
of uranium-235 at a rate proportional to the meutron flux and its
simultaneous decay by B-decay and destruction by absorbtion of
neutrons at a rate proportional to the product of the néutron flux
and the xemnon concentration (cmf3). In effect the iodine/xenon
dynamics are a nonlinear inherent feedback loop within the reactor
system.

Restricting attention to slow, long term transients (with
periods measured in hours) the Te-135 transition can be neglected

in the xenon decay chain. The decay chain can then be represented

by the two partial differential equations

I
YZ(r,0,2)8(r,0,2,8) - A I(r,8,z,t) = ‘g'E (r,8,2,t) (5.12)

and

YXEf(r,e,z)¢(r,e,z,t) + AII(r,G,z,t)
oK
- (AX + 0X¢(r,6,z,t»X(r,8,z,t) = 5;—(r,8,z,t) (5:13)

where Y1 and YX are the fractional yields of iodine and xenon in
fission respectively, AI and AX are the iodine and xenon nuclear
decay constants respectively, UX is the microscopic absorbtion cross-
section of Xenon-135 for thermal neutrons and I(r,0,z,t) and

: = -3 o By
X(r,8,z,t) are the space time concentrations (cm ~) of iodine and

xenon respectively in the reactor core.




It is easily verified that the steady state iodine and xenon
concentrations corresponding to the steady state neutron flux

distribution ¢D are given by the formulae

Io(r,e,z) = YIZf(r,B,z)¢O(r,9,Z)/KI

(y, + YX)Ef(r,G,Z)¢O(r,9,z)

1
X (r,8,z) = (5.14)
o A +0 (r,0,z2)
. BytgE
respectively. Writing
Tribig, = Io(r,e,z) + 6I(r,0,z,t)
X502, t) = Xo(r,e,z) # 8N EL Dz, t) €5 15
then the linearized versions of (5.12) and (5.13) take the form
e _ 88L(r M ,2.1)
YIEf(r,G,z)6¢(r,6,z,t) AIGI(I,G,z,t) m (5. 16}
and
{YXZf(r,S,z)HUXXO(r,G,z)}6¢(r,8,z,t)+AIGI(r,e,z,t)
-{x +0 ¢ (r,0,z)}6%(r,0,z,t) = 38X (r,8,z,t) t5:17)
¥oYo ot

As these equations contain no spatial derivatives, there are no

spatial boundary conditions on 61 and &X.

4. Inherent Feedback and the Homogeneous Model

The final step in the construction of the linear, distributed
parameter model of slow, small transient spatial power perturbations
about the specified steady state is the characterization of the
buckling perturbation 6B2 occurring in equation (5.11). Thiscis

a highly complex task as this change is a complex nonlinear function




of reactor temperature distributions, coolant dynamics, xenon
concentrations and control action. A common approach is to argue
that all dynamic effects other than xenon will have reached steady
state if we consider slow transients only, suggesting that their

effects can be represented by a simple gain ie our model is
2 A ;
6B (b, 0,250) = KP6¢(r,e,z,t)+KX6X(r,8,z,t)+u(r,6,z,t) (5.18)

where u(r,0,z,t) is a space-time independent control input function
representing the effect of control rods or other control devices,
KX is the xenon 'reactivity coefficient' and Kp is the reactor
'power coefficient'. Both KX and Kp could be position dependent
but, for our purposes, it is assumed that they are constant.

The final homogeneous model (obtained by setting the control
action u = 0) takes the form of equations (5.11), (5.16), (5.17)

and (5.18) or the operator-theoretic form

L ¢ =ug_% (5,19}

where the space-dependent operator

( v2+302+¢01<p 0 ¢ Ky
L & Y, -Ag 0 (5.20)
YXZf-GXXO Ap —(AX+0X¢0)
and
0 0 0
u 2 0 1 0
0 0 1

T ;
6" L (69(r,0,2,0), 8T(r,0,2,8) , 6X(r,0,z,t)) (5yal)




together with spatial boundary conditions on §¢. The feedback

structure of the system is illustrated in Fig. 5.5 and indicates
the potentially destabilizing effects of both the xenon and power

feedback loops.

5y Xenon—-induced Instability: Analytical Methods

Despite its formal simplicity, the linear model is not in a
form suitable for stability calculations. It can however be used
to suggest useful approximation schemes and general procedures.
The investigation of stability is initiated by looking for non-

trivial exponential solutions of (5.19) of the form
At A
$(r,8,z,t) = Qﬁ(r,ﬁ,z)e (5.22)

and assuming that the linear model is asymptotically stable if and
only if all solutions satisfy Red < 0. Substituting equation (5.22)
into (5.19) yields

Lo, = Aug, (5.23)

or, equivalently, the stability problem can be regarded as the
evaluation of the dominant generalized eigenvalues of L. This
must be undertaken numerically.

The numerical problems arising in the analysis of (5.23) can
be very severe unless care is given in the choice of numerical
approximations. The use of finite difference approximations to
the spatial derivatives occurring in L can be immediately eliminated
due to excessive dimensionality. For example, reasonable accuracy
would require of the order of 150 mesh points in the (r,8) plane and

10 in the axial direction which, bearing in mind the fact that there
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are three variables at each mesh point, leads to a generalized
eigenvalue problem of dimension 150x10x3 = 4500! 1In this section
- we consider how modal analysis methods can help reduce this
severe prohblem.
It is clear thatxknowledge of Q% is equivalent to knowledge
(o 0, o It is also clear from the complex space-~dependence of'the
elements of L that the analytical determination of ¢, is an

impossible task. We therefore attempt to find a solution by

expanding QA as the sum of known functions(5’7’8)

. b, = 7 w..{r.8,2) (v.€R3,j>1) (5.24)
A R ] =

where, for example, the scalar functions wj are the eigenfunctions

of the operator V2+B02 ie

2 2 ;
Vo, +B . = sk >1 Cha25)
EUJ 5 IPJ YJIPJ iz

In particular we can guarantee that iﬁ satisfies the spatial boundary

conditions if we ensure that each wj satisfies the boundary conditions.

Taking for simplicity the case of RR = lz = 0, the identity

2 2
[ W7 =Y by3av

v

(Yj—Yk) .{] ijkdv

“
1l

di LV = V. +d
é 1v{wJ wk by wJ} v

i

/ {v.v9, = 9 Vy.}.ds
reactor J k & J
boundary

= 0 (5.26)




indicates that we can assume that the set {wj}j>1 is orthonormal ie

P, dV = &, o2y
£ Yite ] )

where ij is the Kroneéker delta and V is the volume of the reactor

core. The following development will, of course, be valid foir any

orthonormal choice of the {¢j}j In particular we note that any

1
choice of linearly independent choice of wj can be replaced by an
(11)

orthonormal set using Gram-Schmidt orthonormalization

Substituting (5.24) into (5.23) yields the relation

Yol gar e A Yo (5.28)

Multiplying by wk’ integrating over the reactor volume and using

(5.27) yields the relations

LoV, = .
.Z s A vy ; k>1 (5.29)
j=1
where the 3x3 constant matrices
A
L et Ly.dv
W
yj+¢OKP 0 (jJOKX
= - 0 . dV 50
£ W' | Yats oy U (5a30)
- =il
yxzf UXXO AI (AX 0X¢O)

are easily evaluated numerically.
The infinite set of equations are still numerically intractable

but approximate solutions can be optained by a variety of means.




Method 1:

Method 2:

_.12._

If the elements of the 3x3 matrix appearing in the
integral of equation (5.30) are comnstant over a large
volume of the reactor it is intuitively plausible that

ij = 0 itk (5.31)

when the eigenvalue equation (5.29) has the approximate,
but highly simple, form

1, = Auv, ; k>1 (5.32)

kk “k 1
Equivalently the eigenvalues are the solutions of

relations of the form

ika— awl = 0 (5.33)

which are quadratics in A that are easily analysed by
pencil and paper methods. The approximation of equation
(5.31) is fairly severe, however, and the results can
only be regarded as giving rough estimates and indicating
parametric trends.

If the series in the above converge rapidly enough,

equation (5.29) can be approximated by a truncated form

] ijvj = Au vk 3

1=

1<k<M (5.34)
]

or, equivalently, the 3Mx3M generalized eigenvalue problem

P S N W . rd g
e T | |1 L OF 1%
SRR H . ofz 5. 35)
0
L 3 R
LM1 3 rF v 0 0 u Vi
for which known solutions methods exist(g). For example,

it is observed that equation (5.35) is equivalent to the




_13_
determinental relation
L B iy & =@ 0
dee { | 11 0% ] .11 =0 (5.36)
LMl A LMM 5 R N

A A
det { 1% ke } =0 (5.37)
Ay By Moy
ot, if |A11| # 0,
FE IS o A e N (5.38)
2M 22 o2y i 1 i ) ;

which is a 2Mx2M standard eigenvalue problem. In practice good
estimates of the stability of the configuration can be achieved

using fairly small numbers of wj, typically 20-40. The corresponding
eigenvalue calculations are hence of dimension 40-80 which is fairly

(6,10)

large, but managable as, in practice , the matrices are fairly

well=-conditioned.

b Xenon—induced Transients: State Space Models

The techniques described in the previous section for obtaining

models for use in stability calculations based on eigenfunction (or

'modal') methods is easily extendedcs’g) to produce state space

models(lz)

describing the reactor response to control inputs. In
general terms, suppose that the control input distribution u(r,6,z,t)

can be represented as the sum of m independent contributions with a

given spatial distribution but manipulable amplitudes ie




u(r,0,z,t) =
]

ho~13

f.lr;0,z) u.(t) (5.3
1 J J

and:=Tefoule) = (ul(t),...,um(t))L be the system manipulable input

vector. The input-driven model can now be obtained from equations

(5.11) and (5.16-18) to be of the form

ua_g =L ¢ + Fu (5.40)
at i
where
. £
( Qbofl ¢0f2 ¢o m
o= 0 0 I s 0 (5.41)
0 0 A= 0

In a similar manner to equation (5.24) suppose that ¢ can be expanded
as a linear combination of known orthonormal functions mj(r,ﬁ,z),

’ ) ; . L

j>1, with time dependent amplitudes vj(t)E:_R ie

¢ = ) V. (r,8,2)v.(t) (5.42)

Substituting into equation (5.40), similar techniques to those used
in section 5 can be used to replace this model by an infinite set
of first order vector ordinary differential equations

dvk(t)

s e

I o~1 8

L. .v.t) % F da(t) A k>1 (5.43)
a1 ki 3 k ™

where Fk is the 3xm constant matrix

e

f b F 4V : k>1 (5.44)
A

A finite-dimensional state space model approximating (5.43) is
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obtained by the truncation technique of method II of section 5
ie replace (5.43) by the truncated set

dv, (t) M
k

— = L., F k<M (5.45)
T jzl kJvJ(t) * Fou(e) 1<k (5

which can be written in the (nonstandard) form

ue:'i(t) = Ax(t) + Bu(t) (5.46)
where
gL 1T T T
( =
x(t) = (v, (£ ,v, (t),---,VM ()
3
= = = H (5.4 74
A Ly Ly , B Bolcoiimg (p 0 o! 5.4
; {0 )
| e - |
5 0|
Ty
L MM i 8. TRl
If we also suppose that m output measurements of the form,
1<k<m,
v L) [ p(r,8,z,t)dv (5.48)
v
k

equal to the total power generated in a volume Vk of the reactor

core, then substituting from equations (5.4) and (5.42) we obtain

= c = 2) dV 0 0)
¥ (&) 321 kg s G T Bg | LRy Cn Bl d g
¥ (5.49)
Truncating after M terms, and defining the output vector y(t) = (y (t),...

T : ;
ym(t)) we obtain the standard form of output equation

y(t) = C x(t) (5.50)
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where

M
B e P _ (5.51)

CRioy T S B
le mM:

The combined state space model of equations (5.46) and (5.50)
can be used for simulation purposes, the accuracy increasing as M
increases. The model can also be used as the basis of control

(4-6,8,12)

studies based on time-domain control synthesis procedures.

(6)

Controller design could also proceed based on multivariable

: : ; 12 . 2
frequency domain design technlques( ) using the reactor transfer

function matrix
-1
G(s) = C(sue - A) "B (5.52)

(obtained by taking Laplace transforms of equations (5.46) and (5.50)

with zero initial conditions).

¥ = The Important Case of Azimuthal Symmetry

The use of eigenfunction/modal methods makes possible a
significant reduction in model dimension when compared with finite-
difference models but, for good results, requires careful choice of
functions wi, 1<j<M. The use of the eigenfunction defined by (5.25)
is a good choice but they must, in general, be computed numericallwy.
This is a difficult task in its own right! In practice, therefare,

a compromise can be reached by representing certain spatial
distributions by modal expansions (when such modal expansions can
be easily defined) and other spatial distributions by finite difference

(10)

approximation schemes A case of particular interest is

described below.
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In many practical situations, the reactor steady state is
azimuthally symmetric in the sense that the steady state flux and
fuel distributions ¢O(f,e,z) and Zf(r,e,z) are independent of 8.
This immediately has some implications for the structure of the
solutions of equation (5.40). More precisely, remembering that
the solutions are periodic in 6 (equation (5.7)), expand ¢ as a

Fourier series

(o]

¢$(r,0,z,t) =y (r,z,t) + Z {v. (r,z,t)cosn® + . (r,z,t)sin no)
T o] s je ]s
k=1
(5.53)
where ¢O(r,z,t), ch(r,z,t) and sz(r,z,t) are unknown functions to
be determined. Substituting into equation (5.40) and noting that
2 cos nb 5 |cos no

5 , 10 (5.54)
20 sin n8 sin nb

yields the relations (after a little manipulation)

oy e 3¢.C 3¢.S
1 dh z {U“*J“‘cos no +M——j~'sin né}
ot at ot
k=1
= Lowo + kzl {cos né anjc + sin nf anjs} + Fu (5, 55)

2
where, for n>0, the operator Ln is obtained from L by replacing V™ by

2 2
1 -8 ] 9 n
SR —_— -
Pl e 5 5 (5.56)
9z 5

Defining the Fourier coefficients of F

i oF

F 8 £ F(r,0,z)do




...]_8._

2T
e ;
Fnc = ;—f F(r,08,z) cos nhHde . n>1
o)
1]
Fns = %-j F(r,0,z)sin nodo ; n>1 (5.57)
(o]

then the linear independence of the trigonometric functions indicates

that the model of equation (5.40) can be reduced to the model,

Bwo
= +
H 5 Lowo Fou
oy
nc
- L + oy
¥ ot nwnc Fncu nzl
o
ns
b o i + 3 5 f(»)
ot nwns Fnsu nzl e

Assuming, for simplicity, zero extrapolation lengths, the spatial

boundary conditions on these equations take the form,

wD(R,z,t} z ¢nC(R,z,t) s wnS(R,z,t) =0 . n>1
¢O(r,0,t) = wnc(r,O,t) = wns(r,o,t) =0 L n>1
p (r,H,60) =9 (rH,t) =4 (r,H,t) =0 , n>1 (5.59)

together with continuity and differentiability requirements on the

axis (r = 0),

wnc(o,z,t) = wnS(O,z,t) =0 3 n>1

oY | = 3

'ne {xymt)| = T ngArmyE) 5 0 , n=2k, ko0 (5.60)
ar AT -

r=0 r=0
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The output equation (5.48) takes the vector form,

( = o R
yk\t) yo(t) -+ Fé} { Bnc(t) + yns(t) } (5.61)

where

(yo(t))k 4 E {T Ef(r,z)wo(r,z,t)dv
k

[l

(Ync(t))k Eo é' Ef(r,z)cos ne wnc(r,z,t)dv sl

k

il

E 5 e
(yns(t))k . f Ef(r,z) in n# wns(r,z,t)dv s ins] (5.62)

Vi

represent the contributions to the kth output from the various
trigonometric modes.

It is important to note that the decomposition of the model
expressed by (5.58) and (5.61) represents a significant potential
numerical advantage. For example, in stability studies, it is
easily seen that solutions ) of the generalized eigenvalue problem

(5.23) are also solutions of generalized eigenvalue problems of the
g g p

form of
L T,2 = Au Tyl (5.63)
nnn(,) un_(r,2) (5.53
for some n>0. Conversely, if A satisfies (5.63), it also satisfies
(5.23) with ¢A =n_ cos nd or ¢A =1 sin nb. Moreover, it can he
=+ e n
(6) p
shown that, in rough terms,
lim A < O (5.64)
-+

and hence, for stability studies, the eigenvalue equation (5.63) need

only be considered in some range O<n<M (typically 2 or 3).
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(6)

In a similar manner, it can be shown that the series in
2 ]
(5.53) converges at least as fast as O (1/n”) and hence, without

too much loss of accuracy, can be truncated to yield the approximate

model
Efg— = Ly +F u
R ot “070 o)
awnc
= L + F u <n<
W TSE nwnc ne % Laaght
3wns
—_— = + T u 5.65%
Y nwns ns ? L0 AP ha

with the approximate output model

M
yE) = y (£) + El { ync(t) +y_(6) } (5.66)
n:

and the relevant boundary conditions (equations (5.59) and (5.60)).

The truncated model also gives some insight into the structure

(12)

of the system transfer function matrix G(s) relating the output

i la £ 1 g) are the
y(s) to the input u(s). Namely, if Go(s), Gnc(s) and Cns( ) are th

transfer function matrices relating s and T respectively to

nc
the input u(t), then a simple calculation yields the identity
M
= 670
G(s) = eila) £ - )0 Aq ) + € (5) (5.67
n=1
Lumped-parameter state-space models of (5.65) and (5.66) could be
derived by the use of finite-difference approximations to spatial

derivatives or by modal techniques analogous to those described earlier

in the chapter. The models have the natural 'block diagonal' form,
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uexo(t) = ono(t) + Bou(t) . yo(t) = Coxo(t)
1% B = A ®. (e # B wlt) 3. 0) &¢ - () insd
e e nc ne nc nc nc nc o
uexns<t) ¥ Ansxns(t) a anu(t) ? yns(t) " nsxns(t) L
{568
yielding the transfer fumction matrix model
G(g) =/C (sp =A )“lB +
o e o )
i =1 =1
Lo (sp~& ) "B, # € (sn <& ) B} (5.69)
ao] BE e nc ne ns e ns ns

Remembetring that the partial differential equations of (5.65) are
defined in the two-dimensional (r,z) rather than the original three-
dimensional (r,8,z) reactor volume, the numerical advantages are
apparent. For example, if the (r,z) plane is divided into 150 mesh
areas, each block model of (5.68) will have dimension 450 (still

large but much better than the dimensions of three-dimensional
finite-difference models). The use of modal series expansion
approximations will reduce these dimensions considerably more although,
in practice, a combination of the techniques is probably most

efficient(le).

8. Combined Modal and Finite Difference Models(6’10)

A combined modal and finite-difference scheme for approximating
equations (5.65) can be derived based cn radial zoning of the (r,z)
plane shown in Fig. 5.6. It is motivated by the need to produce

accurate lumped—-parameter approximations of managable dimension for




(6,10)

that

numerical calculations. 1t is based on the observation

radial dynamics are more important than axial dynamics in reactor
stability and control studies and hence that it is possible to use
fairly crude approximations to axial spatial dynamics. More
precisely, it is assumed that, in radial zone j (1<j<NR), the vectors
of interest can be expressed as a finite linear combination of

spatially separable forms. Taking, for illustrative purposes,

the case of ¢O, ve write
b (r>2,8) = ) Dj?{{z}:j_(r,t) (5.70)

in radial zone j. The 3x3 matrices Djk(z) are all diagonal matrices
of known axial 'synthesis modes'. Without loss of generality, we
can assume that they are orthonormal in the sense that

H

f D.. (=)D, .(z)dz
o Jk i

L
~J
ot

6,15 » lsi, kA (3.

The terms é;k{r?t), 1<k<NA, are unknown vector functions of radial
NES
position and time.
Substituting into (5.65), multiplying by Dji(z) and integrating
over the interval O<z<H will eliminate the axial dependence from the
equations. Repeating this for 1<i<NA and for each radial zone

-~

yields the model

Mi" (est) NA B 51
il = 7V 1 3%, (r,t) + F 7 (nult
e k£1,0 Jk(,) « (r)ul(t)
1<i<NA 1<j<NR (5., 723
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where

L Jjik
0

=g
—

Dji-(z)L0 Djk(z)dz_

is a 3x3 spatial operator involving radial derivatives only and
radial dependent coefficients,; and
H

i
B () é Dji(z}Fo dz (5.73)

=

Typically, good accuracy in stability and frequency response calculations
can be obtained with NA = 1 or 2 so that a significant reduction in

the dimension of the representation of axial dynamics is possible
compared with direct finite—difference methods.

Defining the spatial average over zone j as

f @. ., (E,t) Tdr
A zone j Jt
6..(t) = (BaT4)
i
f rdr
zone j

averaging both sides of equation (5.72) in the same way and
approximating the radial derivatives by finite difference methods(6’lo)
in terms of the éji(t), leads, after much manipulation, to a state
space model of dimension N = (3NA)NR. Typically NA = 2 and NR = 15
leading to a model of dimension 90. This is large but managable
as the matrices involved tend not to be ill-conditioned. It N =1,
the dimension reduces to 45 which is easily coped with.

Finally, the choice of axial synthesis modes requires careful

(6,10,13)

thought and should be based on the purposes for which the

model was constructed. On the assumption that the model is required
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for stability and control studies, techniques can be derived based

on the use of steady state data, a little guesswork and some involved
calculations aimed at minimizing the errors in estimating the

xenon feedback term in equation (5.18). The interested reader

is referred to the references for more detail.

S CRunay

In many ways the modelling exercize in the analysis of spatial
kinetics in nuclear reactor systems is an exercize in physical
approximation and numerical reduction of the complex nonlinear
partial differential equations describing the space-time behaviocur
of the reactor power distribution within the core. This is
particularly important in the area of stability and control studies

(5’8’9’10), frequency domain(6’10’12’14’15} and

(435!6’8)

using eigenvalue
optimization methods which, for numerical feasibility,
require linear state space models of relatively low dimension.
There are many ways(5} of achieving this objective depending upon
the accuracy required and the available data. This chapter has
outlined, in the context of the modelling of xenon—induced
oscillations in thermal reactor systems, how the ideas of modal

expansion and finite difference methods can be used together to

provide a successful solution to the problem,
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