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Abstract

Recent work on the use of discrete first-order approximate models

of plant dynamics in multivariable process control is extended to

consider the effect on transient performance nonlinearities such as
measurement quantization or deadzone at the implementation stage.
Explicit upper bands on the tramsient error induced by the nonlinearity
are obtained and their validity illustrated by numerical examples. In
particular, at fast sampling rates, it is seen that, not only dees the
first order controller produce a closed-loop system with rapid, non-
oscillating responses and small interaction effects, it also ensures
that peak transient errors due to the nonlinearity are less than the
error involved in approximating the nonlinearity by a unity gain matrix.
For example, if the nonlinearity is measurement quantization, th= peak
transient effects of the quantization will be bounded by the quantization
error itself at fast sampling rates, and will not be amplified by

system dynamics.
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Introduction

(1)

In a recent paper the concept of a continuous first order lag
was extended to the sampled-data /discrete case by defining an m—input/
m-output discrete first order lag to be a controllable and observable
discrete system with mxm inverse transfer function matrix of the form

=1
; = (z- +
aiolE) (z-1) Bo B1 (1)

where Bo’ B, are real mxm matrices and ]Bo| # 0. A detailed analysis

1

of the unity negative feedback system shown in Fig. 1 was provided. In
particular, the proportional controller

K(z) = B diag {1—kj}lsjsm = B1 (2)

.|

was shown to generate a stable closed-loop system and that both steady

o R R

state errors and transient interaction effects in response to unit step
demands are reduced and real-time closed-loop response speeds iacreased
as the sampling rate 1s increased. Steady state errors can also be
eliminated by the introduction of summation terms in the form

(1-k.)(l-e.)z
] A

K(z) = B diag {1-kjcj + =0 1éj5m = Bl (3)

where ch| 0 AR bl i e S

1) is that, by suitable

An important aspect of the results described
use of approximation concepts, their applicabili*ty can be extended to

provide a control synthesis procedure for an mxm, invertible, minimum

phase discrete plant $(&,A, C)

== J.A ERn
i M Bt
i =C x, X k2o (4)
with inverse z—~transfer function matrix
G_l(z) = (z=1) BO = Bl + BO H(z) (59

with |BO| # 0 and H(z) proper, provided that H(z) satisfies a contraction-—

(2,3,4)




_2_
mapping condition. In particular, it was shown that the desired conditions
are satisfied if S(6,A,C) can be regarded as being derived from a con-
tinuous system S(A,B,C) of the form

x(t) = Ax(t) + Bu(t)

i

Cx(t) (6)

with sampling period h > o, & x(kh) (k » o) and piecewise constant
& *x

y(£)

input u(t) = u kh ¢ t < (k+1)h, k 2 o and if the following conditions
are satisfied,

(a) ICB| + 0

(b) 5(A,B,C) is minimum phase

(c) the sampling period h is 'small enough'

This paper describes the result of further theoretical investigations
into the properties of such control systems and, in particular, the
important problem of assessing the effects on theoretically predicted
closed-loop transient performance of the introduction (at the implementation
stage) of é memoryless nonlinearity

S By L e - (7)
into the feedback loop as illustrated in Fig. 2(a). It is assumed that
f(*) satisfies the norm constraint

lly = £ ], < a/2 (8)
for some counstant q » O (independent of the choice of m-vector y) where
fl-ljm is the normal uniform norm on R defined by I[xf]m = max 'x.l.

lgj<m
In effect, £(*) can be approximated by a unit diagonal gain matrix with
a maximum error bound iq. Such a structure describes (and, indeed, was
motivated by the need to consider) the effects of quantization on closed-
loop dynamics although the results do have application to other nonlinea-

rities such as measurement dead-zone. The validity of equation (8) in

these two cases for the case of m=1 is illustrated schematically in Fig. 3.
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The basic mathematical framework is set up in section 2 and the

elementary operator theoretic bounds on the transient effects of the

nonlinearity are described. In section 3, these bounds are evaluated

for the cases when G(z) is a first order lag with controllers given by

equations (2) and (3) and it is seen that these controllers are capable

of reducing the transient errors induced by £(:) to a peak magnitude of

3q provided that the sampling rate is high enough. Finally, in section

4, it is demonstrated that all these results carry over to the case of

the discrete plant of equations (4) and (5) if the underlying continuous

system of equation (6) satisfies the conditions (a) - (c¢) described above.
A number of numerical examples illustrating the results are described.

Upper Bounds for the Transient Effects of the Nonlinearity

The general problem considered in this section is the numerical
assessment of the transient errors involved in the prediction of the
closed-loop response of the system of Fig. 2(a) Uéing the linear configura-
tion of Fig. 1, when the nonlinearity satisfies the bound of equation (8).

This problem is best formulated in functional analysis terms as a problem

3 m e
o] | 1 —- = -!’
in the Banach space EDO of infinite sequences s {50,51,52,...} *Sk}kao
of vectors S € Rm'with the norm
A
[ell, = s []s || (9)

kzo
and the obvious definitions of addition and multiplication by scalars.

With these definitions the (assumed stable) linear closed-loop configur—
ation of Fig., 1 with zero initial conditions can be regarded as a bounded
linear operator Lc mapping Ez into itself by mapping bounded demand

sequences t = {r}

kyo \Mto bounded output sequences y = {yk}k;o'

The nonlinearity £(¢) can also be regarded as a mapping f of ES
into itself, defined by v = £(y) iff Yy = f(yk)(k;o) and it is easily

seen that

[y - £, < a/2 \/ve E. (10)
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It is trivially verified t h i i .
1is tr: vy verifie hat the configurations of Fig. 2(a) and

2(b) are equivalent and hence that the closed-loop response is described
by

= + L wi +

y=L r+L {y (¥y)} +n

=y, * L,y - £} (11)
where 11 is a term describing the effect of initial state conditions and
vy, = Lcr + n is the equivalent response of the linear configuration of
Fig, 1. Writing this equation in the form

y -y, =L {y - f(y)} (12)

and noting that ]]y—yL|im is simply the peak transient error involved

in the prediction of the closed-loop respomse of Fig. 2(a) using the
linear configuration of Fig. 1, we can provide an upper bound for this

error in the normal way using equation (10)

vyl = 1In, B3
< el el
” | a g
SRR (13)
where Ichiim is the operator norm of L_ induced by the Ez norm.

It follows immediately from equation (13) that
(a) the stability of the configuration is unaffected by the
(5,67

introduction of the nonlinearity

(b) the peak transient error is bounded by the nonlineairit
b ¥

1 7 -

||Lci’m, and

(c) the upper bound is independent of initial conditions and
demand signals.

The investigation of the transient effects of the nonlinearity now

reduce to the evaluation of |'Lci|m. This problem is undertaken in the

following sections for a large cluss of systems of practical interest.
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Nonlinear Effects on Discrete First Order Lags

Consider the case of the first order plant with inverse z-transfer
function matrix given by equation (1). This system has a minimal reali-

zation of the form
= {1 = 3 '3 )x, + B_l x =0
Fepy 5 21 % T Pe Tk, o

yk L » k> o (14)

Considering the use of the proportional controller of equation (2), it is
easily verified that the closed-loop operator LC can be realized as the

map r + y defined by

: . ! )
X1 T diag {kj}lsjgm X+ (diag {1 kj}lsjsm B0 Bl)rk = xO—O

T = ; k3o (15)
or, equivalently,

k
¥, = } diag {k
o 2=l
It follows directly that

fsd . 3 :
5 e nel R i B B (16)

Theorem i
The configuration of Fig. 1 with plant aund proportional controller
given by equations (1) and (2) has norm

; L , -1
[ s fldlagff;ﬁzfr} (diag {1—kj}1sj€m- B, Bl o D
J 1<jsm

(Note: the matrix norm ][-I]m induced by the uniform norm on R is
, A T \
defined by E]M||m = max ) |M.i] for any real mxm matrix M)
lgjgm i=1 ]
LCHDc given in equation (17) is easily evaluated from

The value of I
the plant and controller data and, combined with the analysis of scction
2, can yield informationonthe transient effect of the nonlinearity.

Suppose now that the discrete first order lag is derived from the
continuous system $(A,B.C) of state dimension n=m and, without loss of

(1)

generality, take C = Im when "




= 6

h
- ] =
o = eAh B I—BOIB vo NF B = eAh f e 48

5 3 Bdt (18)

o
where h > O is the sampling interval. In particular, it is seen that

1Hain B, =0 (19)
hso+ 2

The following result now follows directly from theorem one and equation

(19)

Theorem %

With the assumptions of theorem 1 and the above construction

(1-k.)
lim L || = max (20)
e BRI feiem e D)

In particular

Corollary

I£0 <k, <1 (1<js<m, then lip IILC[lw =1

(1)

It is known that reasonably fast sampling is required if the
(linear) closed-loop system is to have fast response speeds and small
steady state errors and transient interaction effects in response to unit
step demands. In such a situation equation (20) provides a simplified
estimate for lch|im- The theorem and its corollary also suggest the
general rules,

(a) The use of kj < 0 (and hence oscillatory closed-loop respohses)
can lead to excessive amplification of the effects of the nonlinearity.
For example, if m = 2, and kl =0,9 = —k2 then, at fast sampling
[z ||, = 19.0.

e

(b) The use of all o ¢ kj < 1 and fast sampling provides no

amplification of the effects of the nonlinearity (by the corollary).
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In particul:ar, if we interpret f in terms of quantization with

quantization level q, then the transient effects of this nonlinearity

are bounded by the measurement quantization error q/2 under fast sampling
conditions.

The inclusion of summation control action as represented by the
controller of equation (3) can be analysed if a similar, but rather more

(1)

involved, manner. In practice, however, summation action would
normally only be introduced in cases where the proportional design dis-
plays large steady state errors. Also reset times will tend to be con-
siderably longer than rise times in the sense that(l)
L le << |l - kj 2 1 =3 wam (21)

In such cases the inclusion of summation action is a small perturbation
to Lc and hence the estimates described by theorems 1 and 2 and the cdrollary
will still be adequate for applications.

To illustrate the application of the results suppose that the continuous,
invertible system(l) specified by the matrix triple
=; l] (1 O} 1 =0

A8

= y & = L)
2 —2J 0 2 G 1
is to be controlled by discrete proportional feedback with sampling period

he: TE follows(l) that
1 -1
I (L gy (23)

Following previous analyses, we suppose that similar response speeds are

required from each channel and set k. =k, = 0.5 with a sampling period

1 2
of h = l-. It is known<1) that the resulting closed-loop system responds

30
rapidly tc unit step demands with transient interaction effects and steady
state errors of peak magnitude 0.13. We can assess the tolerance to

bounded feedback nonlinearities by using equation (17) to deduce that

L1, = 1 (2)
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That is, the maximum error in the prediction of closed-loop transient
performance using the linear model must be less than the peak error in
the approximation of the feedback nonlinearity by a unit gain!

Effects of Nonlinearity on Higher Order Plant under Fast Sampling Conditions

Suppose now that the plant is described by the mxm invertible, minimum—
phase discrete plant model S(¢,A,C) given in equation (4) having inverse z-
transfer function matrix Gnl(z) given by equation (5) with ]BO| # 0 and
H(z) proper. Following the technique of reference (1), the plant is con-
ceptually approximated by the mzm first order lag GA(z) defined by

G, (z) = (z = )B_ + B ( 25)
and which is used as the basis for the choice of proportional or proportional
plus summation controllers of the forms given in equations (2) and (3
respectively. The approximation QA is a good approximation to the high
frequency plant behaviour and, if we arrange(l) that H({l) = 0, it tan alsé
be a good approximation to plant steady state characteristics. The
approximation contains no information on plant zero structure however.

It is known(l) that the procedure outlined above can provide a
highly successful techmique for guaranteeing the desired closed=loop
performance if the underlying continuous plant S(A,B,C) satisfies certain
simple structural constraints and the sampling rate is high enough. A
comparison of this work with theorem 2 and the following result indicates
that the first crder approximation can also be successfully used to

estimote the transient effects of feedback nonlinearities at fast

sampling rates:

Theorem 3 (see Appendix 8)
Suppose that the plant defined by equation (5) is to be controlled by

the configuration of Fig. I with proportional controller K(z) given by




equation (2). Suppose also that this model is derived from the minimum-

phase continuous model S(A,B,C) with a sampling interval h > o and that

| cB| # 0 and 1lim ]301 B, = 0. - Then

h+o+ !
e | e
lim L ||, = max N (26)
e 1€ m L |kjl)

In effect the values of the norm at fast sampling is essentially
the same for the real and approximate closed-loop systems, and hence the
upper bounds (equation (13)) on the effects of the nonlinearity on both

systems are essentially identical. The conditions on S(A,B,C) and sampling

¢y

rate are precisely those used previously to guarantee the stability

of the closed-loop system and, as such, theorem 3 augments previous work.
(1) for example

T g : !
The conditions on BD B, can always be achieved by ensuring/that the

1

approximate and real plants have identical steady state characteristics.
It is particularly significant that the norm HLCH00 can be estimated

characterizing the closed-loop

knowing only the paramerers {kj}lstm

(1)

response times and that the controller can be constructed from this

information and the matrices Bo’ B.. These matrices can be estimated either

1
1)

from the plant model or from experimental transient tests s In'this

(1)

sense the design technique and the bounds described in this paper can
be applied even if a detailed plant model is not available, provided that
the underlying continuous plant satisfies the structural constraint of
theorem 3 and suitably fast sampling is implemented.

The inclusion of summation control action in the form of the controller
of equation (3) will, as discussed in the previous section, only generate a
small perturbation to L if the condition =xpressed by equation (21) is
implemented. In such cases, equation (26) will be a good approximation to
the norm ||Lc|foo at high sampling rates.

To illustrate the validity and application of the results consider the

open—~loop unstable system S(A,B,C) described by the triple




= TPy i
A= ’2 1 0.1 - B= 1 1
1 bz COGAMRN € e 0] i
0.5 0,38 ! @0
C = 1 -
0 1 0 27)

and note that [CB| # O and that the system is minimum phase with a zero
at s = =1 <0, as required by theorem 3. Discretizing the system with
a sample interval of h = %63 the approximating first order lag matching
the high frequency and steady state plant characteristics is defined by
the data,
19.52 -21.0 =095 =92
B = g B (28)

1-0.50 20.51 =L1:l 0.84

Assuming, for simplicity, that similar response speeds are required from

both loops, we choose kl = k? = 0.25. The response of the closed-loop

system with the controller of equation (2) is shown in Fig. 4. The response

is seen to be rapid with steady state errors and transient interaction
effects of peak magnitude 0.14. Overall this is a good design on paper.
Consider now the inclusion of feedback quantization errors. More
precisely, consider the configuration of Fig. 2 where f is a diagonal
nonlinearity representing the inclusion of identical quantization effects
of the form showr in Fig. 3(a) in each loop. For illustrative purposes,
we choose very coarse quantization with q = 0.4. Noting that the sampling
interwal is quite short, the peak transient effect of the nonlinearity
can be estimated using theorem 3 and equation {13). That is,
IILC|]m = 1, suggesting that the peak transient errors introduced by the
5

nonlinearity are of the order of IILC!lm B 0.2%

The responses of the linear and nonlinear feedback systems to
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periodic alternating unit step input in channel one of period 10
sampling intervals are shown in Fig. 5. They indicate that the upper
bound 0.2 is a good estimate of the transient errors introduced by the
quantization (the peak error is, in fact, 0.162).

The equivalent responses with kl = k2 = —0.25 are shown in Fig. 6.
The upper bound obtained from equation (13) and theorem 3 is

Rkt

measurement quantization errors. The actual peak error is 0.253.

c|lm‘% = 0.333, indicating a potential 607 magnification of the
Conclusions

The paper has provided a theoretical analysis of the properties of
first-order multivariable feedback systems(l) designed on a linear basis
but which, at the implementation stage, include Lounded nonlinearities
such as measurement quantization or deadzone in the feedback loop. Such
nonlinearities have no effect on the stability of the closed-loop system
but can, a priori, have significant effects on transient performance, the
magnitude of the effects being affected by the properties of the designed
linear control system. The availability of estimates of the peak transient
errors is hence important for assessing the quality of the designed coa—
troller on implementation.

VIf the plant is first order an explicit estimate of the peak transient
errors is provided by equation (13) and theorem 1. This bound can be easily
computed from plant and controller data and (theorem 2), under conditions
of fast sampling and ron—oscillation, reduces to unity i.e. thka first order

i

controller produces a closed-loop system( with rapid, non-oscillatory
response, small interaction effects and peak transient errors due to the
nonlinearity less that the error involved in approximating the nonlinearity
by a unity gain matrix., For example, if the nonlinearity is measurement
quantization, the peak transient effects of the quantizer will be bounded

by the peak quantization error q/2!

¥ . VR D M ; :
If the plant is not first~order, satisfies certain generic
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structural constraints (see theorem 3) and controller design is undertaken

1)

based on first order approximation( , then explicit (computable) bounds

on the transient effect of the nonlinearity cannot be obtained. However,
under fast sampling conditions, if has been shown (theorem 3) that the
transient errors are asymptotically (h - o+) bounded by the bound obtained
from the first order approximation. In other words, not only can the first
order approximation be used (under fast sampling conditions) to design a

rapid, non-oscillatory closed~loop system with small interaction effects

for the original large-scale system, it can also be used to assess the

transient effect of bounded feedback nonlinearities. This is particularly

significant if a detailed high-order analytical model is not known but(l)

a simple first order plant model has been estimated from experimental data.
Finally, the nature of the transient error has not been investigated,

In particular, the closed-loop system may not be asymptotically stable

(although it is always bounded-input-bounded-output stable) indicating the
Possibility of limit cycles. 1In this situation the results described in

this paper represent bounds on the amplitude of any liwit cycle., 1In many
situations (such as the assessment of the effect of measurement quantization)
the results will be used simply to assess whether or not the limit cycles

are of sufficiently small magnitude to be ignored. More gener-lly, the
results will provide useful information to initiate a4 search for tie limit
cycle form.
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AEEendix

Proof of Theorem 3:

The proof is based on the observation that (equation (5) and (25))
the linear configuration of Fig. 1 can be regarded as the minor loop
system of Fig. 7(a) and hence, by interchange of the feedback loops, as
the configuration of Fig. 7(b) with forward path system equal to the
approximate unity negative feedback systemmused for the basis of the
design study.

Suppose initially that H(z) is strictly proper, then, applying

known results(7)
B, = Ayt (29)
B1 g —(CA)_l ci® - 1} A (CA)_l (30)

H(z) = -C{® - I} M (2T _ - NeM) L N {@ - 1} Acca)yh

(31)

where N,M are (n-m) xn and nx (n~m) full rank matrices respectively

satisfying the relations

CM = 0 . NA = 0 , NM = I (32)
n=m
Noting that(l)
Eo RS Cea R (33)

h>o+
. ] : A% ARy L. o : ; Sy
is nonsingular by assumption and writing ® = e it 1s easily verified that

lim B B1 =0 {34)
Ir-o+

: ; ; =1 ; : ;
The linear map y =+ § induced by K “(z) BOH(Z) is defined by the relations

=]
- D; % - N @"" A I’_\x s =
Zy gy = NOM z - N { 1} A(Ch) i z =0
=1
5, = (B diag{l - k.}, .. -~ B {6 - 1hu 2, 5
Vo ™ (B d ag{l ]j 1€i¢m 1) B, C LM z, (35)
and will be denoted Lf. It is a bounded linear map of E$ into itself
w . ) '
(as h'o+) as we can always suppose that M is constant and that lim N = mo
h+o+

where N B =0 and NM =1 , i.e.
(8] o Ti—m

Né&M=1T +h N AM+ o(hz) (36)
I1=m (8]




whose eigenvalues lie in the open unit circle on the complex plane for all
(7)

fast enough sampling rates as the eigenvalues of N AM (i.e. the zeros

of S(A,B,C)) all have strictly negative real parts,

LEMMA

lin  [|L ]| =0 37)
h+o+
Proof
Using (33), it is easily verified that N{g —~ I} A(Ca)—1 = 0(h) and

5 =t i
that (BO diag {1 kj}lsjsm Bl) BOC(® - I)M = 0(h). Noting that the

norm of the linear map u + v defined by

V. =NMV +w Vo=10.4 k30 (38)

k+1 k k g o} :
has norm O(hdl) (without' loss of generality, suppose that N A M is in

diagonal or Jordan canonical form) then the lemma follows as Lf is the

composition of the three defined maps. 0.E.D.

The lemma is also true for amy choice of By such that lim B—lBl =-0.
i : h+o+ .
To prove this, let B1 be one such choice so that H(z) must be replaced

by H(z) = H(z) + B;l {B1 - Bl} and note that the correction term is 0(h).
To complete the proof, note that the configuration of Fig. 7(b) is
characterized in Eg by the bounded operator

~1
Ly =00 il L) B

" (39)
(m)

(o]

where LA is the linear map in E induced by the forward path system.

This map is first order and hence, using theorem 2,

: (1K)
lim ||L,]|]|, = max —:T¢ (40)
Brgaes. S 1gj<m I kj|
In particular, it follows that lim [ILALE|| = 0, The result follows by
hro+ i
deducing that
lim ||L.-L,|| =0 (41)
h+o+ 0

from the identity
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; B - 16 -

...,]_
Ly = LA = - (I+LALf) LLely (42)

and using equation (40). Q.E.D.
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Fig. 2. Nonlinear Feedback Systems
(a) Closed~loop system with feedback linearity

(b) Equivalent transformed svstem
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Fig, 7. Closed-loop System Representatives

(a) Representation as plant approximation plus minor loop

(b) Interchange of feedback loops




