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Abstract

The real parts of the invariant zeros of an mx? system 5(A,B,C)
satisfying a partial symmetry condition can be bounded from above
and below by the eigenvalues of the symmetric part of A. Where
applicable the results provide a simple computational technique

for assessing the minimum phase structure of the system.

The concept of invariant zeros of an mxy (m>2) left-invertible

linear time-invariant system S(A,B,C) of the form

x(t) = Ax(t) + Bu(t)

y{E)y = CxlE) .- (D)
. . (1,2)
1s now well-established . More recently the concept of the

root-locus of the system subjected to unity negative feedback with

constant forward path controller K has been established(1’3h5) and,

in particular, it has been noted that the system invariant zeros are
a subset of the finite cluster points of the root-locus. Moreover
they are independent of the choice of K and, as in classical control

the presence of right-half-plane zeros is a severe limitation on

>

attainable closed-loop transient performance. It follows that the
computation of invariant zeros is an important practical problem(6).
It is also clear that, in applications to large-scale or i11-
conditioned problems, direct calculation of the invariant zeros
may not be feasible. In such cases the availability of easily
computed estimates of zero positions could be of great value.

This paper presents the following theorem describing upper and
lower bounds on the real part of the invariant zeros in the speciai

i

case when the system matrices possess a partial symmetry.
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Theorem 1

Ay S Rez. <) 3 1gj5uz <+ (2)

where Al and An are the smallest and largest eigenvalues of (A+AT)/2.

Proof
Consider the system S(A,B,C) subjected to unity negative output
feedback with constant forward path controller PK, where p is a real

scalar gain constant, The closed-loop eigenvalue equation takes
8

the form,

&

{s(P)I - A + pBRC}x(p) = 0 o o 3)

where s(p) and x(p) are eigenvalues and eigenvector of A-pBKC
respectively. Without loss of generality we suppose that
x+(p)x(p) = 1. Multiplying equation (3) from the left by x+(p),

letting p tend to +w and supposing that s(p) - zj and x(p) - X with
+

XX =1yields the relation
Z X:A ., == lin px+(p)BKCx(p) e w (4)
] s

and hence, by taking real parts, the relation
i

T
=
Re(z.) - x (A+4') X <0 # s o 0B
] w 2 © = a
It follows directly that Rezj £ An. The argument can now be repeated

letting p tend to ~», when the inequality in equation (5) is reversed

and it follows directly that Rezj 3 Al which proves the result.




When the conditions of the theorem are valid, equation (2) provides
preliminary bounds on the positions of the invariant zeros. For
example, if An < 0, it is clear that all invariant zeros lie in the
open left-half complex plane and the system is hence minimum phase.
In particular, the bounds are obtained-by computation of the largest
and smallest eigenvalues of a symmetric matrix. For the case of
large scale systems, such calculations can often be performed very
accurately even though the direct calculation of the zeros may not
be feasible.

Finally, the following result indicates that the conditions
required for application of theorem one are equivalent to a form

of symmetry in.the structures of B and C.

Theorem 2
The conditions required for application of theorem 1 are valid

if, and only if, there exists a constant fxm matrix K such that

If KC = B' then, choosing K = K, it follows that BRG = BET » o

and S(A,B,KC) is invertible as KCB is nonsingular.

Conversely, if BKC > 0, it follows that KC = QBT for some /x {

matrix Q. To prove this suppose the contrary when there exists
vectors xl,XZEE‘Rn such that KCx1 =0, xlTB >0, KCx2 > 0, szB = 0.
It follows that (x_ +x )TBKC(X +x,) > O and that (x_,-x 5TBKC{X -x,)<0 which
& @ h 1 2 172 1 =2
contradicts the statement that BKC > 0. The theorem is now proven
~ .
by noting that the invertibility of S(A,B,KC) requires that rank B = \
. 2 - \S:\ i [N
rank KC = ¢ and hence that |Q] # 0 and Bt = KC with K = Q 1K. {§?\@u?
Q \{?fr"'“&




To illustrate the results, consider the case of the single~input-

single-output system

where BT = C. It is easily verified that the system has one zero
at the point z) = s Also (A+AT)/2 = 0 so that AI = AZ = 0 ie, in

this simple case, the upper and lower bounds are identical and equal

to the zero in question.

Consider now the multi-input-multi-output system

=}
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-0.4

B = - = C .oc(7)
. & _004 0.6

o
(=}

which has one zero at the point 21 B =3y It is easily verified that

(A&A?)/Z has eigenvalues Al = Az = =4, AB = -1 and hence that

A < Rez

1 1S A3 as predicted. Note that the minimum phase structure

of the system follows directly from the inequality AB = =1 20
g-#

without the need to compute Zye
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