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Clifford algebra unveils a surprising geomet-

ric significance of quaternionic root systems

of Coxeter groups

Pierre-Philippe Dechant

Abstract. Quaternionic representations of Coxeter (reflection) groups of ranks

3 and 4, as well as those of E8, have been used extensively in the literature. The

present paper analyses such Coxeter groups in the Clifford Geometric Algebra

framework, which affords a simple way of performing reflections and rotations

whilst exposing more clearly the underlying geometry. The Clifford approach

shows that the quaternionic representations in fact have very simple geometric

interpretations. The representations of the groups A1×A1×A1, A3, B3 and H3 of

rank 3 in terms of pure quaternions are shown to be simply the Hodge dualised

root vectors, which determine the reflection planes of the Coxeter groups. Two

successive reflections result in a rotation, described by the geometric product of

the two reflection vectors, giving a Clifford spinor. The spinors for the rank-3

groups A1 ×A1 ×A1, A3, B3 and H3 yield a new simple construction of binary

polyhedral groups. These in turn generate the groups A1 ×A1 ×A1 ×A1, D4, F4

and H4 of rank 4, and their widely used quaternionic representations are shown to

be spinors in disguise. Therefore, the Clifford geometric product in fact induces

the rank-4 groups from the rank-3 groups. In particular, the groups D4, F4 and

H4 are exceptional structures, which our study sheds new light on.
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1. Introduction

Reflective symmetries are ubiquitous in nature and in mathematics. They are central

to the very earliest of mathematics in the guise of the Platonic and Archimedean

solids, as well as to the latest endeavours of finding a fundamental physical theory,

such as string theory. The current group theoretic paradigm for reflection groups

is Coxeter group theory [4, 17], which axiomatises reflections from an abstract

mathematical point of view. Clifford Geometric Algebra [13, 7] is a complementary

framework that instead of generality and abstraction focuses on the physical space(-

time) that we live in and its given Euclidean/Lorentzian metric. This exposes more

clearly the geometric nature of many problems in mathematics and physics. In par-

ticular, Clifford Geometric Algebra has a uniquely simple formula for performing

reflections. Previous research appears to have made exclusive use of one framework

at the expense of the other. Here, we advocate a combined approach that results in

geometric insights from Geometric Algebra that apparently have been overlooked in

Coxeter theory thus far. Hestenes [14] has given a thorough treatment of point and

space groups (including the Coxeter groups of rank 3 of interest here) in Geometric

Algebra, and Hestenes and Holt [15] have discussed the crystallographic point and

space groups, from a conformal point of view. Our emphasis here lies on applying

Geometric Algebra to the Coxeter framework, in particular the root systems and

representations.

It has been noticed that certain root systems in Coxeter group theory can be

realised in terms of Hamilton’s quaternions [9, 37, 3] – most notably the E8 root

system – and quaternionic representations of Coxeter groups are used extensively in

the literature for problems ranging from polytopes to quasicrystals and elementary

particle theory [38, 36, 32, 1, 20, 27, 26, 23, 29, 30, 22, 21]. However, all that is used

in this approach are the algebraic properties of the quaternion multiplication law,

conjugation and inner product. It is also obvious that the quaternionic description

can not extend to arbitrary number of dimensions.

In this paper, we show that the quaternionic rank-3 and 4 Coxeter group rep-

resentations have very simple geometric interpretations as (Hodge duals of) vectors

and as spinors, respectively, which are shrowded in the purely algebraic approach

followed in the literature. We demonstrate how these structures in fact arise very

naturally and straightforwardly from simple geometric considerations in Geomet-

ric Algebra. Furthermore, the concepts of vectors and spinors readily generalise to
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arbitrary dimensions. There is another surprising insight that concerns the connec-

tions between the groups of rank 3 and those of rank 4. In low dimensions, there

are a number of exceptional structures (E8; H4, F4, D4; H3, B3, A3 = D3), that in

the conventional approach seem unrelated. Here, we demonstrate how in fact the

rank-4 groups can be derived from the rank-3 groups via the geometric product of

Clifford Geometric Algebra. This is complementary to the top-down approaches of

projection, for instance from E8 to H4 [35, 32, 27, 25, 6], or of generating subgroups

by deleting nodes in Coxeter-Dynkin diagrams.

This paper is organised as follows. Section 2 introduces the fundamentals of

Coxeter group theory necessary to understand the argument. Section 3 summarises

the basic properties of quaternions, and presents the quaternionic representations

used in the literature. In Section 4, we introduce the basics of Geometric Algebra

necessary for our discussion and set out the notation that we will use. In Section 5,

we begin with the simple example of the group A1 ×A1 ×A1 as an illustration of

the logic behind our approach, as it exhibits the same structural features as the later

cases without most of the complexity. The Geometric Algebra reflection formalism

is used to generate the full reflection group from the simple roots and the geometric

interpretation for the rank-3 representation in terms of pure quaternions is given.

The spinors resulting from successive reflections are found to be the Lipschitz units,

which thus induce a realisation of the rank-4 group A1 × A1 × A1 × A1 that cor-

responds precisely to the quaternionic representation. Section 6 follows the same

procedure in the case of A3, with the spinors (the Hurwitz units) inducing the group

D4, which is interesting from a triality point of view and central to the equivalence

of the Ramond-Neveu-Schwarz and Green-Schwarz strings in superstring theory. In

Section 7, B3 is found to give rise to the F4 root system, the largest crystallographic

group in four dimensions. H3 (the icosahedral group) and H4 are the largest discrete

symmetry groups in three and four dimensions, and are thus the most complex case.

In Section 8, we show that the H3 spinors are equivalent to the icosians, which in

turn are the roots of H4. We finally consider the advantages of a Geometric Algebra

framework over conventional purely algebraic considerations (Section 9), before we

conclude in Section 10.

2. Coxeter Groups

Definition 2.1 (Coxeter group). A Coxeter group is a group generated by some

involutive generators si,s j ∈ S subject to relations of the form (sis j)
mi j = 1 with

mi j = m ji ≥ 2 for i 6= j.

The finite Coxeter groups have a geometric representation where the invol-

utions are realised as reflections at hyperplanes through the origin in a Euclidean

vector space E (essentially just the classical reflection groups). In particular, let (·|·)
denote the inner product in E , and λ , α ∈ E .

Definition 2.2 (Reflections and roots). The generator sα corresponds to the reflec-

tion

sα : λ → sα (λ ) = λ − 2
(λ |α )

(α |α )
α (2.1)
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at a hyperplane perpendicular to the root vector α .

The action of the Coxeter group is to permute these root vectors, and its struc-

ture is thus encoded in the collection Φ ∈ E of all such roots, which form a root

system:

Definition 2.3 (Root system). Root systems satisfy the two axioms

1. Φ only contains a root α and its negative, but no other scalar multiples: Φ∩
Rα = {−α ,α} ∀ α ∈ Φ.

2. Φ is invariant under all reflections corresponding to vectors in Φ: sα Φ =
Φ ∀ α ∈ Φ.

A subset ∆ of Φ, called simple roots, is sufficient to express every element of Φ via

integer linear combinations with coefficients of the same sign.

Φ is therefore completely characterised by this basis of simple roots, which in

turn completely characterises the Coxeter group. The structure of the set of simple

roots is encoded in the Cartan matrix, which contains the geometrically invariant

information of the root system.

Definition 2.4 (Cartan matrix and Coxeter-Dynkin diagram). For a set of simple

roots αi ∈ ∆, the matrix defined by

Ai j = 2(αi|α j)/(αi|αi) (2.2)

is called the Cartan matrix. A graphical representation of the geometric content

is given by Coxeter-Dynkin diagrams, in which nodes correspond to simple roots,

orthogonal ( π
2

) roots are not connected, roots at π
3

have a simple link, and other

angles π
m

have a link with a label m (see Fig. 1 for examples).

The crystallographic Coxeter groups arise as Weyl groups in Lie Theory. They

satisfy Ai j ∈ Z and roots are Z-linear combinations of simple roots. However, the

root systems of the non-crystallographic Coxeter groups H2, H3 and H4 fulfil Ai j ∈
Z[τ ], where Z[τ ] = {a+ τb|a,b∈Z} is given in terms of the golden ratio τ = 1

2
(1+√

5). Together with its Galois conjugate σ = 1
2
(1−

√
5), τ satisfies the quadratic

equation x2 = x + 1. In this case, all elements of Φ are given in terms of Z[τ ]-
linear combinations of the simple roots. These groups do not stabilise lattices in the

dimension equal to their rank, but they are important in quasicrystal theory.

3. Quaternions

The Irish mathematician William Rowan Hamilton constructed the quaternion al-

gebra H in his quest to generalise the advantages of complex numbers for two-

dimensional geometry and analysis to three dimensions. His geometric consider-

ations are close in spirit to Geometric Algebra, and have profoundly influenced its

development. In pure mathematics, H is largely deemed interesting because it is one

of the only four normed division algebras R, C, H and O (Hurwitz’ theorem).
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Definition 3.1 (Quaternion Basics). Real quaternions are defined as q = q0 +qiei,

(i = 1,2,3) where q0 and qi are real numbers and the quaternionic imaginary units

satisfy

eie j =−δi j + εi jkek,(i, j,k = 1,2,3). (3.1)

δi j and εi jk are the Kronecker and Levi-Civita symbols, and summation over re-

peated indices is implied. We will sometimes use the notation (q0,q1,q2,q3) to

represent a quaternion by its quadruplet of components. Quaternion conjugation

is defined by

q̄ = q0 − qiei, (3.2)

which equips the space of quaternions with an inner product and a norm

(p,q) =
1

2
(p̄q+ pq̄), |q|2 = q̄q = q2

0 + q2
1 + q2

2 + q2
3. (3.3)

The group of unit quaternions is therefore topologically S3, and isomorphic to

SU(2)= Spin(3) = Sp(1). It is a theorem (see, for instance, [3]) that every operation

in O(3) can be described by one quaternion q via x → q̄xq or x → q̄x̄q, and every

orthogonal transformation in O(4) can be expressed by a pair of quaternions (p,q)
via x → pxq or x → px̄q. In the literature, the notation

[p,q] : x → pxq, [p,q]∗ : x → px̄q, (3.4)

is conventional (see, e.g. [22]), but we shall see how a Clifford algebra approach can

streamline many derivations in applications in Coxeter theory.

The unit quaternions have a number of discrete subgroups. Group theoretic-

ally, these are the preimages of the rotational polyhedral groups (which are discrete

subgroups of SO(3)) under the covering homomorphism from Spin(3) (which is a

Z2-bundle over SO(3)). They are the binary polyhedral groups, as opposed to the full

polyhedral reflection groups, which are preimages from O(3) = SO(3)×Z2 (glob-

ally), and which are thus Coxeter groups. The discrete quaternion groups therefore

give concrete realisations of the binary polyhedral groups. Here, we list the discrete

groups that will be relevant later.

Definition 3.2 (Lipschitz units). The 8 quaternions of the form

(±1,0,0,0) and permutations

are called the Lipschitz units, and under quaternion multiplication form a realisation

of the quaternion group in 8 elements (there is no polyhedron with this symmetry

group).

Definition 3.3 (Hurwitz units). The 8 Lipschitz units together with the 16 unit

quaternions of the form
1

2
(±1,±1,±1,±1)

are called the Hurwitz units, and realise the binary tetrahedral group of order 24.

Together with the 24 ‘dual’ quaternions of the form

1√
2
(±1,±1,0,0),

they form a group isomorphic to the binary octahedral group of order 48.
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Definition 3.4 (Icosians). The 24 Hurwitz units together with the 96 unit qua-

ternions of the form

(0,±τ ,±1,±σ) and even permutations,

are called the Icosians. The icosian group is isomorphic to the binary icosahedral

group with 120 elements.

It has been noticed that a number of root systems relevant in Coxeter group

and Lie theory can be realised in terms of quaternions. Most notably, there exists an

isomorphism between the 240 roots of E8 and the 120 icosians and their τ -multiples

[38, 36, 32, 20]. Koca et al. have used quaternionic representations also of rank-3

and rank-4 Coxeter groups in a large number of papers [27, 26, 23, 29, 30, 22, 21].

In Fig. 1 we summarise the representations of the rank-3 groups A1×A1×A1, A3, B3

and H3, as well as the rank-4 groups D4, F4 and H4 (the extension to A1 ×A1×A1×
A1 is trivial). Their interests ranged from string theory to quasicrystals, and most

recently to the constructions of 4-polytopes, and 3-polytopes via projection from 4-

polytopes. They employ the quaternionic formalism throughout. Here, we show that

their algebraically involved manipulations in fact have very straightforward geo-

metric interpretations in terms of Geometric Algebra, which simplifies calculations,

suggests a more streamlined notation and exposes the geometry at each step.

4. Geometric Algebra

The study of Clifford algebras and Geometric Algebra originated with Grassmann’s,

Hamilton’s and Clifford’s geometric work [8, 9, 2]. However, the geometric content

of the algebras was soon lost when interesting algebraic properties were discovered

in mathematics, and Gibbs advocated the use of vector calculus and quaternions in

physics. When Clifford algebras resurfaced in physics in the context of quantum

mechanics, it was purely for their algebraic properties, and this continues in particle

physics to this day. Thus, it is widely thought that Clifford algebras are somehow

intrinsically quantum mechanical in nature. The original geometric meaning of Clif-

ford algebras has been revived in the work of David Hestenes [13, 11, 12]. Here, we

follow an exposition along the lines of [7].

In a manner reminiscent of complex numbers carrying both real and imagin-

ary parts in the same algebraic entity, one can consider the geometric product of

two vectors defined as the sum of their scalar (inner/symmetric) product and wedge

(outer/exterior/antisymmetric) product

ab ≡ a ·b+ a∧b. (4.1)

The wedge product is the outer product introduced by Grassmann, as an antisym-

metric product of two vectors. It is the origin of the anticommuting Grassmann

‘numbers’, which are essential for the treatment of fermions in particle physics,

from the Standard Model to supergravity and string theory. Two vectors naturally

define a plane, and the wedge product is precisely a plane segment of a certain size

(parallelogram or other) and orientation (a bivector). The notion of a cross-product

resulting in a vector perpendicular to the plane is less fundamental, as it essentially
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e1 e2 e3 1 e1 e2 e3

A1 ×A1 ×A1 A1 ×A1 ×A1 ×A1

e1 + e2 e3 − e2 e2 − e1 e1 1

2
(1− e1 − e2 − e3) e2

e3

A3 = D3 D4

e1 − e2 e2 − e3
√
2e3

4

1

2
(1− e1 − e2 − e3) e3 1

2
(e2 − e3)

1

2
(e1 − e2)

4

B3 F4

5

−e1
1

2
(τe1 + e2 + σe3) −e2

5

−e1
1

2
(τe1 + e2 + σe3) −e2

1

2
(σ + e2 + τe3)

H3 H4

FIGURE 1. Quaternionic root systems for the Coxeter groups

A1 ×A1 ×A1 (as taken from [21]), A3 [22], B3 [22], H3 [22] of

rank 3, as well as the groups A1 ×A1 ×A1 ×A1, D4 [24], F4 [24],

H4 [28] of rank 4.

relies on Hodge duality, and only works in three dimensions, so we concentrate

here on the more general wedge product (essentially the exterior product in the lan-

guage of differential forms). Unlike the constituent inner and outer products, the

geometric product is invertible, as a−1 is simply given by a−1 = a/(a2). This leads

to many algebraic simplifications over standard vector space techniques, and also

feeds through to the differential structure of the theory, with Green’s function meth-

ods that are not achievable with vector calculus methods.

This geometric product can then be extended to the product of more vectors via

associativity and distributivity, resulting in higher grade objects called multivectors.

Multiplying a vector with itself yields a scalar, so there is a highest grade object

– called the pseudoscalar and commonly denoted by I – that one can form in the

algebra, as the number of elements is limited by the number n of linearly independ-

ent vectors available. The pseudoscalar is the product of n vectors, and is therefore

called a grade n multivector (it generalises the volume form of the exterior algebra,

of which Clifford algebras are deformations). There are a total of 2n elements in the

algebra, which is graded into multivectors of grade r, depending on the number r of

constituent vectors.

For illustration purposes let us consider the Geometric Algebra of the plane

Cl(2), generated by two orthogonal unit vectors e1 and e2. The outer product of two
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vectors a = a1e1 + a2e2 and b = b1e1 + b2e2 is then

a∧b = (a1b2 − b1a2)e1 ∧ e2, (4.2)

which would be precisely the z-component of the vector (cross) product in three

dimensions. Due to the orthonormality we have e1 ∧ e2 = e1e2 = −e2e1 ≡ I, i.e.

orthogonal vectors anticommute. Moreover, we have the remarkable fact that I2 =
e1e2e1e2 =−e1e2

2e1 =−1, which is perhaps surprising when one is used to dealing

with uninterpreted unit scalar imaginaries i. Alternatively, writing a and b as com-

plex numbers a = a1 + ia2 and generalising the norm a∗a to the complex product

a∗b, we have

a∗b = (a1b1 + a2b2)+ (a1b2 − a2b1)i, (4.3)

which just recovers the inner and outer products of the vectors, and we can in fact

now identify the uninterpreted i with (as?) the Geometric Algebra bivector (and

pseudoscalar) I.

The Geometric Algebra of three dimensions Cl(3) is very similar, as there are

now three planes like the one above, all described by bivectors e1e2, e2e3 and e3e1

that square to −1. The new highest grade object is the trivector (and pseudoscalar)

e1e2e3, which also squares to −1. It might come as a surprise that the algebra obeyed

by the three orthonormal vectors e1, e2, e3 is precisely that of the Pauli algebra, with

Pauli matrices σi. This is often thought of as something inherently quantum mech-

anical, but can in fact be seen as an instance of a matrix representation shrowding

the geometric content of an equation. The three unit vectors ei are often therefore

called σi, but are thought of as orthogonal unit vectors rather than matrices, which

makes the algebra of three dimensions

{1}
︸︷︷︸

1 scalar

{σ1,σ2,σ3}
︸ ︷︷ ︸

3 vectors

{σ1σ2 = Iσ3,σ2σ3 = Iσ1,σ3σ1 = Iσ2}
︸ ︷︷ ︸

3 bivectors

{I ≡ σ1σ2σ3}
︸ ︷︷ ︸

1 trivector

.

(4.4)

The geometric product provides a very compact and efficient way of handling

reflections in any number of dimensions, and thus by the Cartan-Dieudonné theorem

also rotations. Given a unit vector n, we can consider the reflection of a vector a in

the hyperplane orthogonal to n.

Proposition 4.1 (Reflections). In Geometric Algebra, a vector ”a” transforms un-

der a reflection in the (hyper-)plane defined by a unit normal vector ”n” as

a′ =−nan. (4.5)

This is a remarkably compact and simple prescription for reflecting vectors in

hyperplanes. More generally, higher grade multivectors transform similarly (‘cov-

ariantly’), as M = ab . . .c →±nannbn . . .ncn =±nab . . .cn =±nMn, where the ±-

sign defines the parity of the multivector. Even more importantly, from the Cartan-

Dieudonné theorem, rotations are the product of successive reflections. For instance,

compounding the reflections in the hyperplanes defined by the unit vectors n and m

results in a rotation in the plane defined by n∧m.

Proposition 4.2 (Rotations). In Geometric Algebra, a vector ”a” transforms under

a rotation in the plane defined by n∧ m via successive reflection in hyperplanes
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determined by the unit vectors ”n” and ”m” as

a′′ = mnanm =: RaR̃, (4.6)

where we have defined R = mn and the tilde denotes the reversal of the order of the

constituent vectors R̃ = nm.

Definition 4.3 (Rotors and spinors). The object R = mn generating the rotation

in Eq. (4.6) is called a rotor. It satisfies R̃R = RR̃ = 1. Rotors themselves transform

single-sidedly under further rotations, and thus form a multiplicative group under

the geometric product, called the rotor group, which is essentially the Spin group,

and thus a double-cover of the orthogonal group. Objects in Geometric Algebra that

transform single-sidedly are called spinors, so that rotors are normalised spinors.

Higher multivectors transform in the above covariant, double-sided way as

MN → (RMR̃)(RNR̃) = RMR̃RNR̃ = R(MN)R̃. In fact, the above two cases are

examples of a more general theorem on the Geometric Algebra representation of

orthogonal transformations. We begin with a definition:

Definition 4.4 (Versor). In analogy to the vectors and rotors above, we define a

versor as a multivector A = a1a2 . . .ak which is the product of k non-null vectors

ai (a2
i 6= 0). These versors also form a multiplicative group under the geometric

product, called the versor group, where inverses are given by Ã, scaled by the mag-

nitude |A|2 := |a1|2|a2|2 . . . |ak|2 =±AÃ, where the sign depends on the signature of

the space. The inverse is simply A−1 =± Ã
|A|2 .

Theorem 4.5 (Versor Theorem [12]). Every orthogonal transformation A of a vec-

tor a can be expressed in the canonical form

A : a → a′ = A(a) =±A−1aA =± ÃaA

|A|2 . (4.7)

Unit versors are double-valued representations of the respective orthogonal trans-

formation, and the ±-sign defines its parity. Even versors form a double covering of

the special orthogonal group, called the Spin group.

The versor realisation of the orthogonal group is much simpler than con-

ventional matrix approaches, in particular in the Conformal Geometric Algebra

setup, where one uses the fact that the conformal group C(p,q) is homomorphic to

SO(p+ 1,q+ 1) to treat translations as well as rotations in a unified versor frame-

work [10, 31].

The quaternions and their multiplication laws in fact arise naturally as spinors

in the Clifford algebra of three dimensions.

Proposition 4.6 (Quaternions as spinors of Cl(3)). The unit spinors {1; Iσ1; Iσ2; Iσ3}
of Cl(3) are isomorphic to the quaternion algebra H.

This correspondence between quaternions and spinors will be crucial for our

understanding of rank-4 root systems. We will sometimes use the notation (a;b,c,d)
to denote the even-grade components in Cl(3) in Eq. (4.4), i.e. (a;b,c,d) = a+
bIσ1 + cIσ2 + dIσ3, as opposed to the earlier – essentially equivalent – notation of
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(q0,q1,q2,q3) in H. For the interpretation of the rank-3 root systems, we make the

following definition.

Definition 4.7 (Hodge dual). In analogy with the exterior algebra, we denote mul-

tiplication of a multivector with the pseudoscalar I as the Hodge dual of the mul-

tivector.

Proposition 4.8 (Vectors and pure quaternions). In three dimensions, the Hodge

dual of a vector is a pure bivector. A pure bivector corresponds under the isomorph-

ism in Proposition 4.6 to a pure quaternion.

Having given the necessary background information, we now consider a simple

geometric setup and two steps involving straightforward calculations in the Geomet-

ric Algebra of space.

5. A simple example: the case of A1 ×A1 ×A1

The procedure for this and the following sections is simply to start with three vectors

(the simple roots), then consider which other vectors are generated via reflection

(the whole root system), and then to compute which rotors are generated by all the

reflections.

Proposition 5.1 (A1 × A1 × A1 and the octahedron). Take the three 3D vectors

given by α1 = (1,0,0), α2 = (0,1,0) and α3 = (0,0,1). The reflections in the hy-

perplanes orthogonal to these vectors via Eq. (4.5) generate further vectors pointing

to the 6 vertices of an octahedron. This polyhedron is the root system of the Coxeter

group A1 ×A1 ×A1, and a geometric realisation of this Coxeter group is given by

the Geometric Algebra reflections in the vertex vectors.

Proof. The reflection of α1 in α2 is given via 4.1 as α ′
1 =−α2α1α2 =−σ2σ1σ2 =

σ2
2 σ1 = σ1 = α1. This does not yield a new root, but the reflection of α1 in itself

gives α ′
1 = −α1α1α1 = −σ3

1 = −σ1 = −α1, and analogously for the remaining

cases by explicit calculation. The vectors thus generated are (±1,0,0) and permuta-

tions thereof, which point to the vertices of an octahedron. �

Theorem 5.2 (Vertex vectors and pure quaternions). The simple roots of the rep-

resentation of A1 ×A1 × A1 in terms of pure quaternions as shown in Fig. 1 are

simply the Hodge duals of the vectors α1, α2 and α3.

Proof. The Hodge duals of the three vectors are the bivectors Iα1, Iα2 and Iα3.

These pure bivectors can be mapped to the quaternions as given by Proposition 4.6,

which gives the quaternion representation used in the literature. �

Having found the full set of reflections and the geometric interpretation of the

rank-3 representations in terms of pure quaternions, we now consider the rotations

generated in the Geometric Algebra.

Lemma 5.3 (A3
1 generates the Lipschitz units). By the Cartan-Dieudonné the-

orem, combining two reflections yields a rotation, and Proposition 4.2 gives a rotor
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realisation of these rotations in Geometric Algebra. The 6 A1 ×A1 ×A1 Coxeter re-

flections generate 8 rotors, and since the Spin group Spin(3) is the universal double

cover of SO(3), these 8 spinors themselves form a spinor realisation of the qua-

ternion group Q with 8 elements. The quaternion group constitutes the roots of the

Coxeter group A1×A1×A1×A1. Using the quaternion-spinor correspondence Pro-

position 4.6, these 8 spinors correspond precisely to the 8 Lipschitz units in Defin-

ition 3.2. When viewed as spinor generators, the ‘simple roots’ of the quaternionic

representation of A1 ×A1 ×A1 ×A1 from Fig. 1 are seen to be sufficient to generate

the quaternion group.

Proof. Form rotors according to Ri j = αiα j , e.g. R11 = α 2
1 = 1 ≡ (1;0,0,0), or

R23 = α2α3 = σ2σ3 = Iσ1 ≡ (0;1,0,0). Explicit calculation of all cases generates

the 8 permutations of (±1;0,0,0). Under the spinor-quaternion correspondence,

these are precisely the Lipschitz units. The quaternionic generators from Fig. 1,

when viewed as rotor generators R0 = 1,R1 = Iσ1,R2 = Iσ2,R3 = Iσ3 generate the

group A1×A1×A1×A1, since, for instance, R3R1 = σ1σ2σ2σ3 =−R2, and analog-

ously for the other negatives. �

Theorem 5.4 (A3
1 induces A4

1). Via the geometric product, the reflections in the

Coxeter group A1×A1×A1 induce spinors that realise the root system of the Coxeter

group A1×A1×A1×A1. In particular, the quaternionic representation in Fig. 1 has

a geometric interpretation as spinors mapped to the quaternions using the ‘acci-

dental’ isomorphism Cl0(3)∼H.

Proof. Immediate. �

The group A1×A1×A1 is the symmetry group of the octahedron, which is the

three-dimensional orthoplex, and more generally An
1 is the symmetry group of the

n-orthoplex, i.e. for A1 ×A1 ×A1 ×A1 the 16-cell.

6. The case of A3

Having outlined the approach and the key results, we now turn to mathematically

more interesting structures, beginning with A3. A3 is the symmetry group of the

tetrahedron (the 3-simplex), and more generally, the series An (the symmetric group)

is the symmetry group of the n-simplex.

Proposition 6.1 (Cuboctahedron and A3). Take the three 3D unit vectors given

by
√

2α1 = (1,1,0),
√

2α2 = (0,−1,1) and
√

2α3 = (−1,1,0). The corresponding

reflections generate further vectors pointing to the 12 vertices of a cuboctahedron.

This polyhedron is the root system of the Coxeter group A3, and the GA reflections

in the vertex vectors give a geometric realisation.

Proof. For instance, the reflection of α1 in itself gives α ′
1 = −α1α1α1 = −α1.

The reflection of α1 in α2 gives α ′′
1 = −α2α1α2 = − 1√

8
(σ3 −σ2)(σ2 +σ1)(σ3 −

σ2) =− 1√
8
(σ3σ2σ3−σ3σ2σ2+σ3σ1σ3−σ3σ1σ2−σ2σ2σ3+σ2σ2σ2−σ2σ1σ3+

σ2σ1σ2) =
1√
8
(−σ2 −σ3 −σ1 −σ3 +σ2 −σ1) =

1√
2
(−1,0,−1), and analogously

for the other cases by explicit computation. The vertex vectors thus generated by the



12 Pierre-Philippe Dechant

reflections are the set of permutations of 1√
2
(±1,±1,0), which are the 12 vertices

of a cuboctahedron. �

Theorem 6.2 (Vertices and pure quaternions). The simple roots of the represent-

ation of A3 in terms of pure quaternions as shown in Fig. 1 are simply the Hodge

duals of the vectors α1, α2 and α3.

Proof. As before. �

Lemma 6.3 (A3 generates the Hurwitz units). The 12 A3 Coxeter reflections gen-

erate 24 rotors, and these 24 spinors themselves form a spinor realisation of the

binary tetrahedral group 2T with 24 elements. The binary tetrahedral group consti-

tutes the roots of the Coxeter group D4. Under the quaternion-spinor correspond-

ence Proposition 4.6, these 24 spinors correspond precisely to the 24 Hurwitz units

in Definition 3.3. When viewed as spinor generators, the ‘simple roots’ of the qua-

ternionic representation of D4 from Fig. 1 are seen to be sufficient to generate the

binary tetrahedral group.

Proof. R12 = α1α2 =
1
2
(σ1+σ2)(σ3−σ2)=

1
2
(−Iσ2+Iσ1−Iσ3−1)= 1

2
(−1;1,−1,−1),

and in total the reflections generate the 16 permutations of 1
2
(±1;±1,±1,±1). To-

gether with the 8 Lipschitz units generated by R13 = α1α3 =
1
2
(σ1+σ2)(σ2−σ1) =

Iσ3 = (0;0,0,1) and similar calculations, they form the 24 Hurwitz units, which

realise the binary tetrahedral group. The quaternionic generators from Fig. 1, when

viewed as rotor generators R0 = 1
2
(1;−1,−1,−1),R1 = Iσ1,R2 = Iσ2,R3 = Iσ3

generate the group D4, since, for instance, R1R2 = σ2σ3σ3σ1 = −R3, and analog-

ously for the other negatives, as well as R0R1 =
1
2
(σ2σ3 −σ1σ2σ2σ3 −σ2σ3σ2σ3 −

σ3σ1σ2σ3) =
1
2
(1;1,1,−1), and similar for the other permutations. �

Theorem 6.4 (A3 induces D4). Via the geometric product, the reflections in the

Coxeter group A3 induce spinors that realise the roots of the Coxeter group D4. In

particular, the quaternions in the representation of D4 in Fig. 1 have a geometric

interpretation as spinors.

D4 belongs to the Dn-series of Coxeter groups; however, it is an accidental

low-dimensional ‘exceptional structure’ in the sense that its Dynkin diagram has an

outer automorphism group of order 3 (the symmetric group S3), acting by permuting

the three legs (see Fig. 1). This concept, known as triality, is conventionally thought

of as rather mysterious, but it is crucial in string theory, as it allows one to relate

the vector representation of SO(8) to the two spinor representations, needed in the

proof of equivalence of the Green-Schwarz and Ramond-Neveu-Schwarz strings.

Here, the Dynkin diagram symmetry is nicely manifested in the symmetry of the

pure quaternion/bivector legs, and the root system is in fact induced from 3D con-

siderations.
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7. The case of B3

The Bn-series of Coxeter groups are the hyperoctahedral groups, the symmetry

groups of the hyperoctahedra and the hypercubes. Thus, the following case B3 is

the symmetry group of the octahedron and the cube.

Proposition 7.1 (Cuboctahedron with octahedron and B3). Take the three 3D

vectors given by α1 =
1√
2
(1,−1,0), α2 =

1√
2
(0,1,−1) and α3 = (0,0,1). The cor-

responding reflections generate further vectors pointing to the 18 vertices of a cuboc-

tahedron and an octahedron. This polyhedron is the root system of the Coxeter group

B3, and the GA reflections in the vertex vectors give a geometric realisation.

Proof. As before, reflection of a root in itself trivially yields its negative. The reflec-

tion of α1 in α2 generates 1√
2
(1,0,−1), and further reflections generate the other

vertices of a cuboctahedron. α3 is a vertex of an octahedron, and reflection of α3 in

α2 results in α ′
3 =− 1

2
(σ2 −σ3)σ3(σ2 −σ3) =− 1

2
(−σ3 −σ2 −σ2 +σ3) = (0,1,0),

and analogously for the other vertices of the octahedron. �

Theorem 7.2 (Vertices and pure quaternions). The simple roots of the represent-

ation of B3 in terms of pure quaternions as shown in Fig. 1 are simply the Hodge

duals of the vectors α1, α2 and α3.

Lemma 7.3 (B3 generates the Hurwitz units and their duals). The 18 B3 Coxeter

reflections generate 48 rotors, and these 48 spinors themselves form a spinor real-

isation of the binary octahedral group 2O with 48 elements. The binary octahedral

group constitutes the roots of the Coxeter group F4. Under the quaternion-spinor

correspondence, these 48 spinors correspond precisely to the 24 Hurwitz units and

their duals. When viewed as spinor generators, the ‘simple roots’ of the quaternionic

representation of F4 from Fig. 1 are seen to be sufficient to generate the binary oc-

tahedral group.

Proof. By explicit straightforward Geometric Algebra computation as before. �

Theorem 7.4 (B3 induces F4). Via the geometric product, the reflections in the

Coxeter group B3 induce spinors that realise the root system of the Coxeter group F4.

In particular, the quaternions in the representation of F4 in Fig. 1 have a geometric

interpretation as spinors.

F4, along with G2 and E6 ⊂ E7 ⊂ E8, is one of the exceptional Coxeter/Lie

groups. In particular, it is the largest crystallographic symmetry in four dimensions.

Thus, it is very remarkable that this exceptional structure is straightforwardly in-

duced from B3 (which is part of the Bn-series) via the geometric product.

8. The case of H3

This section discusses the case of H3 – the symmetry group of the icosahedron

and the dodecahedron, and the largest discrete symmetry group of space – and how

it induces H4, which is the largest non-crystallographic Coxeter group, the largest

Coxeter group in four dimensions, and is closely related to E8.
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Proposition 8.1 (Icosidodecahedron and H3). Take the three 3D vectors given by

α1 = (−1,0,0), α2 =
1
2
(τ ,1,σ) and α3 = (0,0,−1). The corresponding reflections

generate further vectors pointing to the 30 vertices of an icosidodecahedron. This

polyhedron is the root system of the Coxeter group H3, and the GA reflections in the

vertex vectors give a geometric realisation.

Proof. Analogous straightforward GA computations show that successive applica-

tion of the three reflections generate the vertices (±1,0,0) and 1
2
(±τ ,±1,±σ) and

cyclic permutations thereof, which constitute the 30 vertices of an icosidodecahed-

ron. �

Theorem 8.2 (Vertices and pure quaternions). The simple roots of the represent-

ation of H3 in terms of pure quaternions as shown in Fig. 1 are simply the Hodge

duals of the vectors α1, α2 and α3.

Lemma 8.3 (H3 generates the Icosians). The 30 H3 Coxeter reflections generate

120 rotors, and these 120 spinors themselves form a spinor realisation of the binary

icosahedral group 2I with 120 elements. The binary icosahedral group constitutes

the roots of the Coxeter group H4. Under the quaternion-spinor correspondence,

these 120 spinors correspond precisely to the 120 icosians in Definition 3.4. When

viewed as spinor generators, the ‘simple roots’ of the quaternionic representation

of H4 from Fig. 1 generate the binary icosahedral group.

Proof. As before by straightforward, if tedious, calculation. �

Theorem 8.4 (H3 induces H4). Via the geometric product, the reflections in the

Coxeter group H3 induce spinors that realise the roots of the Coxeter group H4. In

particular, the quaternions in the representation of H4 in Fig. 1 have a geometric

interpretation as spinors.

It is remarkable that the geometric product induces H4 from the three-dimensional

group H3, when mostly E8 is regarded as fundamental, and H4 can be derived from

it via Dynkin diagram foldings [35, 32, 27, 25, 6].

9. The versor approach

The Geometric Algebra approach to Coxeter groups and their quaternionic repres-

entations has a number of advantages, including simplifying calculations, providing

geometric interpretations and clarity. Most importantly, the relationship between

rank-3 and rank-4 groups via the geometric product does not seem to be known.

In the literature, it is sometimes remarked upon that quaternionic reflection in

a unit quaternion x simplifies to v → v− 2vx
xx

x = −xv̄x. This is the case for which

the notation [p,q] and [p,q]∗ is meant to be a shorthand, although in practice mostly

q=−p. However, this does not achieve Geometric Algebra’s simplicity for rotations

and reflections, given in Eqs. (4.5) and (4.6). In order to decode what quaternionic

reflection v′ =−xv̄x actually means in practice, where v and x are pure quaternions,

we translate to Geometric Algebra. Pure quaternions are pure bivectors, which re-

verse to minus themselves, so v′ = −xvx̄. Now v and v′ are IV and IV ′ for some
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rank-3 group roots |Φ| order |W | spinors rank-4 group roots |Φ|
A1 ×A1 ×A1 6 8 8 (Q) A1 ×A1 ×A1 ×A1 8

A3 12 24 24 (2T ) D4 24

B3 18 48 48 (2O) F4 48

H3 30 120 120 (2I) H4 120

TABLE 1. Correspondence between the rank-3 and rank-4

Coxeter groups. |Φ| denotes the number of roots of a Coxeter

group, and |W | its order. The root systems Φ are the octahed-

ron, the cuboctahedron, a cuboctahedron with an octahedron and

the icosidodecahedron, respectively. The spinors generated from

the rank-3 roots via the geometric product are realisations of the

binary polyhedral groups Q, 2T , 2O and 2I that are the roots of

the rank-4 groups. In terms of quaternions, these correspond to

the Lipschitz units, the Hurwitz units, the Hurwitz units with their

duals, and the icosians, respectively.

vectors V and V ′, whilst x is a rotor R such that IV ′ = −RIVR̃. The pseudoscalar I

commutes with the rotor on the left, leaving V ′ =−RVR̃, which for R= Ia reduces to

a simple reflection V ′ =−aVa in the vector a. [p,−p] yields the rotation V ′ = RVR̃.

Thus, it is not at all straightforward to see what all the involved quaternion algebra

in the literature means, until one realises it is in fact just mostly reflections (as we

are in a Coxeter framework anyway) and rotations.

It is not just the geometry of the orthogonal transformations that is difficult to

disentangle in the quaternion formalism, but indirectly therefore also the geometry

of the (quaternionic) roots, which generate these transformations. In the literature,

there is no particular significance attached to the quaternionic representations. It

is merely occasionally remarked upon that it is striking that the rank-3 groups are

given in terms of pure quaternions, or that the roots of the rank-4 groups are given

in terms of the binary polyhedral groups, but without any further geometric insight.

Here, we have shown that the pure quaternions of the rank-3 representations are

merely (Hodge) disguised vertex vectors/simple roots generating the full group of

Coxeter reflections, and that these generate rotor realisations of the binary polyhed-

ral groups via the Cartan-Dieudonné theorem. These spinors, in turn, are the roots

of the rank-4 Coxeter groups which are equivalent to the simple roots of the rank-4

representations used in the literature. The main result of this paper is thus the series

of theorems that the geometric product induces the relevant rank-4 groups from the

rank-3 groups. We summarise the correspondences between the relevant groups in

Table 1. In particular, the rank-4 groups can be generated by spinor generators that

do not contain any more information than the rank-3 groups:

Proposition 9.1 (Spinor generators). The spinor generators R1 = α1α2 and R2 =
α2α3 generate the four rank-4 groups from the simple roots αi of the four corres-

ponding rank-3 groups.
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Despite this, it is often remarked that, for instance, the H3 roots are the special

roots within H4 that are pure quaternions, and that these form a sub-root system

[32, 1, 33, 25].

Proposition 9.2 (Pure icosians). Pure icosians are just the Hodge duals of the roots

of H3, and their product is essentially that of ordinary vectors.

Proof. Pure icosians are pure bivectors and therefore precisely the Hodge duals of

the root vectors. Their product is Iα1Iα2 = I2α1α2 =−α1α2. �

The real question is therefore not why the pure quaternions form a rank-3

sub-root system of the rank-4 group, but why the Hodge duals of the vertex vectors

should be amongst the spinors generated by them. This property is shared by the

A1 ×A1 ×A1 case, where the Hodge duals of the vertex vectors are identical with 6

of the Lipschitz units, as well as the B3 case, where the 18 Hodge dual root vectors

are amongst the 48 elements of the binary octahedral group. However, the Hodge

duals of the 12 cuboctahedral vertices from A3 are not among the Hurwitz units.

That this is not even possible for a different choice of simple roots is obvious from

the form of the Hurwitz units. It is only possible for B3 because there, among the 24

dual Hurwitz units 1√
2
(±1,±1,0,0), 12 are pure quaternions. However, the group

D4 is still induced from the group A3 via the geometric product, which therefore

seems to be more fundamental. Obviously, A3 is contained within D4 multiple times,

for instance, by deleting any one leg, but one can see that this cannot be purely

quaternionic, as the central node is essentially spinorial.

Theorem 9.3 (Pure quaternionic sub-root systems). The rank-3 Coxeter groups

can be represented by the pure quaternion part of the representations of the rank-4

groups they generate as spinors if and only if they contain the central inversion.

Proof. If the central inversion I is generated by the roots, the bivectors defined as

the Hodge duals of the roots are pure quaternions by Proposition 4.8 and they have

the same product as the root vectors by Proposition 9.2, thus giving the required sub-

root system. Conversely, if the pure quaternionic representation of the rank-3 group

Iαk is contained in the spinors αiα j generating the rank-4 group, then Iαk = αiα j

and thus I = αiα jαk is generated by the group. �

Corollary 9.4. The Coxeter group root systems A3
1, B3 and H3 can be realised as

the pure quaternion elements of the quaternion group, the binary octahedral group

and the binary icosahedral group, respectively, but A3 does not have such a repres-

entation as a subset of the binary tetrahedral group.

Proof. The Coxeter groups A3
1, B3 and H3 contain the central inversion, but A3 does

not. �

We finally revisit the versor approach to orthogonal transformations Eq. (4.7).

Vectors are grade 1 versors, and rotors are grade 2 versors, so the reflections and

rotations we have been using are examples of the versor theorem. However, when

generating the root system from the simple roots via reflection, we have in fact been

forming higher grade versors already. Thus, for instance for H3, the simple roots
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generate 30 reflection versors (pure vectors, the root system of the Coxeter group)

performing 15 different reflections via −αixαi. These in turn define the 60 rotations

of the chiral icosahedral group via 120 versors acting as αiα jxα jαi, including the

Hodge duals of the reflections (15 rotations of order 2). 60 operations of odd par-

ity are defined by grade 3 versors (with vector and trivector parts, i.e. the Hodge

duals of the 120 spinors) acting as −αiα jαkxαkα jαi. However, 15 of them are just

the pure reflections already encountered, leaving another 45 rotoinversions. Thus,

the Coxeter group, the full icosahedral group H3 ⊂ O(3) is expressed in accord-

ance with the versor theorem. Alternatively, one can think of 60 rotations and 60

rotoinversions, making Ih = I×Z2 manifest. However, the rotations operate double-

sidedly on a vector, such that the versor formalism actually provides a 2-valued

representation of the rotation group SO(3), since the rotors R and −R encode the

same rotation. Since Spin(3) is the universal 2-cover of SO(3), the rotors form a

realisation of the preimage of the chiral icosahedral group, i.e. the binary icosahed-

ral group. Thus, in the versor approach, we can treat all these different groups in a

unified framework, whilst maintaining a clear conceptual separation.

The versor formalism is particularly powerful in the Conformal Geometric

Algebra approach [10, 7, 5]. The conformal group C(p,q) is isomorphic to SO(p+
1,q+ 1), for which one can easily construct the Clifford algebra and find rotor im-

plementations of the conformal group action, including rotations and translations.

Thus, translations can also be handled multiplicatively as rotors, for flat, spherical

and hyperbolic space-times, simplifying considerably more traditional approaches

and allowing novel geometric insight. Hestenes [14, 15, 16] has applied this frame-

work to point and space groups, which is fruitful for the crystallographic groups,

as lattice translations can be treated on the same footing as the rotations and re-

flections. Our approach of generating the 3D Coxeter groups of interest from three

vectors shares some parallels with Hestenes’ approach. It also applies to the non-

crystallographic case H3, which was considered in [14] but not in [15]. As it is

non-crystallographic, it is not immediately obvious how a conformal setup would

be an improvement over Cl(3), as we are not considering translations. There might

perhaps be some interesting consequences for quasilattice theory [19, 34], in par-

ticular for quasicrystals induced by the cut-and-project method via projection from

higher dimensions [32, 6, 18]. A detailed treatment will be relegated to future work.

10. Conclusions

Coxeter groups are abstract reflection groups, and Clifford Geometric Algebra af-

fords a uniquely simple way of performing reflections, as well as other orthogonal

transformations as versors. This makes it the natural framework for the study of

reflection groups and their root systems. Clifford Algebra provides a simple con-

struction of the Spin group Spin(n), and in our novel construction the chiral, full

and binary groups can be studied in a unified framework.

Specifically, here we have considered the simple roots of the rank-3 Coxeter

groups A3
1, A3, B3 and H3, and have generated the chiral, full and binary polyhedral

groups from them through the geometric product. We believe that we have presented
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the simplest and geometrically clearest construction of the binary polyhedral groups

known. In particular, this constructs the roots of the rank-4 Coxeter groups A4
1, D4,

F4 and H4 directly from the rank-3 roots of A3
1, A3, B3 and H3. This powerful way

of inducing higher-rank Coxeter groups does not seem to be known. It is particu-

larly interesting, as it relates the exceptional low-dimensional Coxeter groups H3,

D4, F4 and H4 to each other as well as to the series An, Bn and Dn in novel ways.

In particular, it is remarkable that the exceptional dimension-four phenomena are

seen to arise from three-dimensional geometric considerations alone. This spinorial

view could open up novel applications in polytopes (e.g. A4), string theory and trial-

ity (D4), lattice theory (F4) and quasicrystals (H4). We have given the quaternionic

representations of Coxeter groups used in the literature a geometric interpretation

as vectors and spinors in disguise, and clarified and streamlined the quaternionic

formalism used in the literature. We hope that our approach will help open up new

applications as a result of simplified calculations and increased geometric clarity. In

particular, the concepts used here readily generalise to arbitrary dimensions.
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