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Abstract
This note outlines a procedure for determining the asymptotic
behaviour of the optimal closed-loop poles of a time-invariant linear
regulator as the weight on the input in the performance criterion
approaches zero. It is based on the systemacic use of dynamic input/

output transformations to the relevant return—-difference.




Introduction

TE 43¢ well—known(l) that the stabilizable and detectable time*invariant
linear system S(A,B,C)

x(t)

Ax(t) +Bu(t) , x(t)Eg®
Cx(t) , yWER | uw)c g (1)

]

y(t)
with state feedback controller minimizing the performance criterion
B -1 T
fs 5 () Qr(t) +p ~ u (t) R u(t) jdt (2)
)

(where both Q and R are positive definite and ﬁ > o) has closed-loop poles

equal to the left-half Plane solutions of the equation,

1T, +p 6" (=) c(s)| =0 (3)
where
= o} =gl
G(s) = Q% ¢ (sln - A) " BR (4)
A fairly complete theoretical analysis of the unbounded solutions of
equation (3) as p + + « has been provided by Kwakernaak(l) but computa-
tional procedures were not suggested until quite re«:ently(2 2 However,

in (2), proofs are Provided for the first few orders of infinite zero and

of inputs. This note Provides a complete analysis and computational me thod
for the case of S(A,B,C) left- ~invertibile and hence m » g and 'GT(“S)
G(s)[ # 0. The case of S(A,B,C) right-invertible can be deduced by
replacing equation (3) by the equivalent equation ]I + G(s) G (~s)| =

The approach used is that described in references (4=6). In section 2

some basic background results on the use of dynamic transformations are
outlined. The main results are described in section 3 where it is proved
that the computational techniques of refs. (4) - (6) can always be applied

to the determlnatlon of the orders, asymptotic directions and pivots of the
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infinite zeros of the optimal root-locus. It is proved that the orders are
always even and that the pivots always lie on the imaginary axis of the
complex plane. An unusual sensifivity problem is observed and illustrated
by an example.

. (4-6)

Dynamic Transformations and Multivariable Root-loci

Consider a fx? invertible strictly proper system with transfer function
matrix pQ(s) , p > o, subjected to unity negative feedback. The closed-

loop system poles can be computed by finding the solutions of the relation

,IQ + pQ(s)| = 0. 1In particular the unbounded solutions as p - + = can be
listed in the form(4_6)
lpy, A
8:0 =P dnip +a:+ e, (p)
lim =0 1< gwv. 1< j 5
€, (@) , $hev, <jsm (5)

th
where ”jz’ 1 <8 ¢ vj, are the distinct vj roots of a non-zero complex

number. Equation (5) is said to be an infinite zero of order uj with

asymptotic directions N and pivot uj.

A case of particular simplicity is that when Q(s) has uniform rank k
i.e. there exists an integer k 2 1 such that lim SkQ(s) is finite and
nonsingular. In this case it can be showﬁ(4_6) tE:: the closed-loop system
has only infinite zeros of order k with asymptotic directions and pivots
easily computed from the Markov parameter matrices ?k - ¥k+1 in the
expansion (valid for all large |sl)

s_j B, (6)

Q(s)=;1 f

J

i ~18

(4)

The simplicity of the uniform rank case has motivated a computa-
tional technique based on reduction of the problem to a number of'equiva-

lent uniform rank problems, by the use of the following theorem:




r______}:____________________________________________—————————————————————I--IIIIIIIIIIIIIIIIIII!

- 3 -
‘Theorem 1(4’6)
Suppose that there exists integers q » 1 ; kl < k2 B e & kq

and dj » 1 £ < q, a real nonsingular transformation T1 and unimodular

matrices (dynamic transformations)of the form

L(s) = 'Id B ¢ v 3R % 6 5 » o wm D)
1
0(5—1) Id
2
0
ots™h ... .., C o(s"l)Id
. q
r "‘I —1.‘
M(s) = I 008 ) 5 ¢ 5 5 »m o o & 5 = 0(s )
d
1
0 I
dy .
. (7)
O(snl)
0 0 1, J
\ q

such that

+ 0 (s— (kq+2)

L(s)T;1 Q(s)T1 M(s) = block diag {Gj(s)} ) (8)

lsjsq
where the djxdj transfer function matrices Gj(s) have uniform rank kj’
l1g3jsq. Then the closed-loop system has kjdj kjth~ order infinite zeros,
and the '
lsjisgq,/ kj order infinite zeros have asymptotic directions and pivots
identical to those obtained by consideration of the uniform rank problem,

|Idj +*PpGi(s)] =0, 9)
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In effect, the theorem states that, under the stated conditions, the
asymptotic directions and pivots can be computed from the relevant Markov
parameter matrices of the unifofm rank systems Gj(s), 1 £ 1 ¢ds-&
computation algorithm is déscribed inreference (4) and (6) based on algebraic

operations on the matrix

i S B v B (10)

for some r 3 kq + 1, The conditions of the theorem are known to be
(6) and it is known that it is always possible to ensure
their validity by suitable choice of forward path control system. The

matrices Tl’ L(s), M(s) are, in general, non-unique.

Asymptotic ‘Behaviour of the Optimal Root-~locus.

Inspection of equation (3) suggests that the concept of infinite zeros
can be applied to the optimal system root-locus (generated by the solutions
of this equation ;s p varies in the interval o ¢ p < + «) by letting
Q(s) = GT(—s) G(s) and by only accepting those branches of the root-locus
in the left-half complex plane(z’B). A main result of this note is that
the techniqué outlined in section 2 can always be applied to the calcula-
tion of the orders, asymptotic directions and pivots of the optimal system

root-locus in the sense that the conditions specified in theorem 1 are

always satisfied.

Théorem 2

The conditions of theorem 1 are always valid for Q(s) = GT(-s) G(s)
if G(s) is 1eft—invertible.r4mfmmr' , it is always possible to choose
T1 to be real and orthogonal, L(s) = MT(-S) and the uniform rank‘systems
Gj(s) of the form

6, (s) = N?(—s) N, (s) (11)

for some mxdj left-invertible transfer function matrix Nj(s) L€ 4 g




Proof

The para~Hermitean structure of Q(s) ensures the existence of

an . even integer k1 2 2 such'thatléfgnsle(s) is finite and non zero.
and equal to the'feai;‘gymmetric matrix %k « If this matrix is non-
singular, the result is proved with T, = Lts) = M(s) = I,. Suppose
therefore that dl 4 rank Pkl < & aﬁd let T1 be a real orthogonal
eigenvector matrix such that
T 6 ¢e) 6T = [ 6 (s o 1Y)
(12)
H(k1+1) ' -(k1+1)
0(s 0(s

where Gl(s) is dlxdI and of uniform rank kl. Noting that this matrix
is para-Hermitean, it is easily verified that it is possible to construct

a unimodular matrix of the form

Ml(s) = Idl 0(5_1)
(13)
0 iy |
such that
Gl(s) 0
M (-8) TLGL (~8)G(s)T. M. (s) = (14)
1 ik i )
0 HZ(S)

However, Hz(s) has a decomposition of the form Hz(s) = VT(—s) V(s) where
V(s) is the mx(g - dl) matrix generated by the last § ~ d; columns of

G(s) TlMl(s)' In particular, the assumption of left-invertibility ensures
that le(s)[ # 0 and hence that V(s) is left-invertible. Applying a
similar procedure to Hz{s), and continuing by induction, it is possible

to find q , dj(l £ j § q) and unimodular matrices of the form
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Mj(s) Id1 0'. i P i oae D sl €] € g~1
0 : (15)
: I 0
’ d4q
3 ~F
. I, 0@ )
. J
0 ..ll‘o I
\ Q“dl—..—djj
and orthogonal matrices
rI : 0 0] T
df
T, = 0 : ,lgjsqnl
. : (16)
3 I 0
d;_y
I y
010!0 T.
\ 1)
such that
T AT o'l T T T2
el A T e 8 = - P
Mq—l( 8) Tq-qu—Z( s) =2 My (=8)T, G (~s)G(s)T, M, (s)
P = i )
Tq_qu_l(s) .block diag {Gj(h,}lsjsq (17)

where Gj(s), 1l <j g q are of uniform rank kj, 1 <j<9q. The existence
of kj at each stage of the decomposition is guaranteed by the left-
invertibility assumption.

Noting that we can replace Tl by Tl T2 . [t Tq~1 without changing
the structure of the Mj(s), we can set Tj =1, 2.2 18 9= 1 and the

conditions of theorem 1 are satisfied with
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(s)

I

M(s) MI(S) Mz(s) ~CRe . |

M

L(s)

M ) . My (=s) = M (=s) (18)

Finally the decomposition of equation (11) is valid with Mj(s) equal

£ood,

PR

to mxdj matrix generated by the d, + d +..+dj_

1 2

d1+d2+...+dj th columms of G(S)TlM(s).

*1 , d1+d

1 2

Ol

Although the result guarantees the viability of the algorithm outlined
in section 2, it is possible to obtain more information on the orders

and pivots of the root-locus:

Theorem 3

The optimal system root-locus has only even order infinite zeros
with pivots on the imaginary axis of the complex plane.

Equation (11) indicates that all the integers kj,l £ 3 $4q, are
even whence a combination of theorems one and two indicates that all
the infinite zeros have even order. In particular, the structure of
the pivots of the kjth order infinite zeros can be assessed by consi-
dering the return-difference determinant,

11,
i

In particular, the para-Hermitean and uniform rank structure of

%P N?(-s) N, ()| =0 (19)

T . . )
Gj(s) = Nj(_S) Nj(s) indicates that

ki ua (k¥ 2 =(k.42)
T i () ; R j
N, (=s)N, (s) =
j( s)NJ(s) s Pk. + 8 Pk.}1+ 0(s ) (20)
i i :
(; )
kJ is real, symmetric and nonsingular and Pk-+1 is réal and
j j
skew—symmetric. In particular, suitable modifications to T
(3)
k.
J

where P

1 enable us

to assume that P is diagonal with real, non-zero diagonal elements.
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Following the techniques described in refs. (4) and (6) for uniform
rank systems, the pivots can be identified as the eigenvalues of
diagonal blocks of Pé?ii multiplied by a real n?mber. Noting that
these diagonal blocksjmust be real and skew-symmetric, it follows

directly that the pivots are pure imaginary numbers.

Q.E.D.
Corollarz
The pivots are 'almost always' equal to zero.
Proof
@) 1
If the eigenvalues of Pk are distinct (the generic case!) then
hyu6y 9

the pivots are equal to a real number multiplying the diagonal

G)

terms of P .
kj+1

Q.E.D.

The corollary suggests that the optimal system root-loci may suffer

from a sensitivity problem analogous to that noticed in more general

studies(ﬁ). This is easily illustrated by considering the case of
(149 1
Bley * = =
s
(21)
1
0 —
( 5 )
when
g™ B 0 ~{isd
6" (-s)e(s) = L + L +0(s™%)
s s
0 -1 (l+9 0 ] (22)
J

has wuniform rank two. Application of the algorithms of references (4)
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and (6) yields the left-half PJane infinite zeros of the asymptotic

forms for £# 0

Vs /
Sﬂ-p+91(p) ,Sﬁ—(l"'e)P"'Ez(P)
lim e(p) =0 s 3 =1,2 (23)
P d
and, for e= 0,
) A X

5 = “P+‘]2-+‘€1(p) ,Sﬁ“p“%—+ &, (P)

lim e(p) =0 . T BT (24)
P d
Note the discontinuous behaviour of the pivots in the vicinity of e = 0.

Summarz

It has been shown that a recently derived temputational method(4’6)
can always be applied to the calculation of the asymptotic behaviour of
the root-locus of optimal linear regulators. The analysis has also
demonstrated that the optimal root-locus has only even order infinite
zeros with pivots on the imaginary axis of the complex plane. In
particular the pivots are almost always (but not always) equal to zero
suggesting that the optimal root-locus has sensitivity characteristics
similar to those noted in multivariable root-locus studies(6).
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