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Abstract

An identification algorithm for systems which can be
represented by a nonlinear Sm model is presented.  Cross-—
correlation techniques are employed to provide estimates of
the individual linear subsystems and nonlinear coefficients

from measurements of the input and noise corrupted output.




1 INTRODUCTION

Identification of nonlinear systems which can be represented
by the Sm model illustrated in Fig.l is considered, where m denotes
the highest integer power nonlinearity present. This class of
systems was originally studied by Baumgartner and Rugh1 who
developed identification algorithms based on Steady-state sinusoidal
measurements. The algorithms were extended by Wysocki and Rugh2
who reduced the number of measurements and inputs required for
identification. Sandor and Williamson3 later achieved the same
results in a form which could be extended to a more general class
. of systems.

In the present study a correlation algorithm which has been
developed for the identification of a general class of nonlinear

systems L2

is extended to provide complete identification of the
Sm model. The algorithm is relatively simple to implement and
provides estimates of the individual linear elements and nonlinear

coefficients from input-output correlation functions computed when

the input has the properties of a white Gaussian process.

2. Identification of the Linear Subsystems

Inspection of Fig.l shows that for an input u2(t) the measured

system output z(t) can be expressed as

m
z(£) = ) w,(t)+v(t) (1)
i=1 *

where wi(t) is the contribution of the i'th branch or kernel of the

Sm model to the output and is defined as



Wi(t) = fdr1 e deifdehiz(e)hil(rl)...hil

(Ti)

uz(t—Tl—B)...uz(t—Ti—B) (2)

Define the first order output cross-correlation function
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u, (t=0) 2" (t) = u, (t-0) (2(£)-2(L))
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¢ulz.(o)

1
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o) (o) + (0] t(o) (3)
i=1 "1%i oy ¥

' is used throughout to denote a zero mean

where the superscript

process.
Consideration of eqn's (1), (2) and (3) shows that for a given

functional form of the input uz(t), the form of the term ¢U1W-'(U)

is fixed but its amplitude is propértional to the i'th power ;f uz(t).

Thus for a series of experiments with inputs ujuz(t) where aj # a, v

j # 2 the output correlation function ¢u 2 (o) is given by

1 o.
J

ho~—58

r(U)=
J

a.l¢u = ¢ (o) for j = 1,2,...m (4)
i=1 4 %Y
assuming that ul(t) and v'(t) the measurement noise are statistically
independent where z, is the response of the system to the input
i

.u .

aJ 2(t)
Alternatively, a series of experiments with inputs {ajuz(t)}

and {—ajuz(t)} yield the correlation functions7
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= 1§ a2i¢ (o) . j =1,2 N (6)
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where O and B represent the response of the odd and even order
Q. .
J ]

kernels respectively, and

m m
5 5 for m even ( > for m even
k = H N = (7N
\ m+1 m—=1
[-75— for m odd 5 for m odd

Thus for any value of 0 eqn (4) or eqn's (5) and (6) have a unique

solution for ¢, w-.(0) i=1,2...m. Whilst the procedure for eqn (4)

1'i
is perfectly acceptable in many cases the latter procedure defined by

eqn's (5), (6) and (7) provides more accurate estimates in the presence
of noise.
Notice that although‘multilevei inputs must be employed only

¢u w y (0) not the individual outputs Wi(t) must be computed. This

siip;ifies the procedure because for a stable subsystem ¢u1w"(0) will
tend to steady-state after a small number of values typicall; 30-40
sample points.,

The k'th branch of the Sm system illustrated in Fig.1l has the
Structure of the general model where F[-] = Yk(-)k. Thus setting
ul(t) = u(t), uz(t) = u(t)+b, where u(t) is a zero mean white gaussian
process, b is a non-zero mean level and employing previous results

derived for the general mode14’5, the first order correlation function

of the k'th branch can be expressed as

¢uwk'(c) = Cpy J By (b p (o)) dr, (8)
q-1
z
- k (2r+k-q) (2p)! 2 p-1
Lo = #, rzo Cpatg) My o (Afh ., (8)d0)

(9)"
for k = 2,3,4...m

where

A= 9, (E)de



-4 -
k for k odd
"= {k—l for k even
By = bjhkl(e) do ’ p= 3:%—i5
and ¢ulwl.(c) = Ahll(c) for k = 1 (10)

Define the second order output correlation function

k=g
[ ]
~
Q
~
n

ulz(t-c)zkt)
m
Lt o, @+, (11)

i=1 ul W, u; v

Providing ul(t) and v(t) are statistically independent

¢ , (0) =0 Vo and eqn (11) reduces to
u, v'
1 m
¢ 5 (@ = Yo (o) (12)
u, z' i=1 2

1 ul wi.

Following the procedure outlined above for the evaluation of ¢ 9 y (0)
uw .
1

the second order correlation function of each branch of the Sm mode]

can be isolated to yield

2
¢, (o) =20 f b, (©)h T (0-0)de (13)
u W
s=2
. « Az § { k uX(2r+k-s)ufhkfi(8)de)t—l
FFk Tk Lo\ 2r+k-s
r=0
(2t) ! (14)
27D gy
for k = 2,3 m
where s = ; k for k even
k-1 for k odd
¢ @ s=2r
2
and ) 2 (o) =0 V ¢ for k = 1,
u wl'

If equations (8) and (13) are evaluated in discrete time,

estimates of the parameters in the pulse transfer functions




-1
Bk(z )
Z{¢uwkf(cﬂ = Z{CFkhkl(t)*hkz(t)} == (15)
4 (e
- R (z )
zi¢ , '(0)} = Z{C b kl(t) *h , (D)} = — (16)
ww Ek(z )

can be readily obtained using a simple least squares algorithm.

() 3.

Estimates of the pulse transfer functions Z{p ()} and Z{up

kl kl k2 k2

k = 2,...m can then be computed to within constant scale factors
WepoHo by decomposing the results of eqn's (15) and (16) using a

. ; 4
multistage least squares algorithm .

3y Identification of the Nonlinear Coefficients

The error between the sampled process output z(i) and the

predicted output z(i) can be defined as

e(i) = z(i)-z(i)
e B . L T
= z(1)-y, qel(l)"YZjZOuzzhzz(J)qez(l—J)
L] p i " m
- h . (] i~j
Tm .Zoumz mE(J)qem(l 3 (17)
where qek(i) the scaled estimate of qk(i) is given by

- 28 5
qek(l) = jzo - kl(J)u (i-3) = 1qk(1) (18)
g ¥ ¥y /X and e = M1 Mok s KSRl (19)

If NN measurements of the sampled process input and output are

available the matrix equation

. v T ~
z(1) qkl(l);.EOUZZhZZ(J)qe(l_J); Jzoumz mz(J)q "(1-3)

; B P " F 13 & P
; 2 : ; m s
(2 ) (g, () ,J_Zouzzhz2 (Da_, (NN-j) ;.. 'J.ZOUmthZ (3q_ (NN-3)




& = AYE (20)

can be formulated and the least squares estimate of the coefficients

Yy o-eeY, can be computed

6 = (b9) o'z (21)

and the identification is complete.

4. Simulation Results

The identification procedure outlined above was used to identify
the parameters in a third order Sm system defined in Table 1. The
system was simulated on an ICL 1906S digital computer and 30,000
points were generated by recording the response to a four level
input signal uiuz(t), i=1,...4 where uz(t) is a white gaussian
sequence N(0.15,0.3333) and a, = 1.0, « = 0.9, a, = -0.9,.

1 2 4

The procedure defined by eqns (5) and (6) was used to isolate the

= -1.0, a3
branch correlation functions.

Least squares estimates of the parameters in the linear pulse
transfer function models and the coefficients of the integer power
nonlinearities are summarised in Table 1. A comparison of the
estimated pulse responses and the theoretical weighting sequences
hll(t);h21(t)’h22(t);h31(t)’h32(t) are illustrated in Fig.2(a), (b)

and (c) respectively.
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FIG 2(a) A comparison of impulse responses for the
first order Kernel of the S1 model
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