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Abstract We propose and motivate the use of vicinal-risk minimization (VRM) for

training genetic programming classifiers. We demonstrate that VRM has a number

of attractive properties and demonstrate that it has a better correlation with gener-

alization error compared to empirical risk minimization so is more likely to lead

to better generalization performance, in general. From the results of statistical tests

over a range of real and synthetic datasets, we further demonstrate that VRM yields

consistently superior generalization errors compared to conventional empirical risk

minimization.

Keywords Genetic programming · Classification · Vicinal-risk minimization

1 Introduction

Classification [8] is one of the most important tasks in machine learning and aims to

discover a discriminating function that maps an N-dimensional input vector, x ∈ R
N

to a label, y ∈ {−1,+1}; without loss of generality we consider only binary, or two-

class, classification in this paper. Empirical learning is ill-posed [4,25], which means

that classifiers trained by minimizing the empirical risk (i.e, the fraction of misclas-

sified training patterns) can exhibit a range of generalization errors over unseen test

data. This ill-posedness is particularly acute for small datasets; it is the case of small

datasets that we explicitly address in this paper. For some given size of training set,

there is a trade-off between the empirical risk and the complexity of the discrimi-

nating function [4]. Overly simple functions lack sufficient flexibility to capture the
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class concepts, have a large training error and underfit. At the other extreme, overly

complex functions produce decision surfaces with low – possibly zero – training error

but which overfit the training set. Both extremes – underfitting and overfitting – yield

large generalization errors over independent test data. In general, there exists some

‘optimal’ model complexity between underfitting and overfitting although addressing

this model selection problem is often challenging. One of the great strengths of ge-

netic programming (GP) for the empirical modeling of data is that the complexity of

the function can evolve to match the data at hand. Nonetheless, the loss function on

which a GP classifier is trained plays a pivotal role.

A straightforward illustration of the deficiencies of empirical risk minimization

(ERM) is shown in Figure 1 where a small training set of non-separable data is as-

sumed drawn from two, arbitrary, two-dimensional class distributions, also shown.

The training data are separated by two arbitrary candidate decision surfaces, g1 and

g2.

Fig. 1 Illustration of the deficiency of 0/1 loss. A small training set, shown as crosses and circles have

been drawn from the distributions of class A and B, respectively. g1 and g2 are two arbitrary, candidate

decision surfaces.

As gauged by the empirical risk, g1 and g2 give identical values because both

misclassify two training set patterns out of ten. There is no reason to prefer one deci-

sion surface over another; more generally, any function which misclassifies any two

training patterns cannot be set apart from g1 and g2 by ERM. As to the generalization

abilities of g1 and g2, it is clear that g1 will exhibit a worse test error than g2 since

it does a worse job of separating the two underlying class distributions although this,

of course, cannot be judged by ERM over this training set. Note that this problem is

nothing to do with under- or overfitting, but rather, a fundamental limitation of em-

pirical risk. In summary, it is clear that the same value of empirical risk can produce

a range of possible generalization errors – it is, of course, the objective of machine

learning to produce the best possible generalization error. It is noteworthy that almost

all GP classifiers reported in the literature have involved minimizing empirical risk.

In order to attempt to strike a balance between error over the training set and the

complexity of the discriminant, a number of methods have been employed in the ma-
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chine learning field. Classically, regularization [24] seeks to minimize the weighted

sum of a risk functional and some measure of discriminant complexity although

how to decide on the weighting (the so-called regularization constant) between the

two terms usually involves cross-validation [4]. The parsimony principle [18] much-

used in GP is an example of regularization. Minimum description length (MDL) ap-

proaches [20] can also be viewed as regularization. Iba et al. [13] attempted to apply

MDL to GP but failed to account for the not-necessarily-minimal form of the trees

– logically, MDL can only be applied to trees which have been simplified to truly

minimal algebraic form which, we suspect, is an NP-complete task. In Bayesian ap-

proaches, the log prior can be interpreted as a regularization term [25].

Over the past twenty years, the structural risk minimization (SRM) framework

of Vapnik [25] has been a dominant paradigm in machine learning and has lead to

the powerful notion of maximum margin classification as well as support-vector ma-

chines (SVMs). Application of SRM to genetic programming classifiers, however, is

technically difficult. Borges et al. [2] interpreted the number of multiplication and

division nodes in GP trees as the Vapnik-Chervonenkis (VC) dimension of their dis-

criminant function and claimed to apply SRM principles to GP training although they

offered no theoretical justification as to why this quantity is connected to the shatter-

ing dimension [4] of the function. The fact that these authors were able to observe

improved performance was probably because their “VC dimension” was employed

in a conventional regularization framework and the value of the regularization con-

stant tuned to yield improved performance over non-regularized comparators. Amil

et al. [1] derived an expression for the VC dimension of a GP tree proportional to the

upper bound on the number of nodes in the tree (assuming no exponential function

nodes) although the tightness of this bound, and therefore its adequacy for SRM, is

unknown [11].

Exploring the complexity of the discriminant implemented by a GP tree is feasi-

ble using multiobjective (MO) [27] (or other parsimony) methods by simultaneously

minimizing the empirical error/complexity leading to a (Pareto) set of solutions which

delineate this trade-off. The problem remains, as we have argued above, that minimiz-

ing the empirical risk over a training set does not necessarily equate to minimizing

the generalization error of the resulting classifier. The fact that the empirical risk over

a training-set is a one-to-many mapping to test error undermines the validity of the

regularization framework, especially under the small sample conditions that we are

expressly addressing here. For this reason we have explored the use of an improved

loss function for training GP classifiers.

Although SRM principles are not straightforward to apply in GP, Vapnik [25]

has also presented vicinal-risk minimization (VRM), a framework complementary to

SRM; in some cases VRM and more conventional SRM approaches can be shown

to yield identical results [25]. Crucially in the present context, applying VRM in GP

is readily tractable. We introduce VRM in Section 2. We describe our experimental

setup in Section 3 and report the results of statistical comparisons over a range of

real and synthetic datasets in Section 4 with statistically-founded evidence that VRM

produces superior classifiers. We discuss a number of aspects of VRM in Section 5

before summarizing the paper in Section 6.
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2 Vicinal Risk

Given some set of ℓ training data drawn independent and identically-distributed (iid)

from a data distribution P(x,y):

D = {x1 → y1,x2 → y2, . . .xℓ → yℓ}
where xi ∈ R

N and y ∈ {−1,+1}, the task of training a scoring classifier in machine

learning is to select some discriminative function f (x) such that:

f (x)

{

< 0 Predict class ‘-1’

≥ 0 Predict class ‘+1’
(1)

We require to select the f (x) which minimizes the expected risk, R( f ) which will

ensure optimum generalization over future unseen examples drawn from P(x,y):

R( f ) =
∫

L[ f (x),y]dP(x,y) (2)

where L is some loss function. Unfortunately, P(x,y) is not known in practice and so

a conventional approximation has been to minimize the empirical risk, Remp (i.e., the

expectation of 0/1 loss) over the training set. We take the loss function to be:

L[ f (x),y] = H[−y f (x)] (3)

where H() is the Heaviside step function. Thus for x-values which would give rise to

a misclassification, (3) is unity; conversely, for x-values which yield correct classifi-

cation, the loss is zero. Thus Remp can be formally defined as:

Remp( f ) =
1

ℓ

ℓ

∑
i=1

H[−yi f (xi)] (4)

As is clear from the above, the fundamental shortcoming of the 0/1 loss is due to

its discrete nature, in particular, that a pattern is either classified correctly, in which

case it contributes zero to the cumulative loss, or the pattern is misclassified and so

contributes unity to the loss. Crucially, no account is taken of the margin by which a

pattern is misclassified (or indeed, correctly classified). A misclassified pattern which

is just the wrong side of a decision surface is weighted equally with a pattern that is

a very large distance from the decision surface; intuitively, the latter case should be

treated as more serious than the former. As a logical consequence, a pattern’s distance

from the decision surface should weight its contribution to the loss1.

Vapnik [25] has motivated vicinal risk by assuming that the (unknown) data dis-

tribution is locally ‘smooth’ in which case P(x,y) can be approximated by placing

a vicinity function on each training datum – this process can be thought of as either

resampling or, equivalently, interpolating D . Since the shortcomings of 0/1 loss are

due to its discrete nature, smoothing the training set will have the effect of stabilizing

the training process. Vapnik [25] described two possible types of vicinity functions,

1 This is exactly what is done in the hinge loss used in soft-margin support-vector machines [4].
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hard and soft. Hard vicinity functions have an abrupt cutoff at some distance from

a training datum – under a 2-norm, this would be a ball or hypersphere centered on

each datum. Whereas a hard vicinity function has a constant, non-zero value up to the

cutoff distance and zero beyond, a soft vicinity function, such as a Gaussian kernel,

typically has a peak value at the training datum and a monotonically-reducing value

with increasing distance from the datum. Entirely equivalently, placing a kernel over

each training datum can be viewed as approximating P(x,y) using a Parzen windows

density estimator [3,8] for which a Gaussian kernel is a natural choice2. Here we

develop the soft vicinity function approach because: i) it is more tolerant of the set-

ting of scale of the kernel and ii) there is a technical requirement with hard vicinity

functions that they do not overlap in pattern space [25].

Taking the loss function given in (3), analogous to minimizing (2), we wish to

select the f which minimizes the vicinal risk, RVR which is the expectation of (3) over

the data distribution. Writing the necessary risk functional in a somewhat different

form to Vapnik:

RVR( f ) =
∫

L[ f (x),y]dP(x,y) (5)

≈ 1

ℓ

ℓ

∑
i=1

∫

H[−yi f (x)]G(x|xi,σ
2
i )dx (6)

where G() is the Gaussian kernel of variance σ2
i placed on the i-th datum, and P(x,y)

is approximated by the Parzen windows estimate of a sum of Gaussians. The inte-

gral within (6) has a straightforward interpretation as the hypervolume, in the N-

dimensional pattern space, of the portion of the i-th kernel which falls on the ‘wrong’

side of the decision surface and hence would give rise to misclassification.

A number of properties of VRM is apparent:

– Under VRM, we seek to minimize a continuous function (6), thereby removing

the problem with 0/1 loss of being discrete. Patterns contribute to the loss depend-

ing on their distance from the decision surface, or more strictly, the hypervolume

of the kernel function falling on the ‘wrong’ side of the decision surface. It is clear

that correctly-classified patterns a long way from the decision surface will make

a very small contribution to the loss and will hence have a minimal influence on

the placement of the decision surface – this is highly desirable since only data

in the vicinity of the decision surface run the risk of misclassification and should

‘negotiate’ the location of the decision surface.

– At distances greater than ≃ 3σ from the decision surface, the contribution to the

loss of an incorrectly-labeled datum saturates at unity, conferring robustness to

outliers.

– As σ2 → 0, the Gaussian kernel in (6) tends to a δ -function and so the vicinal

risk tends to the empirical risk in (4). Thus empirical risk can be understood as a

special case of vicinal risk.

2 We omit the normalization of the Parzen density estimate since this contributes only a multiplicative

constant that does not affect the subsequent minimization stage.
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– As σ2 → ∞, the value of risk (6) tends to 0.5 since in the limit, ‘half’ the kernel

extends either side of the decision surface.

– σ2 defines a characteristic ‘scale’ for the learning problem which will vary by

dataset.

Chapelle et al. [3] have directly minimized VRM for linear classifiers, assign-

ing each training datum kernel its own value of σ2
i proportional to a measure of

local density although the constant of proportionality had to be determined by cross-

validation. As far as we are aware, the present paper is the first report of applying

VRM to genetic programming classifiers.

Key to the computational tractability of VRM in genetic programming is the

evaluation of the integral in (6). Rather than the inconvenient evaluation of an N-

dimensional integral, we can propagate the Gaussian kernel on the i-th pattern through

into the 1D decision space, the image of f (x). This yields a distribution pi(z) in the

1D decision space, z as shown in Figure 2. Notice that because the mapping imple-

mented by a GP tree will, in general, be non-linear, pi(z) will be not generally be

a Gaussian distribution despite the samples being Gaussian-distributed about xi in

pattern space. Equation (6) for the vicinal risk can be rewritten as:

RVR ≈ 1

ℓ

ℓ

∑
i=1

∫

H[−yi × z] pi(z)dz (7)

Notice that the integrals under the summations in both (6) and (7) evaluate the

probability of a point drawn from G(x|xi,σ
2
i ) being misclassified. To approximate

the integral in (7) we can conveniently use Monte Carlo integration [21] whereby

for the i-th pattern, we draw qi samples from the Gaussian distribution G(x|xi,σ
2
i ),

and propagate each resulting vector through f to yield a corresponding set of scalar

values of z. Counting the number of values of z which predict the incorrect class

according to (1) for the i-th training pattern, and dividing by qi approximates the

value of the integral for the i-th pattern in (7); evaluating an integral by Monte Carlo

in 1D is much more efficient than performing the same evaluation in N dimensions,

particularly when N is large [21]. The probability of misclassification for the i-th

pattern is illustrated by the shaded region in Figure 2. It is the expectation of this

probability over the training set that we seek to minimize which is achieved by taking

the expectation over the integrals (i.e. averaging) in (7).

We can conveniently organize the Monte Carlo integration and the calculation of

(7) by taking q pre-calculated samples at each training datum and storing the results

as an augmented training set. The value of vicinal risk is thus approximated by the

total number of misclassified training patterns divided by ℓ× q. The mechanics of

calculating vicinal risk are thus identical to calculating empirical risk, except over an

augmented training set.

Ultimately, we desire a loss function which is more predictive of (i.e. better cor-

related with) test error than empirical risk which is a one-to-many mapping. Namely,

minimizing a given risk functional will produce a classifier with superior general-

ization performance. We have explored this issue in Section 4.1 where we present

results that demonstrate that vicinal risk does indeed have this key property of supe-
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Fig. 2 Illustration of the propagation of the Gaussian kernel from pattern space into decision space. The

shaded area is the probability of misclassification of the pattern at xi which projects to zi in decision space.

rior correlation with test error. In Section 4.2 we show that it yields statistically lower

generalization errors over a range of datasets.

3 Experimental Setup

3.1 GP Configuration

We have used conventional tree-based GP to train discriminant functions where each

individual in the population represents a function y = g(x) = f (x)− t, where t is a

threshold. We find that learning a discriminant in this more flexible form is easier

than trying to evolve f directly with an implicit zero threshold. In the process of

evaluating the fitness of an individual, we run a further search for the threshold t

using golden section search (GSS) [17] in the 1D decision space to yield the lowest

training set error (either empirical or vicinal risk). Despite the fast convergence of

GSS, there is an assumption that the function is continuous and unimodal, which is

not necessarily satisfied here. To make the search for t robust, we divide the whole

decision space into multiple intervals and perform GSS within each to reduce the risk

of the algorithm getting stuck in a local optimum; five intervals appears to give a

satisfactory compromise between speed and robustness of the search.

We have employed the Pareto-Converging Genetic Programming (PCGP) GP-

variant of the multiobjective, steady-state Pareto-converging algorithm [15] to com-

pare empirical risk (ER) and vicinal risk (VR). PCGP has been shown to out-perform

other contemporary MOGP algorithms in a comparative study [26]. In PCGP, two

parents are selected from the population using stochastic, rank-based selection, and

bred by crossover and mutation to produce two offspring which are appended to the

population. The population is then re-ranked, and the weakest two members of the
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current population discarded; the process is then repeated. In the PCGP algorithm,

crossover and mutation are always applied. See [15,27] for further details.

In MOGP, the risk – either empirical or vicinal – was one objective, and node

count, a straightforward measure of syntactic tree complexity, was the other. We have

used multiobjective GP here specifically to explore the trade-off between training er-

ror and a measure of model complexity (node count). Although MO methods were

originally motivated by the desire to control bloat – see, for example, [9] – MO ap-

proaches actually minimize tree size (for some given value of the other objective, typ-

ically error), yielding the set of the most parsimonious models. What emerges from

MOGP is a Pareto set of equivalent, non-dominated solutions which samples this

trade-off although the individual which yields the best generalization typically needs

to be determined by an independent model-selection step (see Section 3.3). Conven-

tional bloat control has operated by limiting tree growth, whereas MOGP seeks to

minimize tree size for some given error. The two are profoundly different outcomes.

Thus MO methods perform highly- effective bloat control almost as a side-effect of

minimizing tree size. Silva et al. [22] have observed that overfitting and bloat can oc-

cur independently, reinforcing the point that simply preventing excessive growth in

tree size does not necessarily control the complexity of the generated mapping, x → y.

The parameters used in the experimental work are listed in Table 1.

To calculate the vicinal risk of a GP tree by Monte Carlo integration, we have

used 200 samples per training datum drawn from the Gaussian kernel placed over

each datum, pre-calculated and stored as an augmented training set.

Table 1 GP Parameters Used

Population size 100

Population initialization Ramped half-and-half [18]

No. of tree evaluations 10,000

Crossover Point crossover [18]

Mutation Point mutation [18]

with tree depth = 4

Node types Unary minus

Addition

Subtraction

Multiplication

Protected division

Terminal nodes Pattern attributes

Constants ∈ [0,0.01,0.02...,0.99]

3.2 Datasets

We have conducted experiments with a range of synthetic and real 2-class datasets.

We have used three synthetic datasets: a 2D mixture of Gaussians due to Ripley [19],

a second 2D mixture of Gaussians due to Hastie et al. [11], and a 10D Gaussian

problem with class-mean vectors of (0, . . .0) and (1/
√

10, . . .1/
√

10) and equal, unit

covariance matrices. The Ripley and Hastie datasets have very non-linear optimal
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decision boundaries. For these synthetic problems, we randomly drew 100 patterns

of each class to produce datasets of 200 data which were randomly partitioned into

training and test partitions.

In addition to the three synthetic datasets described above, we also used eight real

datasets from UCI Repository [10] to compare the performance of ERM and VRM;

the validity of using the UCI datasets has been established by Soares [23]. Details of

the datasets are summarized in Table 2. Most have real attributes since the formula-

tion of VRM implicitly makes this assumption although some datasets also contain

categorical attributes which we have mapped to integers in the order in which they

are described in the UCI documentation. 2Glass is a 2-class dataset generated from

the original 6-class UCI dataset to classify float and non-float glasses. The Pima In-

dians Diabetes dataset is the version due to Ripley3 with the incomplete/implausible

records removed.

Table 2 Details of Datasets

Name Dimensionality #Patterns

2-Glass 9 163

BUPA 6 345

Pima Indians Diabetes (PID) 7 532

German Credit 24 1000

Australian Credit 14 690

Statlog Heart 13 270

Wisconsin Breast Cancer (WBC) 9 683

Wisconsin Diagnostic Breast Cancer (WDBC) 30 569

Ripley [19] 2 200

Hastie [11] 2 200

10D-Gaussian (10D-G) 10 200

3.3 Testing Methodology

To gauge the statistical significance of the results, we have used the Wilcoxon two-

sided non-parametric test [7], comparing the pairs of test error estimates resulting

from each training partition for empirical and vicinal risks. Although lacking the

power of parametric tests, Demšar [7] points-out that the necessary assumptions re-

quired by parametric tests are typically violated in machine-learning situations, and

so the Wilcoxon test is preferred; see [7] for further details. We have performed the

Wilcoxon test by making fifteen [16] random splits of each dataset into equal-sized

partitions, using one as a training set and the other as a test set.

In order to allow for the stochastic nature of GP, the estimate of test error for

every split was taken as the median of 30 runs (i.e., a total of 15×30 = 450 runs per

dataset) with an independently-generated initial population for each run. The single

individual selected from each MOGP run for inclusion in the statistical analysis was

the individual in the final population with either:

3 Downloadable from http://www.stats.ox.ac.uk/pub/PRNN/.
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– The smallest training error over the whole (final) population.

OR
– The smallest error over the test partition from the Pareto front.

We have included individuals with the smallest training error since these are what

would be used in a single objective GP method and thus allow comparison with our

MOGP approach.

Ideally, the training, validation and test procedures should all be conducted with

three disjoint partitions of the dataset [11] although in practice, the the limited size of

many datasets dictates a more pragmatic approach. Considering the typical procedure

used in single-objective GP (SOGP), an investigator would perform multiple, often

30, GP runs each with independently-generated initial populations and report the best

test error over the multiple runs. Each of this sequence of SOGP runs would return a

candidate model (i.e. a hypothesis) so the process of selecting the hypothesis with the

smallest error is actually a model selection procedure. Our model selection procedure

is thus entirely equivalent to that typically used in SOGP apart from the (immaterial)

means by which the candidate hypotheses are generated: the Pareto set of candidates

obtained from a single MOGP run, or thirty candidates, one obtained from each of

a sequence of thirty SOGP runs. We prefer MOGP because the candidate set spans

the range of model complexities from low to high, which cannot be guaranteed by

independent SOGP runs.

In addition, the estimate of test error for a given individual is a single realization

of a random variate so in order to mitigate the chance of this single ‘draw’ coming

from the low-error extreme of the error distribution, it is desirable to make the stan-

dard error of the estimate as small as possible. This has dictated our use of half of the

data for the test partition since the standard error falls as a square root of the test set

size.

For each dataset, we have used a single, optimized value of σ2 for every smooth-

ing kernel determined using the procedure outlined in Section 4.1. To facilitate a

single value of σ2 on each dimension, we normalized each attribute to unit vari-

ance over every training partition and then normalized the test partition using the

same scaling. Chapelle et al. [3] assigned individually-optimized values of σ2 to

each training datum although we have adopted a simpler strategy here; potentially

individually-assigned values of σ2 may improve the performance of VRM by pro-

ducing a locally-smoother approximation to P(x,y).

4 Results

4.1 Correlation with Test Error

To explore whether VRM exhibits superior correlation between training and test er-

rors than ERM, we have sampled a large number of randomly-initialized, partially-

trained and fully-trained GP trees. We present typical results for the Hastie dataset

where we have accurately measured test error over an independently-drawn set of

10,000 data per class. Results for ER are shown in Figure 3, and for VR in Figure 4

for a range of values of σ2. Ideally, we would like a correlation between training error
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and test error which displays a clear, single minimum such that minimizing the risk

functional over the training set invariably leads to the lowest possible test error.

Fig. 3 Correlation between training and test errors for empirical risk. Hastie dataset; 50 training data per

class.

The correlation plot for ERM with 50 training data per class in Figure 3 dis-

plays vertical striations reinforcing the fact that this is a one-training-error-to-many-

possible-test-errors mapping. The minimum test error does not coincide with min-

imum training error and there is evidence of overfitting by many individuals. Log-

ically, the GP optimization could discover the optimal decision surface by chance

which should return the Bayes-optimal test error but the key issue here is that this

optimal solution could not be systematically identified using ERM due to its one-to-

many nature.

The sequence of plots (Figure 4a to 4d) for VR shows the correlations for differ-

ent values of σ2, again for 50 training data per class. For σ2 = 1 × 10−4 much of the

striated character of the empirical risk plot in Figure 3 remains implying insufficient

smoothing. At the other extreme, Figure 4d does not display a clear minimum. Fig-

ure 4c for σ2 = 0.1 appears near-optimal with a cloud of points that form a reasonably

sharp cusp; training to the minimum value of VR for this value of σ2 would yield a

test error quite close to the Bayes’ error for the Hastie dataset of 0.21. Sequences of

plots such as those in Figs. 4a to 4d appear to pass through an ‘optimum’, thereby

implying that conventional cross-validation can be used to identify a (near-)optimal

value of σ2. In most of what follows we have ‘tuned’ σ2 rather coarsely by only con-
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(a) σ2 = 1×10−4. (b) σ2 = 1×10−2.

(c) σ2 = 1×10−1. (d) σ2 = 1.

Fig. 4 Correlation between training and test errors for VRM for a range of values of σ2. Hastie dataset;

50 training data per class.

sidering σ2 ∈ {10−3,10−2,10−1,100}. A typical but more detailed plot of expected

test error over 15 replications against σ2 is shown in Figure 5 for the WDBC dataset,

for the best-performing individuals from the Pareto front. A clear although reassur-

ingly broad minimum is apparent allowing an appropriate determination of σ2 which

justifies the coarse tuning of σ2 described above. The horizontal dashed line in Fig-

ure 5 is the corresponding expected test error for ERM. It is clear that VRM produces

a significantly lower error values – we consider statistical testing of differences in

errors in the next section.

We have also explored the effect on the above correlations of increasing the num-

ber of data in the training set since any useful loss function needs to display the

property of consistency – as the number of training data increases, the classifier per-

formance should tend to the Bayes’ optimal. In particular, the performance of VRM

and ERM should converge with increasing training set size. Figure 6 shows the cor-

relation plots for both VRM and ERM for 500 training data per class drawn from the

Hastie dataset, where we have used the same value of σ2 = 0.1 that gives (approxi-

mately) optimal results for 50 training data per class – see Figure 4c. Figure 6 shows

that for these more densely-sampled data, i) the widths of the cigar-shaped clouds of

points decrease because the larger number of data better constrains the models, ii) the

striated character of the ERM plot (Figure 6b) is no longer apparent for this number
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Fig. 5 Expected test error over fifteen data partitions vs. σ2 for the WDBC dataset. The dashed line is the

best mean-of-medians test error for ERM.

of data, and iii) ERM yields a slightly smaller test error (0.2509 vs. 0.2581) although

it is questionable whether this is significant. Nonetheless, the more densely-spaced

training data require a smaller value of σ2 than 0.1 to smooth the empirical distri-

bution. (We have made no further attempt to optimize the value of σ2. Rather we

present the result for a sub-optimal value to reinforce the point that the value of σ2

needs to be tuned to the training dataset at hand. The identical phenomenon is seen

in Figures 4 and 5.

(a) Vicinal Risk Minimization (σ2 = 0.1) (b) Empirical Risk Minimization

Fig. 6 Correlations between training and test errors for VRM (σ2 = 0.1), and ERM for the Hastie dataset;

1000 training data per class.
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4.2 Results over Real and Synthetic Datasets

The average of the median test errors over fifteen repeated partitionings on each

dataset are shown in Tables 3 and 4 in the case of VR for optimized values of σ2

.

– Table 3 shows the results for the individuals with the lowest value of training

error in the final populations – either empirical or vicinal risk.

– Table 4 shows the results for the individuals with the lowest errors over each test

partition taken from the whole Pareto front.

In Tables 3 and 4, the lowest errors are shown bold font. A number of observations

can be made from these results.

Firstly, VRM displays the consistently lowest test errors across all datasets in both

tables. From a statistical perspective, a Wilcoxon test returns W+ = 66 and W− = 0,

where W+ is the sum of ranks for datasets where ERM delivers a larger test error than

VRM [7], and W− the converse4. We obtain a p-value of < 0.01. There is thus very

little evidence to support the null hypothesis that the median test errors for ERM and

VRM are identical5.

Second, although minimizing some risk over a training set might be naively pre-

sumed to yield the best test error, from the arguments concerning regularization and

model selection set-out above, it is clear from comparing values of ERM in Tables 3

and 4, and also VRM across these two tables, that simply minimizing training risk

(Table 3) does not deliver the best generalization. A model selection stage over each

test partition (Table 4) selects better generalizing models. This procedure is well-

established in the conventional machine learning field – see [11, pp. 222-223]. In

the multiobjective optimization literature, this procedure is known as preference ar-

ticulation [5]. A statistical comparison along the same lines to that detailed in the

paragraph above again yields a p-value of < 0.01, yet again very little evidence to

support the null hypothesis that the median errors for the two model selection meth-

ods (smallest training error vs. best test partition error) are identical, implying that

preference articulation is necessary for the best outcome.

The reason for the superiority of preference articulation is illustrated by Figure 7

which depicts the region around the cusp of the plot of test error versus vicinal risk;

the shaded region shows the envelope of correspondences between test error and

vicinal risk which can be observed in Figure 4c. Considering first the cusp at the

bottom left hand corner of the envelope region in Figure 7. Point ‘B’ is the minimum

of vicinal risk whereas point ‘A’ is the minimum of test error. Thus a slightly larger

vicinal risk value corresponds to the exact minimum of test error. GP is, of course,

a stochastic minimizer with no guarantee of reaching an exact optimum. Therefore

consider two plausible points from the Pareto front, ‘C’ and ‘D’ which are proximate

to the minimum of vicinal risk (’B’) but not coincident with it – i.e., ‘C’ and ‘D’ are

approximate minima of VR. It is clear for this possible outcome that point ‘C’ will

4 The sum of ranks 1 to 11 = 66.
5 In this paper we make what may seem to be rather cautious statements about the outcome of hypothesis

tests. Hypothesis tests are frequently misinterpreted – see Cohen [6] for a discussion of the technical

arguments.
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deliver a lower value of test error than ‘D’ despite having a higher value of vicinal

risk. This explains why a separate model selection stage can deliver a smaller value

of test error than just minimizing vicinal risk. Notwithstanding this, vicinal risk has

a more desirable characteristic than empirical risk – see Figure 3. Further, we show

below that VRM produces statistically improved values of test error compared to

ERM, as well as having greater repeatability and other properties.

Fig. 7 Illustration of the region around the cusp of the test error/vicinal risk correlation plot showing the

justification for a preference articulation stage.

Third, although not shown in Tables 3 and 4, the variances of the median test

errors averaged over all partitions are quite similar for ERM and VRM for a given

dataset, and larger than would be suggested by the variances over any single partition.

The explanation is simply that the variance of these values is dominated by the vari-

ability due to sampling the multiple training partitions rather than the variablility due

to the classifiers. For this reason, the variances of the aggregated test partition errors

in Tables 3 and 4 cannot be used for gauging statistical significance although lower

averaged median values are still meaningful. We present paired tests below which

eliminate this extraneous variability below.

Fourth, the performance of MOGP classifiers trained by ERM is very compet-

itive so the evidence that training with VRM improves upon this is significant. (It

is also worth noting that non-separable classification problems have a fundamental

lower bound on the attainable on the error rate, the Bayes’ error, and it is likely that
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improvements in performance as this limit is approached are likely to be increas-

ingly difficult to achieve. VRM’s improvement on already-good performance is thus

noteworthy.)

Table 3 Averaged median test errors for individuals with the best training error; smallest values are shown

in bold face.

ERM VRM

2-Glass 0.290 0.284

BUPA 0.300 0.292

PID 0.248 0.236

German Credit 0.272 0.268

Australian Credit 0.143 0.134

Statlog Heart 0.194 0.165

WBC 0.0339 0.0311

WDBC 0.0391 0.0317

Ripley 0.0877 0.0607

Hastie 0.302 0.286

10D-G 0.417 0.391

Table 4 Averaged median test errors for the best individuals on the Pareto front; smallest values are shown

in bold face.

ERM VRM

2-Glass 0.247 0.233

BUPA 0.266 0.259

PID 0.232 0.221

German Credit 0.257 0.256

Australian Credit 0.130 0.125

Statlog Heart 0.167 0.150

WBC 0.0289 0.0257

WDBC 0.0330 0.0248

Ripley 0.0720 0.0523

Hastie 0.268 0.245

10D-G 0.356 0.348

Within each dataset, we can compare VR (for optimized σ2) with empirical risk

using the Wilcoxon test. Results over the fifteen data partitions are summarized in

Table 5 (selected individuals with the lowest training error), and Table 6 (selected

individuals with lowest test partition error). W+ is the sum of ranks for partitions

for which ERM produces larger test error than VRM, and W− the converse. As be-

fore, we have taken the median test error over 30 independently-initialized runs as

representative of the test error over each of the fifteen partitions.

For most datasets, there is little evidence to support the null hypothesis that train-

ing by ERM and VRM produce the same averaged median test error, the only excep-

tions being the result for 2D-Glass in Table 5 and for German Credit in Table 6. This

could be a manifestation of the probabilistic nature of hypothesis testing – perform

enough tests and eventually one will yield an erroneous result due to the non-zero

probability of type II error. Nonetheless, taking the results at face value, VRM gener-
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Table 5 Wilcoxon’s test comparing 0/1 loss and VRM within each dataset; selected individuals with the

lowest training set error

Dataset Optimal σ2 W -score p-value

2D-Glass 10−2 W+ = 61.5W− = 29.5 = 0.26

BUPA 10−3 W+ = 92.5,W− = 12.5 < 0.02

PID 100 W+ = 91.5,W− = 13.5 < 0.02

German 10−1 W+ = 105.5,W− = 14.5 < 0.01

Australian 100 W+ = 105,W− = 0 < 0.01

Statlog Heart 100 W+ = 91.5,W− = 13.5 < 0.02

WBC 10−1 W+ = 42,W− = 3 ≤ 0.02

WDBC 10−1 W+ = 120,W− = 0 < 0.01

Ripley 10−1 W+ = 75,W− = 3 < 0.01

Hastie 10−1 W+ = 84.5,W− = 20.5 < 0.05

10D-G 100 W+ = 97.5,W− = 7.5 < 0.01

Table 6 Wilcoxon’s test comparing 0/1 loss and VRM within each dataset; selected individuals with the

lowest test partition error on the Pareto front.

Dataset Optimal σ2 W -score p-value

2D-Glass 10−2 W+ = 91,W− = 0 < 0.01

BUPA 10−3 W+ = 105,W− = 0 <0.01

PID 10−1 W+ = 91,W− = 0 < 0.01

German 10−1 W+ = 52,W− = 26 = 0.30

Australian 100 W+ = 91,W− = 0 < 0.01

Statlog Heart 100 W+ = 105,W− = 0 < 0.01

WBC 10−1 W+ = 69,W− = 9 ≤0.02

WDBC 10−1 W+ = 120,W− = 0 < 0.01

Ripley 10−1 W+ = 76,W− = 2 < 0.01

Hastie 10−3 W+ = 91,W− = 0 < 0.01

10D-G 10−1 W+ = 66,W− = 12 < 0.05

ally delivers superior results and, at very worst, two results which are not statistically

different. In no case is ERM superior to VRM. (It should also be noted that 2D-Glass

VRM vs. ERM produced 8 ‘wins’ for VRM and 5 ‘losses’ out of 15 pairwise com-

parisons; for the German Credit dataset, the corresponding figures are 8 ‘wins’ and 4

‘losses’. That is, VRM still performs better on raw count.)

From Tables 5 and 6, it is obvious that the optimal value of σ2 and the apparent

superiority of VRM both vary by dataset which is expected as each problem has

different characteristics.

4.3 Stability of Training

Although we have demonstrated above that VRM is able to produce a superior me-

dian test error, a median is a statistic that can potentially hide a number of important

details. In particular, what are the comparative spreads of test error for multiple runs,

or alternatively, what is the probability that training with VRM will produce a better

outcome than training with ERM? We have performed multiple runs using the same

test partitions but with different initial populations and plotted the results as a his-
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togram. We present two histograms of test error for the real WDBC dataset, for two

randomly selected data partitions in Figure 8, and two corresponding histograms for

the synthetic Ripley dataset in Figure 9.

It can be seen from Figures 8 and 9 that the histograms for VRM are more com-

pact with modes at lower values of test error than for ERM, indicating that VRM

training is, on average, more stable and more likely to deliver a lower test error.

5 Discussion

In essence, what we are doing in the VRM approach is to form a ‘better’ approxima-

tion of the underlying class-conditioned densities by smoothing-out the set of discrete

samples in the training set. In this sense, σ2 is another kind of regularizing param-

eter which needs to be adjusted to obtain best results. Similar although differently-

motivated approaches have previously been employed with multi-layer perceptron

(MLP) neural networks. For example, Holmström and Koistenen [12] obtained im-

proved generalization performance by adding Gaussian-distributed noise to the train-

ing set in an ad hoc manner. Karystinos and Pados [14] employed a much more elab-

orate approach of modeling the distribution of input variables and then drawing a

large, similarly-distributed training set which yielded improved performance.

Placing Gaussian kernels over a training data is Parzen window density estima-

tion [8] where the width of the kernels is a smoothing parameter which has to be

tuned, typically by cross-validation. Under Parzen window estimation, the probability

density function (PDF) of each class is approximated by a (normalized) summation of

Gaussian kernels. Assuming a two-class problem (‘A’ vs. ‘B’) and the approximation

of the class-conditioned PDF for class ‘A’ is given by p̃A(x|A), the risk associated

with misclassifying a pattern drawn from ‘A’ is given by:

RA =
∫

Ω

p̃A(x|A)dx (8)

where x∈R
N and the region of integration, Ω is the portion of N-dimensional pattern

space to the right of the decision surface in Figure 10. A similar argument holds for

class ‘B’ which can be approximated by p̃B(x|B) and where the integral defining RB

is taken over the region of space in Figure 10 to the left of the decision boundary,

namely the complement of Ω . The overall probability of error, P(error) is given by

a weighted sum of RA and RB :

P(error) = κABP(A)RA +κBAP(B)RB (9)

where κi j is the cost of misclassifying a pattern from class i as belonging to class

j which we can, without loss of generality, assume to be unity. P(A) and P(B) are

the prior probabilities of classes ‘A’ and ‘B’, respectively. By selection of an ap-

propriate decision surface (i.e., by classifier training), (9) can be minimized to yield

(close to) the Bayes’ optimal error. Since p̃k(x|k), k ∈ {A,B} are approximated by a

(normalized) sum of Gaussian kernels, one for each training pattern, it follows that

minimizing (9) is equivalent to minimizing the vicinal risk under the assumption

of a meaningful discriminant g() that separates the majority of points in one class
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(a) Partition #1

(b) Partition #8

Fig. 8 Histograms of test error for two randomly-selected partitions of the WDBC dataset, for trees trained

by both VRM and ERM.
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(a) Partition #3

(b) Partition #11

Fig. 9 Histograms of test error for two randomly-selected partitions of the Ripley dataset, for trees trained

by both VRM and ERM.
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Fig. 10 Illustration of the domain of integration over pattern space to calculate risks.

such that g(x)− t > 0 and the majority of the points in the other class such that

g(x)− t < 0. VRM can thus be directly related to minimizing the overall probability

of error. The significant advantage of the formulation presented in this paper is that

the class-conditioned risks RA,B (8) are evaluated in the 1D decision space rather

than in N-dimensional pattern space over, typically, a region of integration defined

by a highly non-linear decision surface. (Indeed, in our experience, GP classifiers can

frequently generate disjoint decision regions in pattern space.)

As to why vicinal risk does not exhibit perfect correlation with test error (Sec-

tion 4.1), obviously the (implicitly) assumed forms for p̃A,B(x|A,B) are approxima-

tions and therefore incur some error. Nonetheless, VRM is able to consistently guide

the optimization to consistently superior regions of the solution space and is thus a

demonstrable improvement over ERM.

In the light of the motivation for VRM in Section 1 and the experimental results

in Section 4, it is worth reiterating the contribution of this paper. From Figure 1, it

is clear that by minimizing empirical risk, it is quite possible to locate the superior

discriminant g2 although is is also equally likely to locate the inferior g1 instead. To

reiterate the key issue: as illustrated in Figure 1, training by ERM cannot distinguish

between good and bad solutions. We do not claim that VRM will always produce

superior solutions to ERM. Indeed, it is possible that the ill-posed ERM may well

fortuitously find a solution which as as good as the VRM solution. The role of VRM,

however, is to stabilize the training process. We have demonstrated that VRM has a

consistently higher probability of producing a superior result which, in a compute-

intensive scenario such as GP, is a significant advantage. Rather than the commonly-

used practice of making multiple GP runs using ERM and selecting the best, VRM

has a higher probability of yielding a good solution in a single run.
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Finally, implementation of VRM training used here is very simple and amounts

to drawing an augmented training set, in advance, from the Parzen density estimate

of the original data. For the case of small datasets where the ill-posedness due to the

0/1 loss is most problematic, the use of Monte Carlo integration is not a significant

burden although we can envisage an ‘early jump-out’ technique to speed-up the com-

putations. The integral for the i-th pattern is evaluated by counting the fraction of

the augmented samples from this pattern that falls on the wrong side of the decision

surface – see Figure 2. Only training patterns proximate to the decision surface are

likely to be misclassified – patterns a long way from the decision boundary will never

be misclassified. Therefore, if the first n Monte Carlo samples from the i-th pattern

are all correctly classified, there is a probably little value in considering the remain-

ing samples; to some confidence level, we can thus ‘jump-out’ the integral evaluation

early for the i-th pattern since it is likely to contribute nothing to the vicinal risk. This

is an area for future investigation.

6 Conclusions

In this paper we have introduced and motivated vicinal risk minimization (VRM) for

training genetic programming classifiers. VRM is formulated by placing a Gaussian

kernel on each training datum in pattern space and propagating the resulting errors on

the decision into the 1D decision space. Minimizing vicinal risk over the training set

is shown to be equivalent to approximately minimizing the overall probability of error

for the problem in a Bayesian setting. VRM is shown to be far better correlated with

test error than empirical risk minimization (ERM), that is, minimizing vicinal risk

leads to consistently improved classifier generalization. The widths of the Gaussian

kernels can be straightforwardly chosen by cross-validation.

We present statistical comparisons between ERM and VRM which indicate there

is very little evidence to support the null hypotheses that the two loss functions per-

form identically. VRM is shown not to completely remove the need for a model

selection stage over the Pareto front of equivalent solutions although there is good

evidence that it guides the evolutionary optimization to improved solutions.
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