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Dyadic Expansions and Multivariable

Feedback Design

4 by

¥ o

¥ Dr. D.H. Owens

Synopsi

jw

The lecture will review and motivate the use of dyadic expansions
in the analysis and design of unity negative feedback control configura-
tions for the control of linear, time-invariant systems denoted by an mxm
transfer function matrix G(s). The approach is formulated as a systematic
attempt to reduce the structural complexity of the design problem by equi-

_valence transformation of G(s) andhence to replace the problem by one of

greater simplicity. The potential of the transfermation technique is illus-

® trated by application to the class of systems described by dyadic transfer

function matrices. Finally the ideas are combined with the important concept

of diagonal dominance to generate a general dyadic decomposition suitable for

the systematic manipulation and compensation of system characteristic loci.

Some relationships with the concepts of multivariable root-loci are also

outlined.
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Background Material

This lecture is concerned with the feedback control analysis of strictly

. proper, linear time—invariant systems S(Al,Bl,Cl)
™y
xl(t) = Alxl(t) + Blu(t) » xl(t)QE R
y(t) = Cyx (8) s , sleErr (1)

using the associated mxm transfer function matrix (TFM)

6(s) & ¢ (T - Al)—lBl (2)
7

The forward path control system S(AZ’BZ’CZ’DZ)
i n,
Xz(t) = Azxz(t) * Bze(t) " xz(t)GE.R (3)
ult) = szz(t) + Dze(t)

is proper, has mxm TFM

K(s) g CZ(SIn = Az)“le + D2 (4)
2

and has 'output' u(t) and 'input' e(t) where

m
e(t) = r(t) - y(t) & R | (5)
is the error vector and r(t) is the vector of demand signals. This
configuration is illustrated schematically in Fig. 1 and is conventionally
termed a unity negative feedback system.
T 'T A
The use of the augmented state vector x(t) = [#l (ty, %, (t)]

generates a state vector model of the forward path system 5(A,B,C)

I

%(t) = Ax(t) + Be(t) (e R

]

y(t) cx(t) s n=mn +1, (6)
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where
A= |A B,C, ) B = |BD,
9 4 By
c =[c, ) 0] @)
which has TFM
A Cli i
Q(s) = C(sI_ - A) "B=G(s)K(s) (8)
and a characteristic polynomial
p (s) é|sI ~ Al = |sI ~A;].|sT_ - A (9)
o n v ny 1 n, 2

simply equal to the product of the characteristic polynomials of the plant
and forward paths controller. p (s) is conventionally termed the 'open-
loop characteristic polynomial'.

The closed-loop system is obtained by substitution of equation (5)

into equation (6) to yield the system S(A-BC,B,C)

It

x(t) (A - BC)x(t) + Br{t)

]

y(t) = Cx(t) (10)
with 'closed-loop characteristic polynomial’
A Cs
p.(s) = [sI - A+ BC| (1)
an% 'closed-loop TFM'
A =1 wl
H@(S) = C(sI_ -~ A+ BC) B={1I_ +Q(s)} = Q(s) (12)
n m
In general terms, analysis of Hc(s) (and hence, implicitly, Q(s)) yields
information on the transient behaviour of the plant outputs to demand
signals whilst analysis of pc(s) yields information on the stability of
the closed-loop system . Hence, equations (11) and (12) form the founda-
tion of design theory, although it is more convenient to replace equation

(11) by the identity,

pC(S)
pG(S)

=1+ Q)| = [T(s)] (13)
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where T(%) = Im + Q(s) is the 'matrix return-difference'

The above material can be regarded as the minimum necessary back-
ground material required for the understanding of multivariable feedback
theory. Further details can be found elsewhere in this course, in the

(1-5) (6)

textbooks and the forthcoming special issue' ‘of the IEE Control

and Science Record.

Some Basic Concepts

A General Design Philosophy:

Consider the special case of the diagonal plant

?

G(s) = diag {gl(s),gz(s),...,gm(s)}

By 180 58 e e e O
R 8y (s) (14)
0
B5 s 5w B s o )

L

consisting of m non-interacting single-input/single-output systems with

transfer functions gj(s), 1< jsm It is obvious that each of these

systems can be separately controlled! In multivariable notation we set
K(s) = diag {kl(s),kz(s),...,km(s)} (153

where kj(s),l < ] ¢ m, are scalar controller transfer functions and note

that
_m
|T(s)| = T| (1+g, (s)k, (s)) (16)
ie1 B
. gl(s)kl(s) gm(s)km(s)
HC(S) = diag {1+g1(s)k1(s)""’l+gmis)km(s)} (17)

so that the closed-loop system is stable if, and only if, the scalar

feedback systems

gj (S)kj (""')

TIEETESEETé) ’ g jsm : a8

are stable. Moreover, the closed-loop system is non-interacting and its
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_4_
transient performance in response to unit step demands is 'as good aé’
the responses of the scalar systems (18).

In multivariable terms, the above problem is trivial but it does
indicate that the presence of off-diagonal/interaction terms in the plant
are a major source of design problems. These problems are not mathematical
in nature but are due to the existence of a human decision maker in the
design process and the general observation that the human being finds it
impossible to consider more than one loop at a time. Contrast this with

the intuitive expectation that interaction effects will, in general,

produce complex interdependences between the control loops.

For reasons such as the ones outlined above it is generally true that
multivariable design techniques based on frequency response/laplace trans-
form techniques all attempt to reduce or eliminate (in some sense) the

need to consider interactions effects in the design process and hence to

reduce the design to a sequence of independent scalar design processes.,

Eigenvector Techniques(ang)

The natural approach to the diagonalization of a square matrix is
the use of eigenvalue/eigenvector methods. Consider, for example, the
forward path TFM Q(s) to have frequency dependent eigenvector matrix
W(s) (with inverse V(s)) and corresponding eigenvalues ql(s)qz(s),...,
qm(s) i.e.
Q(s) = W(s) diag {a7(8),q5(8),..0,q (s)} V(s) (19)

It follows that

pC(S) m
@) | +Qle)| = j\:\l (1 + q,(s)) (20)
and
Ho(s) = {I, + Q(s)}1Q(s)
qq (s) q_(s)
= W(s) diag {== coy =} V(s) (21)

1+ql(s) xite 1+qm(5)
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80 thatlthe stability and transient performance of the closed-loop s;stem
can be described in terms of the 'characteristic transfer functions'

qj(s), l‘g j ¢ m, subjected to unity negative feedback, and the eigenvector
matrix W(s).

The pseudo-classical nature of this analysis is deceptive in its
simplicity as it provides few explicit algorithms for the choice of
controller K(s). It does however establish the use of the eigenvalues and
eigenvectors of Q(s) as fundamental design quantities and suggests that

transformation techniques will play important roles in design theory

providing design rules and a necessary simplification of the design

procedure.

Transformation of the Control Problem(4’6)

Although eigenvector methods are vital to analysis and transformation
of Q and Hc’ they are not the natural tool in the transformation of the
plant G for design purposes as both the eigenvalues and eigenvectors are
not invariant under such simple operations as interchange of inputs or
outputs or even elementary changes in the physical units. There is hence
a need to go deeper ipvoking the following concepts of dyadi2 expansion

(7)

or, in other approaches , ideas such as the Principle of Alignment.

For conceptual and numerical simplicity, the transformations used
here(lo)
(a) introduce no extra dynamics into the system.
(b) have a meaningful physical interpretation.
The simplest class of transformations satisfying these requirements
is the class of transformations of the form G(s) - H(s) defined by
G(s) = P, H(s) P, (22)
where P1 and P2 are square nonsingular constant matrices. These trans-

formations certainly introduce no new dynamics and can be interpreted

physically as a decomposition of G into three separate factors as shown
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in Fig. 2. Alternatively, introducing transformed inputs & and outpﬁts N
by the telations (see Fig. 2)
(t) = Pyu(t) , y(t) = PyF(t) ; (23)

then the relations y(s) = G(s)u(s) indicate that

§(s) = H(s) 1(s) (24)

so that H is simply the TFM from 4 to ¥.
It is a natural step to demand that the transformation pair (PI’P2)

(10)

be real. There are however good theoretical and physical reasons for
allowing permissible transformations to have complex elements of a

certain form, just as it is necessary to allow complex conjugate pair

eigenvectors in spectral analysis of oscillatory linear systems.

Definition(lo) : - .

+ The mxm nonsingular complex matrices

1 BT 1
1
By i [gl,az,...,ang y 4By = . (25)

ST

m
are said to be permissible if the columns (resp. rows) of P1 (resp. PZ)
are real or exist in complex conjugate pairs and if B. = 82(.) whenever

J

&, = oo 5 L & 4 &
it 2 &

Exercise 1

Show that P1P2 is real and nonsingular if <PDP2) is permissible and
that G(s)=G(s) (i.e. G. has elements with real coefficients) if, and only if,
H. (s) = H,,. s 1€3 ¢ (26

Suppose now that the permissible transformation (PI’PZ) is chosen

- p
such that the design of the forward path controller K(s) (see Fig. 3)

for H(s) is 'simpler’' than the design of K(s) for G(s) (see Fig. 1).




- 7. =
Noting that
e (s) _ | -
- p (s) 0 IIm + G(s) K(s)| = | T, + P H(s)P,K(s) |
= IIm + H(s) P,K(s) pl| o,

it follows that the stability of the two configurations is identical if

we choose

i(s) = PZK(S) Pl

(28)
It is then easily verified that
Hc{s) = {Im + G(s)K(s)]ulc(s)K(s)
= Pyl {I_+ H(s)K()} " H(s)K(s) P, (29)

N

and hence that the closed-loop TFM's of the two configurations are related
by the similarity transformation Pl.

In general terms, the design tecniques described in the following
sections replace the design of the configuration shown in Fig. 1 by the
(assumed simpler) design of the configuration shown in Fig. 3. The con-
troller K(s) can then be computed from equation (28). The stability of
the closed~loop system is then guaranteed and the closed-loop performance
assessed from equation (29).

The potential of the transformation can be illustrated by the examples,

1 1= g 2 =8
G(S) - '—"———2—
(s+1) {i o 1 - s
I e )
L 2 3 ’(S+l\} O _% —%
2 2| 1 . 2/4 1J . (30)
(s+1)

]
&) = oy | |
i
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1 -1 | o || 0.5 0.5
= (31)
11| o LI 0.5
5+2 l )
{s+l -1
_ 1
G(s) s(s+2)
1 s+1,
T s+1l+i 0 -1 L
. s(s+2) Z &
= (32)
s+l-i 1 1
1 1 0 s (347) 3l 3

with the natural identifications of Pl’ H(s) and P In each case, H(s)

5
is a diagonal 'quasi-classical' system making the design of K(s) a straight-—

forward classical problem.

Exercise 2

Show that K(g) = K(s) if, and only if,

K, (8)z K_,. ) j
k(8= Ky 5y0 1) (8 lsi, ksm

Dyadic Transfer Function Matrices: An Important Special Case.

To provide insight into the potential benefits of the above transformations
and to suggest design rules, we examine the following special case. Its
importance lies in the fact that it is amenable to analysis and the fact

that it does 1leadto a firm and natural basis forx .generalisation. It does

: ; 3 ; ; : i 41132
also have direct application in several practical 51tuat10nsﬂ ahsd)

(10)

Although there are several equivalent definitions and inter-—

pretations, we will use the following:

Definition(a’lovlz)

An mxm TFM G(s) is said to be dyadic or a dyadic TFM (DTFM) if there

exists a permissible pair (Pl,Pz) and non-zero transfer functions
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=

gj(s), 1l ¢ j ¢ m, such that

G(s) = P diag {gl(s),...,g (s)} P (33)

In effect, G(s) is a DTFM if it is possible to choose Pl,P2 such that

H(s) = diag {gl(s),...,gm(s)} (34)
has a quasi-classical non-interacting diagonal form (see, for example,
equations (30)-(32)). It is therefore natural to choose

Rie) oW (k) (8), ...,k ()} (35)

and hence (equation (28)) the controller

=

K(s) = P, diag {k1(8),00n,s k ()} P, (36)
In particular, using equations (27) and (29), we obtain
p(s8) m :
Gy (1+gL(S)k.(8)) (37)
fa™t i=1 '
gl(s)k (s) g, (s)k_(s) 2
HC(S) . P dlag { +81E5>k (S) T ' fs)k (.S)} P (38)

indicating that the stability and transient performance of the closed-loop
System are governed by the stability and performance of the independent
scalar feedback systems

gj(S)kj(S)
l+gj(s)kjfé) :

hj (s) 1€£j<sm (39)

and, of course, the matrix Pl'

Exercise 3

Use exercise 2 to prove that K(s) has elements with real coefficients if,

and only if,

kj(s) kg(j)(s)

1il

s L& JEm

),

The analysis suggests the following design techniques




|

The analysis can also be extended

- 10 -

4)

STEP 1: Compute < m

-

Pl’PZ and the 33(5)’ E 5.4

STEP 2 Choose compensation elements kj(s), 1 < ] ¢ m (see exercise
3) to ensure satisfactory stability and transient performance
properties of the subsystems hj(s) , 1 g-j-s m.

STEP 3: Compute K(s) and simulate the resulting closed-loop system. If
unsatisfactory return to STEP 2. If satisfactory, stop!

Before continuing to illustrate these ideas with an example it is
worthwhile pausing to consider the interaction properties of the closed-
loop system Hc(s) in response to unit step demands. It is possible(h)
te deduce the following working rules:

(a) Closed-loop interaction willbe small if Py is 'nearly diagonal'
when (equations (38) and (39) Hc(s)xdiag {hl(s),hz(s),...,hm(s)}.

(b) Closed-loop interaction will be‘small if the step responses of the
scalar feedback systeﬁs are 'similar' when (symbolically) hj(s)z
hl(s), 1 < j ¢ m, and (equations (38) and (39) Hc(s) o hl(s)Im.

(4) to consider the stability of the

closed~loop system in the presence of component failures.

Level Control of a Two-vessel liquid Storage System

(4)

Consider the liquid-level system illustrated schematically in
Fig. 4 and the problem of manipulation of inlet flows to regulate the
liquid levels and (rather artificially perhaps!) to ensure that the

closed-loop system possesses small interaction effects in response to

unit step demands in liquid level in either wvessel,

Using the data a; = L, a, = 2 5, B =241t ¢an be deduced(a) that the
system TFM takes the form
s+ 1 1
G(s) = — : (40)
s(s+3)
1 i (s+2)

It can easily be verified that the system is dyadic with the data




. <
} =3 Ljg 1,
Eyn 5 2 By ™ | : (41)
1 1J <Lt 1/6)
1 -
B e Bl .5 =13

Given this decomposition the next step in the dgsign procedure is to design
scalar compensation networks kl(s) and kz(s) for.the scalar systems gl(s) and
gz(s) respectively. Noting their simple first order lag structure we will
suppose that proportional controllers kl(s)=k1,k2(s)=k2 are to be used i.e. the

closed~loop scalar Eeédback systems takekthe form

L 5 2
TR s BE S o s
In particular, the closed-loop éystem is stable if, and only if,
kl >0 p 3+ kz >0 : . (43)

Noting that Pl is certainly not 'approximateiy diagonal' (in any reasonable
sense that is!) we will attempt to reduce closed-loop interaction by
ensuring that the‘step responses of the systems in equation (41) are
similar. This can be achieved by equalizing their time constants by
setting

k8K =k, +3 (44)
to achieve similar response speeds and to choose

k >> 0 (45)
to ensure similar steady state characteristics. The interested reader
can see the undesirable effects of ignoring these considerations in ref. (4).

Substituting back into equations (36) and (38) yields the forward

path controller

K(s) = : (46)
2 2k — 2

and the closed-loop TFM
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( 2 2
ol i
HC(S) == : (47)
1 1
l\f box)

Consider the vesponse of the closed-loop system to a unit step demand

in level one

=t
(=
i
o

ye) =L B (s) T (1-e %) (48)

b=

[}

tO

and the response to a unit step demand in level two

=l

o

y =L H ) = | = ae™H (49)

w =

It follows directly that both steady state errors and transient
interaction effects are less than 0.1 (say) in magnitude if, and only if,
k > 20. The responses to a unit step demand in level two with k = 20

is shown in Fig. 5. Overall the design is successful and can be improved
by the introduction of integral action into kz(s) and/or an increase in
control system gains.

(4,10)

Approximation and Feadback Design An introduction

(4)

The example of DITFM's 1s a particular case satisfying the general
design philosophy of section 2.1 (i.e. by suitable choice of controller,

the design procedure reduces to a sequence of independent design processes).
It is also a particular case of the general transformation procedure of

section 3, suggesting that a fruitful theoretical approach may be to

consider permissible transformations G(s) > H(s) such that, for suitable




L

.-.13...
choice of transformed controller k(s), the off-diagonal terms of H(s)
can be neglected in the analysis of the stability of the closed-loop
system.
More precisely, we consider conditions -

under which the dyadic approximation (a DTFM!)

Gy (s) & P, diag {g;(s),...,g ()} P,

é
gJ (5) H_]j(S) s 1

A
—

] £ m (50)

to the dynamics of the plant G(s) controlled by the dyadic controller

(see section 4)

K(s) = Pz_l diag {k; (s),ky(s),. . Kk ()} pl”l (51)

"induced' by GA can be used as the basis for assessing the stability of

the closed-loop system. There is a related problem using the idea of

(4,10)

inverse dyadic approximation but this is not considered here.

Intuitively the approximation GA to G will be adequate if the off-

diagonal terms of H(s) are 'small' in some sense. The criterion for

(1,2,4,10,13)

smallness used here is simply diagonal dominance and the

mathematical techniques have a strong relationship to the inverse Nyquist
array design method(1’2’4’13’14}

Substituting the controller of equation (51) into the relation (27)

yields the identity

= |1m + H(s) diag {k (s),k (s),...,km(s)}| (52)

and, for example, application of the stability theorems of the direct

Nyquist array yields the result
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Theorem 1 (A stability theorem)

Let D be the usual Nyquist contour in the complex plane and let
n, (resp. no) be the number of closed (resp. open)-loop poles in the
interior of D. Suppose that Im + H(s) diag {kl(s),...,km(s)} is diago-
nally row or column dominant at each point s on D. Let the jth diagonal
term of H(s) diag {kl(s),.“.,km(s)} map D into the closed-contour Fj
encircling the (-1,0) point of the complex plane ng times in a clockwise

manner, 1 <,j <o m. Then

’ ~

m
T U ey ¢ o E n. (53)
c o 121 ]

Noting that the diagonal terms of H(s) diag {kj(s)llsjsm are simply equal
to gj(s) kj(s), 1L <€ §j<m, Fhen the theorem can be interpreted on stating
that the dyadic approximation can be used for analysis of the stability of
the closed-loop system provided that their Nyquist loci with superimposed
Gershgorin circles do not contain the (-1,0) point of the complex plane.
Moreover, if the Gershgorin circles are of 'small enough' radius it is

expected intuitively that the DTFM

g.(s)kj(s)

i | :
{I_ + G,(s)K(s)} "G, (s)K(s) = P, diag { ;
N A A 1 1+gj(s)kj(s) s

obtained by replacing G(s) by GA(S) in Hc(s) will be an adequate approxi-
mation, for design purposes, to the closed-loop dynamics.
To illustrate these ideas, consider the controllable and observable

stable system

2s + 6 5 + 3

1 ;
G(s) =—(S—+_1W (55)

128 + 20 * 9s + 15

which, choosing the permissible transformation

(54}
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Py = . By ’ (56)

yeilds a transformed system of very simple and highly symmetric structure,

r 3

2 1
5+1 s+2
H(s) = (57)
1 2
LS+2 s+l

with g, (s)

gz(s) 2/(s+1). The Nyquist array of H(s) in the frequency

interval o ¢ y < + » can be illustrated (due to the symmetry) by the single
frequency response, together with Gershgorin circles, shown in Fig. 6.

Choosing, for simplicity, the case of proportional controllers kl(S) = k

1
and kz(s) = k, and, due to the symmetry of Hs), kl = k2 =%k, it is easily"
seen that 12 + H(s)k is diagonally dominant on the whole of the D contour

for all choices of k > 0. In this case, we have n, =mn, = 0 and hence,

2
noting that M, = 0, theorem 1 indicates that the closed-loop system is

stable for all choices of controller of the form

Kes) =k B p,” =% . k30 (58)

Exercise 4

Verify that the plant of equation (55) has the decomposition,

[ (s+3) W (
G(s) = 1) (5+2) 0 2 1
0 38 + 5 4 3
\ is+1535+2)J t
and hence is a DTFM. Following the approach of section 4, design unity

feedback system for this plant and show that the resulting closed-loop

system is non~interacting.
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Dyadic Approximation and Characteristic Loci(A’;o’ls’lﬁ)

The ideas outlined in section 6 suggest that an intuitively reasonable
objective in the choice of permissible P, and P, is the diagonal dominance

of H(s) on the Nyquist D contour. The transformation could be guessed on

: (4,11,12) . , B : ;
physical grounds, orn a trial and error b351ﬁ<1n the inverse Nyquist

array technique or deduced from general theoretical considerations(4’10’15’16)

as described below.

Theorem 2(4’10’15’16)

Let ml‘be a real frequency such that G(iwl) is finite and non-singular.

Then there exists a permissible transformation (Pl(wl) - Pz(wl)) such that
A -1 =1,
is diagonal at the point s = iwl if, and only if, the matrix
M@,) 2 c(-iw) ¢ L) (60)
LT e g =

has a complete set of eigenvectors. P,;(®,) (resp. Pz_l(ml)) is then an

. . S g
eigenvector matrix of M(ml) (resp. N(ml) = G 1(:Lml) G(—lml)).

In essence the result indicates that, under mild (generic!) conditions,

it is possible to choose a permissible transformation such that H is

diagonal at the specified frequency point and hence (by continuity)

diagonally dominant in the vicinity of that point. The dyadic approxi-

n

mation is h%ce exact at the specified point s = iwl.

Although theorem 2 could be regarded simply as a basis for computing

candidates for Py and P2 in the context of section 6, it has important

applications to the systematic manipulation and compensation of system

(4,7,8,9,10,16)

characteristic loci
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The characteristic locus method regards the design objective, in
particular, as the gain and phase compensation of the characteristic loeci

of the plant G(s) by the choice of controller K(s). Unfortunately, as

‘there is no general formula giving the eigenvalues of the product of two

matrices as a function of the eigenvalues of the individual matrices, the
systematic design of K(s) to produce required loci compensation is a

major practical problem. This problem can be partially overcome by the

; ‘ . Gy
use of ideas such as 'approximately commutative control'( :7)

(4,10,15,16)
as

or by the

use of theorem 2 outlined below.

Consider the basic problem of the choice of K(s) to produce desired
gain and phase characteristics of the loci in the vicinity of the specified
frequency point s = iwl. Suppose also that the conditions of theorem 2
are satisfied and that the.permissible transformation (Pl(wl),Pz(ml)) and

H(s,ml) have been computed. Consider the use of the dyadic controller,

K(s,uy) & Pz_l(ml) diaglky (s,07) 5000,k (8,0,)) Pl-l(ml) (61)

yielding

G(S)K(s,ml) = Pl(wl) H(sybdiag {kl(s,ml),...,km(s,wl)} Pl_l(wl) (62)

Applying Gershgorin's theorem to H diag {kj} , it follows that the

1<jgm

natural rational approximations, 1 ¢ j ¢ m, to the characteristic transfer

functions

qj (S) = Hjj(s’ml)kj (S:U-‘l) (63)

(obtained by neglecting the off-diagonal terms) are exact at s = iwl and

in error at other points to an extent defined by the Gershgorin circles.
. . ; . : (4,16)
These ideas are represented schematically in Fig. 7. Note that the
relative magnitudes of the circles are independent of the compensation
elements and are also small in the vicinity of s = iwl. It follews that
equation (63) can be used with confidence to design the required gain and

phase characteristics of the characteristic loci in an open frequency

interval containing s = iml.
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The above methodology can be used to formulate a systematic design

technique
and design
structure:

STEP ONE:

STEP TWO:

STEP THREE:

For examples of the application of the technique see refs. (4), (5) and (16).

(4

,16)

with guaranteed and quantifiable accuracy in the analysis
of compensation elements. In essence the approach has the

Choose an intermediate to high frequency w, at which gain and

h
phase compensation is required, and apply the above procedure
to design K(s,wh) to produce the required gain and phase compen-

sation in the viecinity of s = iw Check the success of the

B
procedure by examination of the characteristic loci. If the
system is stable and its steady state and transient charac-
teristics are as required, stop! Otherwise, continue to step
two.
Choose a low frequency w, and design K(s,mi) for the composite
system G(s) K(s,wh) to produce the desired gain and phase
compensation of the characteristic loci in the vicinity of
g = imz. Check the exact characteristic loci.
Set

K(s) = K(s,mh)(Im + K(s,mﬂ)) (64)

when the desired compensation of the loci at both high and

low frequencies will be essentially retained if

1im K(s,ml) = Q) (65)

s[>

e.g. if K(s,wl) = s_lK(wg) is a pure integrator.

8. Summary and Comments

The concept of the dyadic representation of an mxm TFM G(s) has its

. origins 1in

y . 145712
the design of nuclear reactor spatial control systems( )

where the dyadic structure is a reflection of the modal structure of the
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reactor equations. There are many ways of generalizing these ideas(4’10)

but perhaps the most succinct is obtained by introducing the idea of

(10)

permissible transformation of the control problem into an (assumed

simpler) control problem with identical stability characteristics and

g closed-loop responses related by similarity transformations. The idea
of a dyadic TFM then arises naturally as a special case possessing the
property that suitable choice of forward path controller reduces the
design procedure to m independent classical designs. The structure also

arises naturally in applications(4’ll’12).

A combination of these ideas with the concept of diagonal dominance(A’lo)

extends the scope of techniques to the larger class of systems that can
be transformed into systems of 'almost diagonal' form. The techniques then
have a similar structure to the direct or inverse Nyquist array methods.

7 The ideas can be extended(4’10’15’l6)

to cope with quite general TFM's
by the use of permissible transformations and the construction of rational

approximations to the characteristic transfer functions of GK. These

approximations are exact at a chosen frequency of interest and in error at

other frequencies to an extent defined by Gershgorin's theorem.

The analysis illustrates that dyadic representations of multivariable

systems are fundamental. In particular, they can be used to motivate the

definition and analysis of simple multivariable structures(4’17’18)

possessing structural similarity to certain classical transfer functions.

(7

They also play a role in other design techniques . More recently the

idea of the root-locus of a multivariable feedback system has been intro-

(4,8,18-25) (123-25)

duced and a theory of design and compensation is emerging
Central to this design theory is the idea of dyadic TFM's in ‘the sense

. that the required compensation of the root-locus can always be achieved

using a dyadic controller TFM.
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Fig. 5 Level responses to a unit demand in yz(t)
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Fig. 6 Nyquist plot of H..(s) , o g w + ©» , plus Gershgorin Circles

%eﬂk:jwﬁa Cirdeo have  Zam

l‘achug ak S‘=;\W| §

Y, ( \'3&-’»3

Hn (\iwiwl3 h\(\‘\'f-‘,"ah
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L5 PROBLEM ONE
Given that the mxm DTFM
G(s) = P1 diag {gl(s),gz(s),...,gm(s)}P2 5 |G(s)| £ 0

where the matrices

[ t)
By
) = fasay, cosall 0 By =
~E
Bm J
\
are permissible, show that
(a) gj(s)i’o s lgigm
(b) G(s) =P, diag {"glcs),..., g, (s)} P,
where
Py = [uyagsugags e oouo]
r
o
Yy By
2 TN
. t
LYm Bm
~ % 4
d ’ = — g 2 1, &35 %
an 8; (s) Y gJ(s) $J1&m

for any choice of non-zero complex constants B Yj’ g § g s

(c) Show that (Pl’PZ) is permissible if

Uj = uz(j) L] YJ = YQ«(J) 1 £]<& m

Hence infer that the dyadic decomposition of G(s) is non-unique.




L5 Answer to Problem One:

(a) 0% |6(s)| = [P diag {g)(s),...,8 (s}} By \_

IAFROTHONN-NON N

from which ]Pi| #0, i =1,2, and, in particular g.(s) #0, 1 < j g m.

(b) Simply write | B,"
P1 = Pl diag {ul,..., um} . P2 = dlag{yl,...,‘ym} :
Bt
m
and substitute the identity
diag (81080} gom 7 4188 {”j}-l's'A‘mdlag g ()} s emdt@8 s i

into the original dyadic decomposition of G.

(c) AS P, and P, are permissible we have

1 2

I YD LS B T 4D

T Py and P2 are to be permissible we need , 1 g j g m,

Ggad =y %y 0 585 T e B

1.e. uj = “z(j) o Bj = Bk(j) 5




L5 PROBLEM TWO

Given the mxm DTFM

G(s) =P, diag {g;(s),...,g ()} P, , [G(s)| #0

with P, P, permissible and, for simplicity, the gj(s), 17¢], & ‘my are
distinct show that a suitable decomposition is achieved by following the
procedure outlined below:

STEP 1: Choose a real number 8 such that G(8) is finite and nonsingular
STEP 2: Find, by trial and error, a real frequency point sy such that

the eigenvalues of G(Sl) G_l(§) are distinct, and set P, to be

1

equal to an eigenvector matrix.
STEP 3: Define P, = By G(8)

STEP 4:  Compute gj(s) from the formula,

diag {g)(s),--nm;(s)} = B G(s) B, '




L5 Answer to Problem Two:
STEP 1: The assumption that |G(s)| Z 0 guarantees the existence of such
a point s.

STEP 2: Noting that
g, (s) g (s) -1

=1 . . 1
G(s) G "(s) = PI dlag{-gT(-ﬁsry} seees -g:m -PI
it follows that P, is an eigenvector matrix of G(s) Gul(é) for

any choice of s. In the particular case of the gj(s) distinet,

we can always choose 5, such that

g.(s,) gk(s )
g 1 o I
EETES. # EITET“ > 1 53 5 kigm

and hence P1 is uniquely defined to within scaling and reordering
of colums. Moreover, G(s;) G-l(g) is real and hence we can always

arrange that the columms of Py occur in complex conjugate pairs,

q. =q.,. . l1<jgm
a % (5) <3

STEP 3: Using exercise 1 with s = § real, we see that

85 ) = 8y(3) @)

i
A
[ P
A
=)

In particular we can use problem 1(b) and 1(c) with uj =l e 5 &
and y. = gj(g) » 1 £ 3 <m to demonstrate that it is always
possible to take

gj(§)=1 o L e

when G(s) = P, P, yields the result with P

152 1

STEP 4: obvious.

m

and P2 permissible.
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L5 PROBLEM THREE

Given that the TFM

2 2s + 2
is a DTFM, design a unity-negative proportional output feedback
controller for the system described by this TFM ensuring that
(a) the closed~loop system is asamptoticaily stable.
(b) steady-state errors in response to unit step demands in
any loop are less than 0.1.
(c) transient interaction effects in response to unit step

demands in any loop are less than 0.05 for all time.
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L5 Answer to Problem Three:

Using the technique of problem 2 with s = 1.0 §; = 2.0 we obtain

6 =1
. "'1 _i I
G(@.0) G "(1.0) = 10
=2 7
? J
with a real eigenvector matrix
P1 = [=1 1
2 1
J
from which .
_ -1 _ _ 2/
P, =P, "6(1.0) = /3 3
2/3 2/3J
r 1
-1 5= TR 1
and P1 G(s) P2 = p 0
4
< LO s+3
J
; 1 4
i.e. g (s) == , 8y(8) ==

The next step in the design is to choose proportional controllers kl’kz

such that the scalar feedback systems

gl(s)k1 kl A gz(s)k2 4k2

hl(S). W = §+—kl' s hz(s) . 1+g2(s)k2 N s+3+4k2

are stable and have similar response characteristics. Stability is ensured

1f
. k1 >0 " 3+ 4 k2 >0
and similar transient response characteristics are achieved if we set
; B 5
k = ky 3+ 4 k2

(equalizing their time constants) and use a 'large enough' value of
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L5 Answer to Problem Three (cont'd)

k or k, to ensure similar steady state characteristics. The resulting controller

K, k-1 i

0 k 1 k/9-1
and it remains to choose a suitable wvalue of k > 0. Evaluating the closed-

loop TFM

H_(s) = P, diag {h;(s) , hy(s)} 911

k
= -1 1 T 0 -1 1
1
3
k-3
2 1J 0 ok 2 1
= (] - 1
T s+k k k
2 2
% Sl

\

it follows that the design requirement on steady state errors is

satisfield for k > 20 and similarly for transient interaction effects.




L5 i PROBLEM FOUR

Given the DTFM

1-s 2-s
G(S) = __1—3
(s+1) 1/3—5 1-s
8 3 r 1 3 4
S B L) . "M o
1
2 2 0 ——— 2 1
2
7 il | (s+1)” § ? Ay

consider the design of a unity-negative feedback system ensuring

stability and high performance responses to unit step demands.




_2—-
L5 Answer to Problem Four (cont'd):

when

/ k
hy(s) = ——2
s+105+9+k2

Choosing k2 = 41.0 to produce a damping . ratio of 1/ v2. The subsystem

now has a response speed of the order (-1) x 1/(intercept of root-locus)
= 1/5 second.
(c) We can now attempt to equalize the response speeds of the two

subsystems by setting

1 R |
k1+ 1 5
or kl = 4

and using the controller

K(s) =P,
41(s+1)
0 - (s+9)

J
The resulting siep responses are shown in the Figure. As can be seen we
have quite large transient interaction effects but these are swiftly
suppressed. They can be removed by the introduction of more phase advance

into kz(s) but, ultimately, the system performance will be limited by the

essentially different dynamic characters of gl(s) and gz(s).
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L5 Answer to Problem Four:

We use the natural identification

» s _ -1 -1
B ’ B, = /2 /2
)
# 2/3 1
(B) = i (g) = e
g (s) = (s+1) ’ 8218/ = TgiD)Z

and move immediately to the design of the scalar feedback systems

g, (s)k, (s) g, (s)k, (s)
ML be re ik , hy(s) = —2_2
1+g1(s)k1(s) 1+g, (s)k, (s)

(a) The first order lag nature of gl(s) suggests the choice of proportional

controllers kl(s) = kl-when we need kl + 1> 0 for stability and kl >> 1

for small steady state errors i.e. its response speed is of the order
of (1+k1)_1 << 1 sec.

(b) If we restrict our attention to a proportional controller kz(s) = kZ

we immediately hit problems as

hz(s) = k2

s + 25 + 1 + k2

is a second order lag with a response speed of the order of 1 sec

independent of the choice of 'reasonable' k, and if we increase k,
to reduce steady state errors oscillations will set in. Equivalently
it seems to be unlikely that we can make the responses of hl(s) and
hz(s) similar with proportional control alone. In fact we need to

increase the response spged of hz(s) by the introduction of phase

compensation of the form (say)

(s+1)

ky(s) = ky 39)
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