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Abstract., Identification of nonlinear systems which can be represented by
combinations of linear dynamic and static nonlinear elements are

considered.

Previous results by the authors based on correlation

analysis are combined to provide a unified treatment for this class

of systems.

It is shown that systems composed of cascade, feedforward,

feedback and multiplicative connections of linear dynamiec and zero
memory nonlinear elements can be identified in terms of the individual
component subsystems from measurements of the system input and output.

Keywords. Control nonlinearities, correlation theory, identification,

nonlinear systems,

1. INTRODUCTION

Various authors have studied the class of

© systems which can be represented by inter-—

connections of linear dynamic and zero-
memory nonlinear subsystems.
representation and rules for algebraic

manipulation were developed by George (1959).

The analysis and synthesis of cascade sys-
tems has been studied by Smets (1960) and
Shanmugam and Lal (1976), and a structure
theory was developed by Smith and Rugh
(1974) . Zames (1963) and Narayanan (1970)
studied nonlinear feedback systems and

numerous. authors (Gardiner, 1973; Cooper

and Falkner, 1975; Narendra and Gallman,
1966; Sandor and Williamson, 1978; Douce,
1976) have considered the identification of
systems within this class.

In the present study previous results
(Billings and Fakhouri, 1978a,b,c) derived
for the general model defined as a linear
system in cascade with a static nonlinear
element followed by another linear system
are briefly reviewed. By considering the
separable class of random processes it is
shown that computation of the first and

'second order cross-correlation functions

when the input is white Gaussian effectively
decouples the identification of this class
of non-linear systems into two distinct
steps; identification of the linear sub-
systems and characterisation of the non-
linear element. The relationship between
the first and second order correlation
functions also provides valuable information
regarding the system structure; notably the
position of the nonlinear element with res-
pect to the linear systems. Although the
algorithms cannot be directly applied for

Ppseudorandom inputs an alternative procedure

A transform -

(Billings and Fakhouri, 1978f) based on com-
pound pseudorandom excitation is presented
and the selection of inputs is discussed.

The results are extended to include the
identification of the component subsystems
in nonlinear feedback systems (Billings and
Fakhouri, 1979a), feedforward systems
(Billings and Fakhouri, 1979b), systems
containing multiplicative connections of
linear dynamic elements (Billings and
Fakhouri, 1978c) and other common system
structures (Billings and Fakhouri, 1979c¢).
In all these cases the identification pro-
cedure provides estimates of the individual
elements of the system such that the com-
ponents can be synthesised in a manner which
preserves the system structure and provides
valuable information for control.

2. THE OPEN-LOOP GENERAL MODEL

The general model illustrated in Fig. 1 con-
sists of a linear system hl(t) in cascade

with 'a zero memory nonlinear element F{']
followed by a second linear system hz(t).

For generality it is assumed that the meas-
ured output contains an unknown additive
noise component v(t) and that the nonlinear
element can, in theory, be represented by

; i
a polynomial y(t) = L AT (t):
i=1

ulm 1‘(1)
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The identification problem can now be defi-
ned as identification of the individual com-
ponents hl(t), hZ(t) and a suitable repres-—

entation of the static nonlinear element
F[-] from measurements of the input u(t) and
noise corrupted output zz(t).

2.1 Separable Process Inputs

The output of the general model, Fig. 1 can
be expressed as

'zz(:) = ffhz(G)Q(t—B,Tl)uz(t-e-rl)dedrl+v(t}
(1)

where Q(t,rl) is a function of t and t, only

1
and can be readily evaluated by considering
the Volterra series expansion for zz(t).

The output correlation function can then be
defined as

¢2122(a) = ffhz(ﬂ)Q(t—e,rl)uz(t-e-rl)ul(t~5)

dr,d8 + V(t)ul(t-E) (2)

If ul(t) is separable with respect to x(t)
then the invariance property (Nuttall, 1958)
¢ (@) =

exists across the nonlinear element where

‘CFG is Booton's equivalent gain. Expanding

-eqn (9) |
Cpglhy (Ty)

uz(t-rl)ul(t-u)drl (4)

CFG¢ulx(c)*f F and o ‘ (3)

Jote T e, (=7 Ju (E-o)dr, =

‘and substituting in eqh (2) yields
‘1¢h122<53 =,CFGIIh2<6)h1(T1)¢u1u2(e-e-rl)dedrl

+ ¢u1v(a) (5)
In a similar manner defining the second order
correlation function

¢u 2 (e) = ffhz(B)Q(t-ﬂ,rl)u2(t-e—rl)
T V.
| 1
.and expanding the invariance property for
‘double nonlinear transformations

,ulz(t-s)deT + ulz(t~€)v(t) (6)

3 é (o) = Copc? 2 (@) ¥ F and o (7N
: LY u, “x

‘u
and substituting into egn (6) gives

t i I - Copal @), ()b, (x)
M %
‘ uz(t-e—rl)uz(t—B-Tz)ulz(t—e)dTldtde
*$ 5 (e) (8)
u“v

Notice that eqns (3) and (7) only hold when

separability is preserved under linear and
double nonlinear transformation respectively.
Although these properties hold only under
very restrictive conditions the separability
of a Gaussian process is maintained under
both these transformations.

For the special case when ul(t) = u(t),

uz(t) = u(t)+b where u(t) is a zero mean
white Gaussian process and b is a nonzero
mean level eqns (5) and (8) reduce to
(Billings and Fakhouri, 1978c)

9,51 (€)= CFthl(TI)hZ(E’Tl)dTI (9

fhz(tl)hlz(e-rl)dTl (10)

¢ 5 (€)= Cppe
zl

u
Cro = ¥ +2y.b[h (8)do+3y, [h 2(8)de+3y b2
FG 1 2 L e 3

hl(rl)hl{rz)dr1d12+...

Bo, = 2y2+6yzbfh1(a)d8+...

where, provided hl(t) is stable bounded-
and C are

FFG
constants, ¢uv(e),¢ 9 (e) tend to zero when

inputs bounded-outputs, CFG

sy u'v :
v(t) is independent of the input, and the
superscript ' is used throughout to indicate
a Zero mean process.

The estimates of eqns (9) and (10) are quite
independent of the nonlinear element F[-]
except for the constant scale factors CFG’
CFFG' Correlation analysis thus effectively
decouples the identification problem into two
distinct steps; identification of the

linear subsystems and characterisation of

the nonlinear element. Estimates of the
individual linear subsystems ulhl(t)’u7h2(t)

can be obtained using a least squares decom—
position technique (Billings and Fakhouri,
1978b) . Once the linear subsystems have
been identified the problem is reduced to
fitting a polynomial, a series of straight
line segments or any other appropriate func-
tion to the static nonlinearity by minimising
the sum of squares. Because the system is
identified in terms of the individual linear
and nonlinear elements and not as a Volterra
series .even systems containing very violent
nonlinearities suth as saturation and dead-
zone can be readily identified (Billings and
Fakhouri, 1978d).

Analysis of higher order cascade connections
of linear dynamic and static nonlinear systems
shows that the first and second order cor-
relation functions-do not fit into the pat-
tern of results derived above. For example,
a system consisting of a nonlinear.ele¢ment

in cascade with a linear system h(t) followed
by a second nonlinearity gives rise tuv first
and second order correlation functions which
are power series in h(t). This problem
arises because in general separability does
not hold under linear transformation.




.2,2 Pseudo-random Inputs

Although it can readily be shown that a
binary pseudorandom sequence is a separable
process, it is not separable under linear

and double nonlinear transformation and hence
the results of section 2.1 are not valid for
these inputs. An alternative procedure must
therefore be developed for this class of
“nputs (Billings and Fakhouri, 1978f).

When the input to the general model 1illus-—
trated in Fig. 1 is a compound input uz(t)

xl(t)+x2(t) where xl(t) and xz(t) are pseudo-
random sequences the output ZZ(t) can be

expressed as

k
zz(t) = izl{yif...jhl(rl)...hl(ti)hz(e)

1
{jzl (xl(t-Tj-B)+x2(t-1j-8))d1j}dB}v(t)
(1)

If the correlation functions are computed
directly with the measured system output

eqn (11), anomalies associated with the multi-
dimensional autocorrelations of the pseudo-
random sequences (Barker and Pradisthayon,
1970; Barker and Obidegwu, 1973) are intro-
duced and the estimates do not reduce to the
form of eqns (9) and (10). This problem
can be overcome by isolating the first and
second order correlation functions of the
outputs of the first and second order Vol-
terra kernels respectively.

2.2.1. Multilevel testing

Consider a series of experiments with multi-
level compound inputs a. u(t) where ay # o,

" i # 2, then the output correlatlon func-
tion ¢x Tyt (e) can be expressed as

: )

$. vy (&) = J a7t by 08) 5 1M1,%50 0
ai = 1 "y (12)

assuming that the input signal xl(t) and

noise process v(t) are independent Provi-
ding ay # 0, oy # ay ¥ 1 # 2 eqn (12) has a

" unique solutlon for ¢

174 :
1f xi(t) and xz(t) afe 1nfependent, ¢x1x (x)
= 0% A, zero mean, X =X, = 0, pseudo-

random sequences with autocorrelation func-
tions

x Q) =860 , i=1,2
1 L
where Gi(l) = 1/&ti A =0 (13)
0 A#0

At; is the clock interval and [6,(A)dA = 1.0

then ¢x 'w'(E) which can be isolated using

1

" e Y e, 1512007

the above procedure reduces to

¢ 'wl.(e) Blylfhl(e—e)hz(e)de (14)

i

Following a similar procedure as above and
isolating the second order correlation func-
tion associated with the second Volterra
kernel yields

P, "yt () = Yo [ b (edh ()b, (8)
2
{, 0 (x (t- T 8)+x (t=1.-8))dr.
j=1 J ]
(15)
2 - — — ! —
= jEl(xl+x2)de}(xl(t-c)—xl)(xz(t—a)—xz)dﬁ

When xl(t) and xz(t) have the properties de-

fined in eqn (13) this reduces to

¢x1'x2'w2'(a) 268,87, Ih (e=8)h, (8)d8 (16)

Although multilevel inputs must be employed

only ¢x‘ () and ¢ Mot ¢« (e¢) and not the
™1 o s

individual kernel outputs wi(t) must be com-

puted. This considerably reduces the com-

‘putational burden because for stable linear

subsystems the correlation functions will
tend to steady-state after a small number
of values.

Providing xl(t) and xz(t) are pseudorandom

sequences with properties defined in eqn (13)
the results of eqns (14) and (16) are exact
and the errors normally associated with the
identification of this class of systems using
pseudorandom inputs and correlation analysis
are avoided.

Since the results of eqns (14) and (16) are
dependent upon xl(t) and xz(t) having a zero

mean value an obvious choice of input would
be a compound ternary sequence. It would
however be far more convenient if pseudo-
randem binary inputs could be employed in
this application. However, whilst the
first order correlation function eqn (14)
remains unhiased for a compound prbs input,
the nonzero mean level of this input intro-
duces a time varying bias (Billings and
Fakhouri, 1978f) e(e) into the estimate of
eqn (16)

2

Bg.)

B,*%, By

e(e) = 272(a x182+a2x281+x1

ffhl(Tl)hlfs—ﬁ)hz(e)drlde (17)

where x, = a,/N,, a, is the amplitude and N.
i HRE T S | i

the sequence length. This bias tends to

zero as N1 and N2 are increased and will be

negligible in most applications.
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Independent prbs with the same bit interval
can be generated either by multiplying by

the rows of a Hadamard matrix or correlatlng
over the product of sequence lengths and in-
dependent ternary sequences can be generated
using the latter approach (Briggs and Godfrey
1966) .

Th~ results of eqns (14) and (16) are anal-
csous to the results obtained for a separable
white Gaussian input when i YZ # 0 and can

be used directly to 1dent1fy the individual
linear and nonlinear elements of the system
illustrated in Fig. 1. The relationship
between the first and second order correla-
tion functions also provides valuable in-
formation regarding the system structure.

2.3 Structure Testing

Consider the identification of an unknown
system which has been excited by a separable
white Gaussian 1nput with mean level b.
Initially the experimenter must determine
the structural form of the model which best
describes the system under test. This in-
formation can be obtained by inspection of
the first and second order correlation funec—
tions, eqns (9) and (10), for cascade
connections of linear dynamic and static
nonlinear subsystems.

If the system under test is linear then

Yi =0 i # 1 and eqns (9) and (10) reduce
to

b P

¢uz.(§) =~ ¥ f hl(Tl)hz(e—Tl)drl (18)
[ 2 (e) =0v ¢ (19)
Iu zf ;
Thus if ¢ (e) = 0¥ € the system must be

: u z!
linear and once a pulse transfer function
model has been fitted to ¢ . (e) the identi-

The second order cor-
(e) is therefore a

flcatlon is complete.

relatlon function ¢2
usz'

measure of nonlinearity.

If h (t) = §(t) the general model reduces to

the Hammersteln model (Billings and Fakhouri,
1979b) and

Tﬁz.(e) = Cpyh, (e) | (20)
¢, (&) =cCh (e " (21)
uz'

I1f therefore ¢ , () and ¢, (e) are equal

u ="'
except for a constant of proportionality the
system must have the structure of a Hammer-
stein model.

When hz(t) = §(t) the general model reduces
to the"Wiener model (Billings and Fakhouri,
1977) and

¢uz.(€) (e) ; (22)

FW 1

L '(s) = CFFw 1 (e) (23)
u z

2,
Thus when {¢uz,(s)} is equal to ¢ 2 (e)
tz"
except for a constant of proportionality the
system must have the structure of a Wiener

model.

Finally, if none of the above conditions

hold the system may have the structure of

the general model. However, this is a nece-
sarry and not a sufficient condition which
must be confirmed by parameterising the
linear systems and nonlinear element and
examining the mean squared error. Alterna-
tively, an algorithm by Douce (1976) provi=
des a very convenient test for cascade sys-—
tems in this class.

Identification of cascade connections of
linear dynamic and static nonlinear systems
using correlation analysis thus inherently
provides information regarding the structure
of these systems.
The relationship between ¢ , ,(e) and
X, 'w

Jari- 1

((e) for pseudorandom inputs are

¢ 1
Xy ¥y
analogous to the above results providing

these correlatlon functions exist.

. 3. NONLINEAR FEEDBACK SYSTEMS

i

The identification algorithms derived in
previous sections can be applied to non-
linear feedback systems (Billings and Fak-
houri, 1979a) if the form of the Volterra
kernels can be related to the component sub-
systems of the original process. As in the
case of cascade systems the objective is to
identify the individual elements of the sys=
tem such that the structure of the process
is preserved and truncation errors normally
associated with a finite Volterra series
description are avoided.

5.1 Unity Feedback Systems

Consider the unity feedback general model
illustrated in Fig. 2. Notice that in
general the system output will be corrupted
by noise and hence the feedback signal cannot
be computed and the problem cannot be reduc-
ed to one of open-loop identification.

wit}

u(t) (0

in

Mo 5
Fle]=t 1j(') R
je1

qlr)

Pig. T  The wnity feedback general model




Applying the operator calculus developed by
Brilliant (1958) and George (1959) it can
readily be shown that the Volterra kernels
of the equivalent open—loop system G can be
expressed as =

_1 . = -
§; = [Iayc] Sy Rxe (24)
G, = [£+Ylﬂ*E]'l*[YZH°<§?)o((g;§1)2)] (25)
. [

G, = [I+y,B*C] ™™ I Ty (Ho(CM)o(k, ..K. )]

0 1 i ﬂ=2 Q n —11 ———1n
' (26)
where 51 TG Eﬂ = -EQ for £>2.

Although the series is an infinite operator
series the structural form of the first two
kernels can be exploited to provide esti-

mates of C, F[-] and H.  The outputs wl(t)

and wz(t) of the first two Volterra kernels

El and §2 can be isolated using the algori-

thm described in section 2.2.1. When the
input is a separable white Gaussian process
u(t) with mean level b, inspection of eqns
(9) and (24) show that

¢uw1.(s) = Gl(e) (27)

Taking the Z-transform of eqn (27), a pulse
transfer function model can be fitted to
¢uw1'(€) to yield

Ng 27 yHGTHeE

2{¢ (8} = = -
ey Dg, ( L

1+71H(z-1)c(z_l)
(28)

and estimates of the numerator and denomina-
tor can be obtained from

1:Igl(z-l)
. Yl'H(Z-l)C(Z.-l) R (29)
Dgl(z )-Ngl(z )
| 5 -1
n ” Dg.(z 7)
Lty Ltte™y el (30)

Dgl(z'l)-ﬁgl(z"l)

The output data z(t) can now be filtered
using the estimate of eqnm (30), such that
the kernels of the equivalent open loop sys=
tem reduce to

&4

g, = [t o €otir-gp?)]

Y, H*C ‘
(31)

The second order correlation function can
then be evaluated using the results of eqns
(10),. (31) and section 2.2.1 to yield
2
¢, (e) = 2y2ju(e)T1 (e-8)d8 (32)
uw !
r2

where L is the filtered output of the sec-

ond order kernel. Taking the Z-transform
of eqn (32) a pulse transfer function can be

fitted to ¢ 2 (e)

T
2
=1, =1

z{o , ()} = 2y H(z HTT(z 7) (33)

uw )

r2

The results of eqns (29) and (23) can be
decomposed using a multistage least squares

algorithm (Billings and Fakhouri, 1978b) to
provide estimates of the pulse transfer

uw

> =1 = ;
functions ulH(z Vs uZC(z l) and a suitable

function can be fitted to the nonlinear
element by minimising the sum of squares of
error using an algorithm by Peckham (1970).

Because the unity feedback Wiener and
Hammerstein models are subclasses of the
unity feedback general model the identifica-
tion procedure is applicable to systems with
these structures.

3.2 Precascaded Feedback Systems

The first two Volterra kernels for the pre-
cascaded feedback system illustrated in
Fig. 3 can be expressed as

G = V%2 = ([1ea a1 " bep (34)
G, = Y,*¢ = {-V, o 12(312)}*3 (35)
w(t)
a(e) * e(t) jl:
e ke : 4 v w0

(e 1 a0d
E{=f= I XA .{*
IR

Plg. 3 Procascadad nonlinear feadback system

‘Following the procedure of the previous

section it can readily be shown that

¢uw1'(e) = | v (e-0)P(e)dn (36)

2
¢, '(e) = 2A2jcl (e-8)V, (8) do - (37)

UW2

‘Estimates of plvi(zhl) and uzP(z—l) can be

obtained by decomposing the pulse transfer

functions Z{¢ ,(e)}, Z{¢ 2 (e)), and a
uw, ;
u w,
suitable function can be fittéd to the non-
linear element by minimising the sum of
squared errors.

Although all the results for feedback sys-
tems have been derived for separable white
Gaussian inputsanalogous results can be

obtained for a compound pseudorandom input

by computing ¢ , ,(e) and ¢ ,_ , (&)
B e B
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(Billings and Fakhouri, 1978f). The selec-
tion of pseudorandom inputs and the error
analysis for binary sequences is exactly

the same as the open-loop case section 2.2,

4, MULTIPLICATIVE SYSTEMS

Consider the multiplicative system illus-
truted in Fig. 4 and commonly referred to
as the factorable Volterra system where the
factorable kernel of order k can be realised
as a system composed of k linear dynamic
subsystems connected in parallel with out-
puts multiplied in the time domain. Con-
cepts of reachability and observability for
this class of systems were studied by
Harper and Rugh (1976) who developed an
identification scheme based on the system
response to two-tone sinusoidal inputs.

50

Fig. 4. A non-linear factorable Volterra system

,Identification algorithms based on both
white Gaussian and pseudorandom excitation
have been developed by the authors' (Billings
- and Fakhouri, 1978e) but only pseudorandom

. inputs will be considered in the present
- analysis.

4.1 Identification of Factorable Kernels

Although the outputs of the factorable ker-
nels zi(t), i=1,...20 in Fig. 4 can be is-

olated using multilevel testing, section
2,2.1, this may involve a long experimenta-
tion time and can be avoided by implement-
ing the sequential algorithm outlined below.

Consider a factorable Volterra system which

iis composed of factorable kernels up to

order 2%. When the system is excited by
Le

the compound input u(t) = Z xj(t) the
J=1

system response can be expressed as

13 :
t) = z;(E) =
y(e) jélJ() zf fby gt v

R

M(t ) ( )l g x, (-t )de, . dt +v(t)
l . (38)

‘defined above ¢

If the individual inputs xj(t), jo=1,2..458

are zero mean independent processes with
autocorrelation functions ¢ (1) = g.6(1),
J
i J
i =1,2..2%, then the system output correla-
tion function defined as
'8
y' ()% (t-0)) 1 x (t-0) = {f j
=2 1,51
i=
712 [x)
b, JEJ(D % (e B 3. % (t-o P 0
I3 3 geq k= 1 m=2
22
eoodt, +V! = =
3 (t)xl(L o)jzle(t a)

.

xm(t—-c)dtI

(39)

reduces to the output correlation function
for the 22'th kernel

b ewo 1(0,:0...0) = ¢ v (o0,,0..0)
xl xlly 1 x1"xggz 1
(40)
Thus by computing ¢x1'-xﬂg ,(dl,o..o) the

correlation funetion associated with the
22'th kernel has been automatically isola-
ted. This result holds exactly even for a
compound prbs input.

When the inputs xj(t) have the properties

0.,0..0) reduces to
X, ieX 1 € 12 )

17 ¥00%0g
Iy %%
b y (0.,0..0) = (A-1)1( M B )
S RITEY) i& a=1 ¥ i=1
(c.) T h,. (a) } (41)
{hi,M .y 308
jfi

and the function wll(ol’c) can be defined
as

Y, ,(0.,0) = ¢ , (0,,0..0).
10571 xl"xﬂﬂ 9 1
1
[y
(e-1)'( 1 Bn)
n=1
249 28
= J {h. e I h g (@) (62)
i=1 kit J =
) i

The above results can be realised exactly
using independent white Gaussian inputs
xj(t) or independent ternary sequences.

If prbs inputs are employed the errors
introduced in the estimates of the first
and second order factorable kernels have
the same form as the errors for the cascade
general model section 2.2.1 which. tend to
zero as the sequence lengths become large.

Once w££(01,0)>has been computed estimatcs
of the individual linecar subsystems hi ir(t)
¥ X

can be readily obtained by decomposing eqn




(42) using a nonlinear Marquardt algorithm,

When the linear subsystems associated with
the 22'th kernel have been estimated using
the algorithm outlined above the predicted
output 2££(t) can be computed

- 5 i 22 22
zﬂﬂ(t) = I"Ihl,gg(t1)°'h (t..)(

t )
22,28 88 =1 §51

xi(t-tj)dt (43)

1..dt2£
and a reduced system output yyéz_l(t)
.y'(t)~z'£1(t) can be defined,

Continuing the above procedure the (£2-1)'th
kernel can be identified by computing the
 (22-1) "th system output correlation func-

. tion

9 " (G IU"U)=¢ 1
10 Xoe-1YY (ge-py L %1 Xe-1%(m-1)

(cl,c..d) (44)

to provide an estimate of wlz—l(sl’o) which

'can be decomposedﬂusing the Marquardt al-

gorithm to yield hi,ii-l(t)’ 1= 1.2..08%].

The linear systems associated with the re-
maining kernels can be identified by con-
tinuing this procedure. :

Lt can readily be shown that providing any
noise corrupting the system output y(t) is
independent of the input process this tends
to zero in the analysis and unbiased esti-
mates are obtained.

S. Sm SYSTEMS -

_ The Sm model illustrated in Fig. 5 consists

‘of a serieg of general models with reduced
nonlinear elements connected in parallel

with outputs summated. This class of sys=—
tems was originally studied by Baumgartner

and Rugh (1975) and later by Wysocki and

Rugh (1976) and Sandor and Williamson (1978).
Identification algorithms based on steady-
state sinusoidal measurements were developed
by these authors. i

qyit) = u (0) i
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Applying the results of section 2.1 it can
readily be shown that if the output correla-
tion functions of each branch are isolated

using the multilevel testing algorithm of
section 2.2.1, these reduce to

¢Wk.(e) = CFRIth(Tl)th(E—Tl)dTl (45)
2
¢ 5, () = CFkahkz(—rl)hkl €-t)dr. (46)

uwk' 1

These estimates are identical to the results
for the general model eqns (9), (10) and
estimates of the linear subsystems hki(t),

i =1,2 and the nonlinear coefficients Y;
can be obtained using the procedure outlined
in earlier sections.

The algorithms can be readily extended to
include the identification of other non-
linear systems within this class including
feedforward systems (Billings and Fakhouri ,
1979b) and other common Structures.

6. CONCLUSIONS

A unified approach to the identification of
nonlinear systems which can be represented
by interconnections of lipear dynamie and
static nonlinear elements has been presen-
ted. Although the algorirthms utilize the
structural properties of the first two ker-
nels in the Volterra series expansion char-
acterization in terms of these kernels is

.avoided and truncatjion errors are not in-

curred. Thus even systems with very
violent nonlinearities can be identified.

Cascade and multiplicative systems prove to
be particularly tractable and estimates of
the individual component subsystems can be

. readily obtained from single test experiment,
., The information regarding system structure

which is inherent in the results for cas-
cade systems should be particularly valy-
able. Although multilevel testing is nec-—
essary in the identification of feedback
and S[u systems this is often necessary in

nonlinear system identification although
several authors avoid this problem by con-
sidering systems which are defined by a
single kernel. This constraint can be
avoided by using the technique of Lee and
Schetzen (1965) but this involves the com-

, putation of multidimensional correlation

functions even for simple systems. Whilst

~the algorithms presented are based upon the

calculation of first and second order cor-
relation functions both these are defined
as functions of a single argument and esti-
mates of the component subsystems can be
obtained by using simple extensions of eg-
tablished linear techniques.

All the algorithms can be implemented for
Gaussian white inputs bur the convenience
of pseudorandom Sequences suggests that the
compound input method would be more appro-
priate in many applications.

Unfortunately lack of space prohibits the
inclusion of simulated examples but these
are contained in the original publications




referenced in the text.

Identification of nonlinear systems in terms
of the individual elements preserves the sys=
tem structure and provides valuable infor-
mation for control. This approach over-
comes many of the disadvantages associated
with black-box identification and provides

a very concise description of the process.
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