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ABSTRACT

Identification of systems which can be represented as a
finite sum of factorable Volterra kernels each composed of
individual linear dynamic subsystems connected in parallel
with outputs multiplied in the time domain is considered.

Both a multilevel testing and a sequential single test procedure
are derived to isolate each factorable kernel and algorithms
which provide estimates of the individual linear subsystems
associated with each kernel are formulated using correlation

techniques based on either Gaussian or pseudorandom excitation.




1 INTRODUCTION

Identification of the general class of non-linear systems which
can be represented by a Volterra series expansion has been studied
by several authors. A method of measuring the kernels in the
related Wiener G-functional expansion under white Gaussian excitation
was studied by Lee and Schetzenl. Later researchers investigated
the identification of isolated Volterra kernels using correlation

2,3,4,5,6. Whilst

analysis based on pseudorandom signal excitation
this approach is necessary for general non-linear systems it is

often preferable to identify a system in terms of the component
subsystems7 when the system is composed of interconnected networks

of linear dynamic and static non-linear elements. Identification

in terms of the individual system components can often be achieved
using simple extensions of linear techniques and provides a concise
description of the process which maintains the original system
structure,

In the present study identification of systems which can be
represented as a finite sum of factorable Volterra kernels is
considered, The factorable kernel of order k can be realized as
a system composed of k linear dynamic subsystems connected in
parallel with outputs multiplied in the time domain. Concepts
of reachability and observability for this class of systems were
introduced by Harper and Rugh8 who developed an identification scheme
based on the steady-state response of a finite number of two-tone
sinusoidal inputs. The identification algorithm derived in the
present study represents an extension of previous results derived

for cascadeg’lo’ll’lz, feedback13 and feedforwardl4 connections of




linear dynamic and no-memory non-linear elements. Isolation of

the kernels associated with factorable Volterra systems is
considered using both multilevel testing techniques and sequential
analysis based on single test excitation, Identification of the
individual linear subsystems associated with the k'th order
factorable kernel is achieved using correlation analysis based

on both Gaussian and pseudorandom excitation. Selection of the
pseudorandom input sequence is considered and simulated examples

are included to demonstrate the feasibility of the algorithm.

24 FACTORABLE VOLTERRA SYSTEMS
A large class of non-linear systems can be represented by the

Volterra series expansion

«©

y(t) = | 2. (b Yuleen 8, # {i g, (t »t,)ult-t Jult-t,)dt dt

=00

2

2 S [ ggg(tl,tz...tzgu(t-tl) coo u(emt) Jdegeande, (1)

where the function g £yst ""tgz) is termed the Volterra kernel

2

of order 2¢. Volterra kernels are symmetrical, continuous in their

2£<

arguments for all ti>0, and for a non—anticipative system are zero

for any t.<0. A kernel is defined as stable if
I -c-j |gk(t1,t20--tk)ldt1dt2 L) dtk < o (2)

and factorable if gk(tl,t "'tk) can be factored into the product of

2

a function of t. only, a function of t

1 only etc, as

2

gk(tl,tz...tk) = hl(tl)hz(tz) —_— hk(tk) )




The kth order factorable kernel can be realized as k linear
subsystems connected in parallel with outputs multiplied\in the
time domain as illustrated in Fig.l. This includes the class
of systems illustrated in Fig.2.

The state-space representation for the system in Fig.l is
particularly simple and can be written as

x(t)

Bx(t) + Cu(t) (4)

= =

y(t) d, xi(t) : (5)

i=1

where x(t) = [xl(t) ces xk(t)J?, xi(t) = [%i’l(t)xi’z(t) "'xi,n.(t)]’
B = diag[bkl, C = [cl...ck]T and the vector x(t) is of dimension1
n1+n2+..+nk where n, is the order of the i'th subsystem.

Extending the analysis above by summing together the outputs of
factorable kernels up to order %% defines the factorable Volterra
system illustrated in Fig.3. Initially identification of the
isolated kth order factorable Volterra kernel will be considered.

The results will then be extended in section 4 to include the

identification of general factorable Volterra systems.

33 IDENTIFICA?ION OF ISOLATED FACTORABLE VOLTERRA KERNELS

The identification problem can be formulated as identification
of each linear subsystem hl(t)’hz(t)"’hk(t) associated with the
isolated k'th order factorable kernel, from measurements of the

input u(t) and output Zk(t) where

) =l h

b+ <}

(t)) ... h . (t )u(t—tl)...u(t—tk)dtl...dt (6)

I | K,k k k




The identification algorithm considered involves a two-stage

procedure and consists of identification of the isolated kernel
using correlation analysis and decomposition of the kernel to

provide estimates of the individual linear subsystems.

3,1 Correlation analysis with Gaussian white noise excitation

Assuming that the output of each kernel zl(t),zz(t)...zk(t)
has been isolated using the results of Section 4.1 the kernels
can be identified in turn using correlation analysis based on a
zero mean whité Gaussian input signal u(t).

For the first order kernel
zl(t) = [m hl,l(tl)u(t-tl)dtl (7
and hl 1(t1) can be estimated by computing the cross—correlation
b ]

function

oo

¢u211(01) = (zl(t)—zl(tﬁu(t—cl) {m hl’l(tl)(u(t-—tl)—-u(t—tl))u(t~—ol)dt1

Bhl(ol) (8)

o

where B = f ¢uu(t)dt and the superscript ' is used throughout to
—00

indicate a zero mean process.

The second order kernel g2(t1’t2) = h1 Z(tl)hZ 2(t2) can be
3 2

estimated by computing the second order correlation function defined

as




¢, 107500 = (2,(t)=2,(t))u(t=0 ) u(t-0) (9)

uuz
2

Ii hl,z(tl)hz’z(tz)(u(t—tl)u(t—tz)—u(tutl)u(t—tz))

u(twul)u(t—c)dtldt2

aoth e )h. (5 # B

1,200, 5 (o)hz,z(ol)} (10)

1,2

Thus
2 2 )
L {h; ,(o) T h, ,(0)} = 1/87(2,(t) -2, (t))u(t-0 ) u(t-0)
iZ1 B2 1352
j#i
= wz(ol,o) (11)
The third order kernel g3(t1,t2,t3) = h1,3(tl)h2 3(t2)h3 3¢ )

can be evaluated by computing

(23(t)—z3(t))u(t—ol)uz(t—o)-E;;(t)—z3(t))u(t—ol)uz(t—c)

-"2723(1:)—**“23&))u(t-o)u(t-aﬁu(t-o) (12)

=¢ 5 (Ul,U) -6, ¢

uu z3' B

to give

3 3 "

izl i3 (c )nghJ 3@} = E;g {¢uu223'(01,o)—¢u—¢8} = ¥,(0,,0) (13)
jfi

v

Extending the procedure outlined above the following general

results can be derived to estimate higher order kernels




K k
¥, (0450) = _E {hi’k(cl) -E h, , (o)} (14)
#

= (k_li's— {(zk(t)—zk(t)).u(t—ol}uk_l(t—q)
(k-2) /2 : .
= 71, k-2, (k-1)!
izl (Zk(t) Zk(t)).u(t ol)u (t-0) .u (t G)(k—2i+1)l(2i—l)!
{k=2} /2 - .
Z 7y 21, s _ (k=1)!
izl (Zk(t) Zk(t))u (t=0) .u (t=a)u(t 01) G2 D oD }
CL5)
for k = 4,6 ,.., and
k k
¥, (050 '21 {h, , (o)) H1 h, (o)} (16)
i= H j= H]
(k odd) j#i
= z;:zi?gi {(zk(t)—zk(tnu(t—dl)uknl(t—c)
(k=3) /2 . !
5 21, . k=2i-1, _ (k-1) !
izo (z, (£)=z, (Eu(t-0)u" (t-0) .u (=) 5Ty Ty T
(k=3)/2 . .
L S ke hedd<2, " (k-1)!
izo (2, (£)-z, (©))u “" (t-0)u (t=0) u(t=0 ) Gem =y T(T )T

(17)

forik = 5.7




Thus each kernel can be sequentially identified by computing

wn(cl,a), n=1,2,.k as outlined above where wn(ol,c) is essentially

a second order correlation function for all n.

3,2 Correlation analysis using compound pseudorandom inputs

As an alternative to the algorithm of the previous section an
identification procedure which can be applied when the input
excitation is a compound pseudorandom signal is derived below.

If the input to the isolated k'th order factorable Volterra

kernel is a compound input u(t) defined as

u(t) xl(t) + xz(t) + .. xk(t) (18)

then from equation (6) the kernel output can be expressed as

© k k

) = oo [ B AL oy (e m ) x (t-t.)}
k 1,k°1 hk k™ k i
-0 =00 ? ’ j.-_']_ 1=1 J

dt1 Enl dtk (19)

The output correlation function for compound inputs is defined

as
® 1(0,50,50000,) = {2z (t)-z (t)}x (t-0.)... (20)
XpeeoXy 2 1°-2° k k k i 1
o8 e Xk(t—gk)
For th i = = . = =
e special case when 02 03 i Uk o
¢ cestl) ™ | ool B 2. Jiowahy o B
xl...xkzk'(ol’G o) L ] 2,k( ! k,k 'k
k k k k k
A m y =x.(e-t.,) - I Ix.(t-t,)} x,(t=0.) 0 x_(t-o) dt_...dt
[ 1 ] j=1i=f' i 1 1 n=2 n 1 k
(21)




If xl(t)""xk(t) are independent zero mean processes

¢ (A\) = 0% i # j, and have an autocorrelation function

-
~
>
~
i

Bi6(l), i = 1,2...k then equation (21) reduces to

k K k
1(0,5050000) = (k=1)!( T B) ) {h, (0,) Th, (o)} (22)
xl"‘xkzk 1 n=1 ¥ 521 Tk 2 =1 ik
jfi

Comparison with equations (14) and (16) gives

1
(k=1)1( 8 8)

n=1

q)k(o’lsg) = ¢ 1(01,0--.0') a

xl...xkzk
k k

= ] I ,0e) 1 n (@} (23)
#

The above result could be realised by using a compound input
consisting of independent zero mean white Gaussian processes.
However it would be preferable to use pseudorandom sequences since
this would reduce the computational burden and simplify the
correlation procedure. Providing independent zero mean pseudorandom
Sequences can be synthesised the terms involving anomaliesa’15
associated with multidimensional autocorrelation functions of
pseudorandom sequences in equation (21) are eliminated and the
result of equation (23) holds.

The selection of independent pseudorandom sequences has been

studied previously by Briggs and Godfrey16 in the context of

multivariable system identification. Noting that a fundamental




requirement for equation (23) to hold is that the individual inputs
should each have zero mean, an obvious choice of input would be a
compound ternary sequence17. Unfortunately, the difficulty of
generating independent ternary sequences without incurring long
integration times16 precludes their use except for low order systems.
They should not however be discounted and may well be preferable to
Gaussian inputs in many applications.

Another obvious choice of input signal for the present
application is the invefsé repeat or antisymmetric pseudorandom

»19

binary sequence1 defined as

_ gt B
Cr = “ 1) e, (24)

where e is a prbs of period N with elements *1, Whilst this
signal has zero mean the autocorrelation function is not ideal and
contains a ripple of amplitude #1/N in addition to the alternating
positive and negative impulse spikes of unit amplitude at lags
Omod2N and Nmod2N respectively, Independent inverse repeat
sequences can be generated by multiplying the fundamental sequence
with the rows of a Hadamard matrile. Although the ripple in the
autocorrelation function will become small as N becomes large this
will introduce a small bias into the results.,

However by careful choice of correlation function it is
possible to use the much more convenient binary maxiﬁal length
sequences in this application. As in the case of inverse repeat

sequences independent inputs can be generated by multiplying by

the rows of a Hadamard matrix or correlating over the product of

16

°

sequence lengths
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If the input to the isolated k'th order factorable Volterra
k

kernel is the compound input u(t) = Z xi(t) where xi(t) are

i=1
independent pseudorandom maximal length binary sequences of
amplitude ta. order ni,clock intervalAtﬁ,and length Ni =2 -1,
the individual kernels can be identified as detailed below.

From equation (7) the input/output correlation function for

the first order kernel is defined as

¢x1'z1'(°1) = {mhl’l(tl)(xl(t—tl)—xlit-tl))(xl(t-ol)-xl(t-ol))dt1
(25)
(N,+1) ' a .
= redee m ol (o) P i f B GRS 26
N, 1 § 1511 N, 1,150

Providing the system hl(t) is stable,bounded inputs bounded outputs,
the last term on the rhs of equation (26) is a constant bias which

can be readily removed to yield an estimate of h1 1(t).
3

The second order kernel can be estimated by computing the

second order correlation function defined as

¢xl.xz.zz,(c1,o) = I£h1,2(t1)h2’2(t2){(xl(t-tl)+x2(t-tl))(xl(t—t2)+xz(t—t2))

= (g (B ) 4, (620 Gy (008, )+, (6-8,)) (%, (=0 ) =%, (£70))) (x,, (t=0)

—Xz(t—a))dtldt (273

2

=il By,20Ehy eI, (Oymepde,  (0mE))

- 2
+¢X1X1(01 t2)¢X2X2(0—tl) - x (¢X2X2(o—t2)+¢X2x2(g—t1))
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Loits) . ~ 2= 2
=x, (4, o (omt+e (078,00 42x, "x, Hde, de, (28)
1%1 %1
Equation (28) reduces to
g 2
) , 4(0,50) =aa, ) (h, (6.) Th, (0))t+e(o,,0) (29)
R 72,2, 7,27 1.1 7552 1
il
where
eoy50) = 2x%,[[hy (e, H(t)){a)a,4x 2 4%, 8, +x %) bde, de,
2 2
Sla % a2 Ta) Y (h, ,(0) T [h, ,(t.)dt,)
s v T o T T Al Y I s |
1= j=1
ifl
Loww 2 2
- (ay%,a,+x%, al).z (hi,z(ol)-g fhjsz(tj)dtj) (30)
1=1 j=1
j#i
aiz(Ni‘”l)Ati
T N, (31)
1
X, = ai/Ni (32)

Providing the systems h1 2(t), h2 2(t) are stable bounded inputs
3 9

bounded outputs the first term on the rhs of equation (30) is a

The remaining terms on

’

constant bias that can readily be removed.

the rhs of equation (30) represent a time varying bias which tends

to zero as Nl and N2 become large.

Thus if the constant bias is removed and Nl and N2 are large
o ¢xl'x2'z2'(”1’°) 2 2 -
p{0y50) = o, . 121 ‘hi,z<°1)j£1hj,z‘°’) (33)

bzt




Higher order kernels can be identified by computing wn(cl,c),

n = 3,4..k using the procedure above.

3.3 Estimation of the linear subsystems

Once the system kernels

wk(ol,c) = (hi,k(gl) hj’k(c)) (34)

I o~/

1 1

1

i

"'Hv-.li-::lPﬁ"

d
j

have been identified, using either Gaussian white noise (section 3.1)
or compound pseudorandom Sequences, estimates of the individual
subsystems hi k(t) can be obtained by decomposing equation (34).

?

If wk(al,c) in equation (34) is computed for fixed o = y. and

1
01 = YpsYgres¥ the following set of equations results
k k
Uy, ,y) = ) (., (y) T oh, o (y))
k* 1771 i Lyl ™ 1 jm1 Jsk™1
. Jj#L
g (35)
k k
v (Y ,y,) = Y (h, . (y) T R, ()
k' 'm’'1 i1 ik’ 'm s=i Jek 1
j#
Continuing this procedure by fixing ¢ = v., j = 1,2,..m and in each

J
case evaluating wk(Gl,U) for all Op = Ypo¥pee¥ yields m2 equations

in k.m unknowns h, . (y.), j = 1,2..k, i = 1,2..m
jokT'i

k
‘bk(Ypr"(q) = E

1=1(hi,k(v :

P -

Ity (36)
j

1
1

i | =

for q = 1,2..m, p = 1,2..m for each value of q, and wk(yp,yq) # wk(Yg’Yf)

PEZ -0, q ¢ f,




wi: LG e

Notice that for k = 2 equation (36) produces two identical
equations. This redundancy can be excluded by modifying equation

(36) for the special case of k = 2 to give

2 2
Zl (hi,z(\rp) _H1 hj,z(Yq)) (37)
i

Sl

4
i

for ¢ = 1,2..m and p = q,q*l,..m for each value of q.
Equation (36), or (37) for k = 2, can be solved for the km
unknowns hj k(y.l), j=152..k, 1= 1,2..mby minimising the cost
2

function

m m A 2

b= by () .o hl,k(ym),hz,k(yl)...hz’k(ym),...hk’k(ym)]T
using the modified Marquardt algorithm20’21. Although hj k(Yi)’
>
j =1,2..k, i = 1,2,.m can only be estimated to within constant
scale factors this does not jeopardise the final identification
results,
Once estimates of hj k('Yi), j=1,2..k, 1 = 1,2..m are available

>

the following matrix equation can be formulated




[ ) (k. K . K & 1T =
mk(t,Yl) g hi’k( L .? hi,k(Yl)..._g hi,k(wl) hl’k(t)
=2 i=1 1=1 ~
] : i ik hy 1 (O
5 k l\- k ~ k ~ ~ g
¥ (E,v.) Th, (y), Th ,{(yJeee Th, ,(y)|| h .(t)
k m J i=2 i,k 'm io1 i,k i=1 ik 'm J k,k J
i#2 i#k
'Et B .g. ° P“t (39)
Estimates of the individual linear subsystems hi g(t), i=iad Lk
, J
can then be obtained by solving
=9 lp for ‘m = k (40)
—t = =t
or Et = (QFé)mlg?Et for mk (41)

for a range of t from zero to the system settling time.

If two colums of the matrix 6 are linearly dependent this -
implies that two of the linear subsystems are equal except for a
scale factor, hi,k(t) = vhj’k(t). In this case the matrix 8 should
be modified by deleting one of the offending columns and multiplying
the other by (1+v). The corresponding column in Et should also be
removed.,

Although a non-linear Marquardt algorithm must be implemented
to isolate the linear subsystems associated with the k'th order

P ) . s
kernel only k” parameters must be estimated in this way for k>2

and only six parameters when k=2.
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4. IDENTIFICATION OF NON-LINEAR SYSTEMS WITH FACTORABLE

VOLTERRA KERNELS

In the general case when a system can be represented as a
factorable Volterra system, as illustrated in Fig.3, it is necessary
to isolate the output of each kernel before the results of previous
sections can be applied to identify the individual linear subsystems
associated with each kernel. Two methods of achieving this

objective are described below.

4,1 Multilevel testing

Inspection of the output

Le [ -
y(0) = J 2 () = ] [oee [ B (E).ich  (r Ju(e=t))
ke] = =1 L T K,k Tk 1

dt (42)

— u(t—tk)dtl... K

of the factorable Volterra system illustrated in Fig.3 shows that
for a given functional form of the input u(t), the form of the k'th
kernel output zk(t) is fixed but its amplitude is proportional to
the k'th power of the amplitude of u(t). Thus for a series of
experiments with inputs miu(t), and corresponding system outputs

4 (t), the outputs of the individual kernels can be calculated

i
from22
f i 3 s 21-1 f
£) ) . . )
le( ) wy 0 . 0 1 wy wy ) zl(t)
. ke 0 w (] L] o L] 1 w ' 2z (t)
: T . g ' & (43)
L] L] ° 3 Q"Q'_l L]
t
ymiz( ) | O Woo) (1 Wyp een wpy ) zgg(t)J
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where the dizgonal matrix on the rhs is nonsingular providing
0. # 0% 1 and the second matrix is the transpose of the Vandermonde
matrix which is non-singular for ws # W,

Alternatively, to obtain more accurate estimates in the case
of noise corrupted data the procedure outlined below can be used.
Testing the system with an input miu(t) the system output can be

expressed as
m.j z.(t) (44)
1]

and for an input (~miu(t)) by

R ; :
1 (—1)Jmi32j(t) (45)

¥ LE) =
wy j=1

Adding equations (44) and (45) gives the summation of all the even

order kernel outputs for the input wiu(t)

¥ CE) %(ym_(t)+y_mi(t)) (46)

i i i

r 0
= ¥ Tz (47)

where r = 20/2 for 2% even, r = (24-1)/2 for & odd. Similarly,

for the odd order kernel outputs

yowi(t) %(ymi(t) =y, () (48)
1

u R 40 (49)

Il ~1W

1
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where s = 22/2 for 24 even, s = (28+1)/2 for 2% odd. By testing

the system with the inputs imiu(t) the outputs of the individual

kernels can be calculated from

c 2 4 2
\ L5 T ]
Yewi(t) Wt Wy e Wy zzgt)
2 4 2r

yewr(t) W w e w ) (2, (0)
and

( ( 3 2s-1y ¢ \

YOml(t)W W w7 ees 0y zl(t)

3 2s=1
Yo {t) (o, 07 e 0 kzzs_l(t)j

(50)

(51)

Once the kernel outputs Zi(t)’ i =1,2,.22 have been computed;

the linear subsystems associated with each kernel can be identified

using either the results of section 3.1, or the algorithm in
section 3.2 for zero mean compound inputs, in conjunction with

the results of section 3.3.

4,2 Sequential analysis

As an alternative to multilevel testing which involves a long

experimentation time the output correlation functions ¢x a
1%k
can be evaluated sequentially when the compound input method is

Consider a factorable Volterra system which is composed of

factorable kernmels up to order %&. When the system is excited

,(ol,c..a)

used.

by




_]_8._
29
the compound input u(t) = z xj(t) the system response can be
=1
expressed as
29 L8 e f i L8
y(t) = Yz (&) = §J [ .../n (£ Yussh, . (eIC D J (t-t.))
P A M e i R Il e
dtl waa dtj (52)

If the individual inputs xj(t), j =1,2,.20 are zero mean independent

processes with autocorrelation functions ¢X . (1) = Bjd(r), Fosi 120008
i
then the system output correlation function defined as

2L 20=-1 o
"(t)x, (t=g.) T x,(t-0) = g owesfbe s (BEdwashy ()
7 s i jzl Im J 1,341 i3 i
] %% [y
(I x (t-t.)).x (t-0.) T x (t-g)dt_...dt.
felikel B A b Tl geH 1 ]
P [T
+ [ "'Ihl,lz(tl)"'hiﬁ,ll(tzﬂ)(.ﬂ Z x (e=t.)).
- 1=1 k=1
L
x1(t~cl)m£2xm(t—g)dt1...dtM (53)

reduces to the output correlation function:for the 22'th kernel

%)
y'(t)xl(t-ol)_n xi(t—c)
1=2

b . .x '(01,0...0)

i Loy

=0 o M (54)

e T A T





























































