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Abstract

This is an expository paper devoted to surveying and explaining
some of the basic concepts required and motivations for the definition
and use of dyadic expansions in systems analysis and controller design.
Where possible, the material is related to the inverse Nyquist array

and characteristic locus design methods.




Introduction’

The purpose of this paper is to provide an introduction to the basic
concepts of, andmotivationg for the representation of the input/output
(1/0) behaviour of an m—input/m-output proper invertible system S(A,B,C,D)

by dyadic expansion of its mxm transfer function matrix (TFM)

() G(s) 2 C(sI, - H)7'B + D 9

Attention will be focussed(I"S)

on the development of theoretical tools
applicable to the design of the unity-negative feedback systemshown in
Fig. 1 for the control of the strictly proper, invertible plant with

mxm TFM G(s). The TFM K(s) of the forward path controller is assumed

to be proper and invertible.

" 'Basic¢ Concepts

2.1 A Motivation:

The stability of the feedback system of Fig, 1 is described by the
fundamental relationship between the closed~loop and open-loop charac-

teristic polynomials pc(s) and po(s) respectively,

, pc(S)
e_(s)

o

= |1+ 6(s) K(s)| (2)

Despite its apparent simplicity, the application of this relation to

design is no trivial matter. In essence, the difficulties can be attri-

-

buted to possible dynamic complexity and structural complexity of the

plant G(s). Dynamic complexity is due to high state dimensions w>> m

(as reflected by high order transfer function elements of G(s)) and

the presence of right-half-plane poles and zeros. These are problems
common to both classical and multivariable design. In contrast, struc—
tural complexity (as reflected by the presence of complicated intercon-
nections - between subsystems of G(s)) seems to be a purely multivariable

phenomenum. Systems may possess either, neither or both properties e.g.




the plant
: ' N
G(s) = diag. {g;(s),gy(s), ... , g (s)} (3)

may be dynamically complex but it has a particularly simple pseudo-
classical/noninteracting structure.

The concept oé a dyadic transfer funcgion matrix (DTFM) has its
origins in the design of nuclear reactor spatial control systems(z’a).
In the following development, however, it will be regarded as the
natural first step in the analysis of structural complexity and its
implications for frequency domain design techniques based on reduction
of the multivariable design problem to an effective sequence of scalar

classical designs.

2,2 Permissible Equivalence Transformations and Transformation of

'tﬁe Cdnﬁfoi:Pfobigp;

The natural étep in the analysis and simplificétion of system
structure is to consider simple structural transformations to the TFM
G(s). The simplest transformation is the map G > H specified by

G(s) = Py H(s) P, (4)

where P, and P, are mxm constant, nonsingular (real or complex) mat-
rices. The practical advantages of such transformations are their
algebraic simplicity and the fact that they introduce no new dynamics

into the transformed system H(s). Also, if (say) Pl and P2 are real,

the transformation has a natural physical intepretation in terms of
change of input and output variables.

The need for a physical interpretation of equation (4) leads to

constrainhs(a) on the form of P1 and P.. These are defined below and

2

justified in section 3.
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Definition 1 (Physical interpretation)

The mxm nonsingular complex matrices ()

Pl = [all 0'.2: seu g al’ﬂ] B P2 = (5)

|
(

are said to be permissible if the columns (resp. rows) of P, (resp. P,)
are real or exist in complex conjugate pairs and if E5= 82(.) whenever

aj = az(j) g L€ 3§ m

It follows immediately that P, Py is real and noﬁsingular if the pair’

CPI, P2) are permissible. The identity G(s) =G(s) holds if, and only if,

ij(S) = Hn(j)z(k)(s) » 1< 3,k

n

m (6)

Also, if Pl, P, are permissible and complex, H(s) has elements with
complex coefficients. It is, of course, tempting to eliminate this non-
classical description by requiring that both P, and P, are real. This
would be a severe restriction on the theoretical development analogous
to-requiring that the eigenvectors of A are all real (this would, of
course, eliminate the description of complex conjugate pair poles and

oscillatory systems!), -

The potential of the transfdrmations can be illustrated by the

simple example(l).
Gl(s) Gz(s)
G(s) =
Gz(s) Gl(s)
1 -1 Gl(s) + G, (s) 0 3 3

(7)

1t

O | 0 G, (8) = Gy (s)| (-} }
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with the natural identification of P, H(s) and P,. The pair (Pl, P,)

is permissible and H(s) has a diagonal structure indépendent of the

" “dynamics Gl(s) and Gz(s). The description is hence a real representation

of the structural complexity of G(s).
An alternative example with permissible complex transformations is

the structure

(

Gl(s) = Gz(s)
G(s) =
\Gz(s) Gl(S)
i =i Gy(s) + iG,(s) 0 -1 1
i (8)
w 1
1. & L 0 7 Gl(s) 192(3) i1}
with the natural identification of Pys H(s) and P,.
Consider now the feedback system of Fig. 1 and the identity
|1, + 6(s) K(s)| = |1, + H(s) Py K(s) Py (9)

In particular, note that the design of K for G can (from the point of

view: of stability analysis) be replaced by the design of the transformed

controller- P2 K(s) Py for the transformed plant H(s). The relationship

between closed~loop dynamics takes the form

A =1 o ALY =] =1
Hc(S) = {Im + GK} © GK = Pl{{I + HP, KPl} HP, K Pl}P1 (10)

i.e. the closed~loop TFM's are related by the similarity transformation P,.

This seems to be as far as a general theory can take us without the
detailed insight available from the study of special cases that occur in
practice and the introduction of approximation procedures and useful,
applicable stability theorems. These are described in the remainder of
the paper and indicate that the advantages to be gained in the stability

analysis by suitable choice of permissible P; and P, can far outweigh the
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increased complexity in the interpretation of closed-loop transient

performance u51ng equatlon (10).

(1,3)

The equivalence transformations introduced above are an algebraicHT
construction. Some physical insight can be obtained by consideration of

dyadic transfer function matrices (DTFM's) where it is possible to ensure

“‘Definition

that H(s) is diagonal (see examples {7) and (8)).

(1)2.(Structura1 definition of DTFM's)

An mxm invertible system is said to be dyadic if there exists constant
mxm matrices P1 and P2 and scalar transfer functions‘gl(s), el gm(s)
such that the system TFM takes the form

G(s) P, diag {gl(s),gz(s), cees gp(s)} P, (11)

The TFM G(s) is then said to be a DTFM,

It is easi}y verified that we can always assume that (Pl'PZ) are permissible

and take H(s) = diag {gj(s)}1 ¢} &

3,1 Interpretations and Alternative Definitions:

The simplest interpretation of a dyadic system is illustrated in
Fig. 2., i.e. as a non-interacting system 'sandwiched' between input and
output transformations P2 and Py respectively. It is a natural first
generalization of the pseudo-classical structure of equation (3). The

interaction in the system is due solely to the presence of P, and P2

1
i.e. the practical decision to measure Yyseees Yo rather than the 'sub-

A ~

.system' . outputs MATREET A and to control these outputs by direct
manipulation of Upseeesl rather than the 'subsystem' inputs
- " : : (1,2)

Upseessll . In some applications these subsystems can be given a
todal interpretation and the transformation of the control problem is both

physically meaningful and a great advantage in stability analysis.
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Perhaps the most natural definition of a DTFM is, however, modal in
nature! Consider the mxm strictly proper, invertible system S(A,B,C)
(not necessarily dyadic) and suppose, for simplicity, that A has distiﬁ@t

eigenvalues i.e. the system TFM

n
Z -S'—E-'-)-\-"' G.j BjT : (].2)
j=1 j

G(s)

take the form of a linear combination of constant dyads {GijT}l <jgn
~

with first-order transfer function coefficients. It is important to note

that the unordered set {aijT} may contain complex elements but

ls j ¢n
is invariant under complex conjugation. The vectors-aj and Bj describe
the way in which the pole at s = Aj affects output response and how the
input excites that pole respectively.

T p
The dyads {aij } can be regarded as generating a sub-

1 j%n
space of the vector space of all s complex matrices of dimension equal

to & § n (and normally £ << n). Without loss of generality, suppose that

alﬂlT,...,GKBET span this subspace. It follows that

- ' T
G(s) & } g.(s) a.B.
jo ivi "
2 ¢ 1
= [ul’u2""’a21 dlag{gj(s)}l Py : (13)
i
B L

where gj(s) are scalar transfer functions. In effect, system dynamics
can be regarded as being generated by % (possibly overlapping) groups of
modes characterized by the transfer functions gj(s), Lg%, Edch
group is excited only by the projected inmput B?U(S) and contributes to

the output in a vector form described by Nj as can be seen by writing

the relation y = Gu in the form,

T
y(s) oy {gj(S) {Bj u(s)}} (14)

]
i o~

j=1
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The system is dyadic if, and only if, £ = m when equation (13) reduces to
equation (11). 1In particular, the invariance of the unordered set
{aijT} under complex conjugation and the possibility of complex conjugate

pairs due to complex conjugate pair poles explains the need to introduce

. complex permissible transformations into definition 1.

The modal interpretation is perhaps most succinetly stated by the

following equivalent definition (simply set KD = (P1P2)_1)

Definition 3 (Modal definition of DTFM's)

An mxm, invertible system is dyadic if, and only i1f, there exists a

real, constant, nonsingular mxm matrix KD such that G(s) KD has .m

linearly independent, constant eigenvectors Ors Opseses O

6(s) K a; = g;(s) aj" | (15)

where gj(s), 1< j < m, are scalar transfer functions.

The eigenvector interpretation of equation (15) is given the natural modal
interpretation which can have great significance in applications.
Finally, definition 3 can be restated by noting that GKD commutes with

any other matrix having eigenvector matrix Py

Definition 4 (Invariance definition of DTFM's)

An mxm, invertible system is dyadic if, and only if, there exists real,
nonsingular, constant mxm matrices KD and PO such that P0 has distinct

eigenvalues and

G(s)KD P.EP G(s) K, (16)

Equation (16) is an invariance relation for G which, in general terms,
states that, if the input @ produces the output y, then the input KD

PO KD_'l u will produce the output Poy. In specific applications the
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invariance is a reflection of system structural properties such as

(1,2)

spatial symmetry For example, the highly symmetriec structure

of equation (7) satisfies the invariance relation

0 1 0 1
G(s) (17)

1t

G(s)
1 0 1 0
reflecting the indistinguishability of the system dynamics under
simultaneous interchange of input and output subscripts. The matrix
PO in this case is the generator for a two dimensional representation

(2)

of the reflection group .

3.2 Unity Feedback Control(l)

The interpretation given in 3.1 suggests that the transformation

G(s) ~» H(s) g diag{gj(s)} is a natural, physically meaningful

1<j<m

transformation. It also suggests the choice of a diagonal controller

\
PZK(S)Pl ie

=

e ol
K(s) = P diag {kj(s)}lgjmel (18)

2
which is a DTFM with real coefficients if kj(E)E kﬂ(j)(s) » l<j<m.
The resulting closed-loop stability is easily assessed using the
identity

p (s)

m
pc(s) = |1+cK| = |I+HP2KP1| b (1+gj(s)kj(s)) (19)

o) j=1

In fact, the stability analysis reduces to the design of compensation
elements kj(s) for each subsystem transfer function gj(s), 1<j<m.
This analysis is independent of P1 and P2 and has an essentially

classical flavour. Closed-loop transient performance is, however,
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dependent on P, via the closed-loop TFM

1

g.(s)k,(s)
i j -1
1 % gj(S)kj(s)} ! 1409

Hc(s) = P. diag {

1 1<j<m

The analysis of this relationship and its implications for the choice

of {kj(s)} to achieve the design objectives is a new and essentially

(1)

multivariable problem. Examples indicate that the problems are

surmountable and can be based on a few simple empirical guidelines.

The analysis can be extended to cope systematically with

(1-3)

component failures and, as such, forms a fairly complete design
theory for dyadic systems. The resulting controller can be

implemented in the normal manner or, if both P1 and P2 are real
for example, as three cascaded blocks Pz-l, diag{kj}land Pl_l.

Finally, the controller TFM is a DTFM with its own modal
\
interpretation. A particularly neat modal interpretation of the

control system is obtained by noting that

1. =i

. il =l
Pl PleK(s) = P1P2K(S)G(S)P2 P

G(S)P2 1

(21)

and hence that P1P2K is a commutative controller(6) for GP2_1P1_1.
In terms of definition 3 it is straightforward to verify that
equations (19) and (20) remain unchanged if we set K(s) = KDKl(s)
with Kl(s) = Pldiag{kj(s)}Pl—l and that the use of the constant

precompensator K enables the design of the commutative controller

K1 for GKD.




sz
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4. Dyadic Approximations(l’Bus)

It is tempting to attempt to bridge the gap between the general

theory of section 2 and the conceptual, analytical and design

simplicity of dyadic systems by approximation of any mxm invertible 1
N plant by a dyadic system for the purpose of design studies. The

success of the attempt(l) will, of course, depend on careful choice

of definitions and parameters and the development of applicable
stability theorems. A number of techniques have been suggested(1’3’7)
and, in principle, there are an infinite number of possibilities.

The approaches outlined below are perhaps the most-general

constructions that need be considered for applications.

4.1 Dyadic and Inverse Dyadic Approximations
With (Pl’PZ) permissible,Massuming that gj(s) . Hjj(s) £ 0,

1<j<m, then the DTFM

¢, (s) g P, diag (g;(s)} (22)

1<j<m Py

obtained by neglecting the off-diagonal terms of H is the natural

(1)

dyadic approximation (DA) to G using (Pl’PZ)' An alternative

approach using the inverse system is to write

=) eq 1

G(s) =P H(s)P,” (23)

2

(where L(s) will denote the inverse of the TFM L(s)), when, if
gj_l(s) a Hjj(s) # 0 (1<j<m), equation (22) is the natural inverse

dyadic apg;pximation(l) (IDA) to G.

In both cases, the approximation is physically realizable in

the sense that GA(E) = GA(S) by (6) and definition 1.
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The remaining problems are, firstly, to consider the
construction of useful criteria for the structure required for H
and, secondly, to investigate the existence of permissible (Pl’PZ)
achieving such structures. These problems are considered in the

next two subsections.

4.2 Approximation and Diagonal Dominance:

In general terms the validity of the approximation can be
checked by simulation or by abstract stability criteria(s’g). The
natural intuitive approach is to look for conditions on the off-
diagonal terms of H (or ﬁ) such that they are 'small enough' to allow

the DA or IDA to be confidently used in the feedback stability

analysis. The dynamics of G .could then be regarded as being

dominated by the m independent modal groupings represented by the

transfer functions gj(s), 1<j<m.

The criterion for smallness is simply diagonal dominance(l’lo’ll).

(1)

A number of useful results can be derived from the basic

encirclement theorems underlying the inverse Nyquist array (INA)

ﬁesign method(l’lo’ll). For example, the identity
[T 42, lep 5 L]
|T_+6x| = |Im+HPzKP1| = s (24)
|P1 KP, “H|

leads to the following stability theorem:

Theorem 1

Let D be the usual Nyquist contour in the complex plane and let
n, (resp. no) be the number of closed (resp. open)-loop poles in the
: , g 1 ~12 o) R
interior of D. Suppose that both Pl 1K(s)P2 1H(s) and Im+P1 1K(S)P2 H(s)

are diagonally (row) dominant at each point s on D. Let the jth
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diagonal term of Pl_lK(s)Pz-lﬂ(s) map D onto the closed contour Fj

encircling the (-1,0) point and origin of the complex plant nj and

nj times in a clockwise manner, l1<j<m.  Then

m "
n,-n = j£1 (nj - nj) (25)

Taking the case of H(s) diagonally (row) dominant on D and the

controller (equation (18)) suggested by the IDA, the diagonal terms

of Pl-lKPz_lﬂ are simply kj—l(s)gj-l(s), l<j<m. Theorem 1 can now

be interpreted as stating that the IDA can be confidently used in

stability analysis if the dominance conditions are satisfied.

4.3 Approximations Exact at a Given Frequency(l’4’5’7)

The diagonal dominance of ﬁ (or H) is an intuitively reasonable
objective in the choice of permissible (Pl’PZ) (and consequent DA
or IDA). It is not reasonable, however, to expect that there will
always exist Pl,P2 such that domipance is achieved on the whole of D.
It is however possible (under only weak conditions) to achieve
diagonal dominance over an open frequency internal about any

specified frequency point s = iwl (a somewhat surprising result!).

(1,4)

Theorem 2
If G(iml) is finite and nonsingular, then there exists a
permissible transformation (P, (w,),P.(w.)) such that H(s,w,) 2 P —1(m )
1'1 271 (! 1 1
G(s)Pz_l(ml) is diagonal at the point s = iml if, and only if, the
matrix

M(ml) - G(—iml)G_l(iwl) (26)

" -1 ¥
has a complete set of eigenvectors. Pl(ml) (resp. P2 (ml)) is then

an eigenvector matrix of M(wl) (resp. N(ml) e Gﬂl(iwl)G(-iml))-
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The theorem essentially states that it is, in general, possible
to choose permissible Pl,P2 such that H(and hence ﬁ) are diagonal at a
St specified frequency point and hence (by continuity) diagonally dominant
in some open interval containing that point. The DA (or IDA)

G, (5,0 4 P)(uy) diaglg; (s,0,)) (@) (27)

1gjsm T2

derived from Pl(ml) and Ra(ml) is hence exact at the specified point
s=im1 and hence can be regarded as a good representation of plant dynamics
in an open interval surrounding this point. This intuitive idea can be

formulated in terms of approximation of the characteristic transfer

(12-14)

functions hj(s) of H(s,wl) by noting that the natural

approximations,(l’5)

hj(S) = gj(s,wl) g »1gjgm (28)

are exact at s=iw1 and in error at other frequency points with bounds
specified by Gershgorin's theorem. These ideas are illustrated in Fig.3

for the case of m=2.

(1)

Finally, it is easily verified that, if G(s) is a DTFM, then

GA(s,ml)ﬁfG(s) (i.e. the best DA or IDA to a DIFM is the DTFM itself)
indicating that the construction is a natural generalization of the concepts

of section 3. The structural, modal and invariance properties of GA

(see definitions 2-4) can hence be regarded as reflections of structural,

modal and invariance properties of G at (and in the vicinity of) the point

L]
1
5. Applications to Feedback Design

s=iw

The theoretical concepts described above do not, in themselves, form
a complete design technqiue although a number of highly successful
possibilities can be described and derived by suitable choice of permissible
Pl’PZ' This is obvious if the plant is dyadic when the design technique

of section 3 can be highly successful(1h3).
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5.1 Dyadic Approximation and the INA

If the plant is not dyadie, it is a natural first step to look for the .
exist ence of permissible Pl,P2 such that ﬁ (say) is diagonally dominant
on D. The transformations may be suggested by physical insight into

- process dynamics or deduced from computer algorithms. As indicated in

section 4.2 the design could proceed to design -a diagonal 'controller’
P2K(S)P1 for the transformed plant using the INA technique.

The similarity to the INA can be strengthened by suggesting that
(in the INA sense) there exists constant, nénsingular pre—and post—
compensators Ll,L2 respectively and that LzaL1 is diagonally dominant
on D. It follows that the choice of P1=L1,P2=L2 wiil ensure the dominance
of ﬁ=PzaP1. Fof example, the choice of P1=Im and P2 by the pseudo-

(10)

diagonalization procedure could be successful. 1In this sense the
concepts described in this paper can be regarded as an extension of the
INA procedures to include permissible equiv.alence transformations. This
class of transformations is much richer than the class of real pre—and
postcompensators as is indicated (implicitly) in theorem 2 (which is not
valid if we restrict attention to real transformations).

In many situations, it may be that we cannot find permissible P

1°%2
5 (1,15)

to achieve dominance of H (or H). In such situations, origin shifts
could be involved and/or a precompensator introduced into the transformed

A . _ y .
controller PZK(S)P1 = Kc(s) diag{ kj(s)}lsjsm' Alternatively, the dyadic
approximations can be used(l’S)in conjunction with characteristic locus
methods.

5.2. Dyadic Approximation and Characteristic Loci(l’s)

A primary objective of characteristic locus design methods(lz_la) 5

the systematic manipulation and compensation of the characteristic loci
of the forward path TFM Q(s)gb(s)K(s) by suitable choice of K. In this

context, theorem 2 suggests a powerful and systematic technique(l’s).
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Consider the basic problem of the choice of K(s) to produce desired
gain and phase characteristics of the characteristic loci in the vicinity
of a specified frequency point s=im1. Suppose also that the conditions
of theorem 2 are satisfied and that the permissible pair (Plﬁol) PZ(ml))
has been computed to produce the dyadic approximation GA(s,ml). Consider

the use of the dyadic controller (c.f. equation (18)) suggested by GA'

v

=1 " -1
K(S?wl) E, (ml) diag{ kj(s,wi)}isjsm P, (ml) (29)

rr—

with kj(g) = kz(j)(s) » 1gjsm , to ensure physical realizability. The

identity,

|TreK| = I+ H(s,w) diag{ ki(s,0,)} (30)

lgjsm
and application of Gershgorins theorem indicates that the characteristic
transfer functions qj(s)5 lgj¢m, of Q are identical to those of

H diag{kj} and that the natural approximations
P qj(s) = 8j(5,m1) kj(s,wl) ,1<j<m (31)

(obtained by taking the diagonal terms) are exact at s=im1 and in error

at other points to an extent defined by the Gershgorin circles. Noting(l‘s)

that the relative magnitude of the circles are independent of the compensation

elements and are also small in the vicinity of s=it,, it follows that

1

equation (31) can be used with confidence to design the required gain and
phase characteristics of the loci in an open frequency interval containing

s=iw1.

The above Basic methodology has been used to formulate a systematic
design technique(l). The technique has the advantage of guaranteed and
quantified accuracy in the analysis and design of compensation elements.

The eigenvector matrix of Q(iwl) is simply Pl(?l) amd cannot be
included as a design parameter. This is in contrast to alternative

(12,13)

technqiues which put emphasis on eigenvector manipulation using

the alignment concept. This has an intuitive relationship to high-
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- By
frequency interaction but the success of the approximations used in the
construction of the consequent 'approximately commutative controller’
is not guaranteed. The two techniques do, however, have a well-defined

relationship(le)'

g 6. Conclusions: A Unified Approach

Although it has its origins in the modal structure of nuclear reactor
spatial dynamics and the derived concept of a dyadic transfer function
matrix, the concepts of dyadic approximation can be extended to provide
a systematic and physically motivated framework for the description and
derivation of design techniques based on reduction of the multivariable
problem to a sequence of scalar design procedures.

In practice, the methodologyhas a close relationship to the use of
real constant pre-and post-compensators in the inverse Nyquist array me thod.
Although post-compensation is not a popular design tool, the example of
dyadic systems indicates the power of the technqiies amd demonstrates that
it has a distinctive physical interpretation in terms of modal description
of system I/0 behaviour. 1In the authors opinion, it has great potential
and should not be ignored. The techniques described here go much further

by suggesting (with strong physical foundations) that complex, permissible

transformations are valid physical concepts of great value in design.
This is adequately demonstrated when the techniques are combined with the
eigeq/ﬁmdal conceptsof the characteristic locus method, yielding a
systematic technique for manipulation and compensation of the loci in the
vicinity of a specified frequency point. This approach generates a
sl h ; . o C1525355,17)

distinct design procedure that can have great success in practice i
The algebraic similarity of the INA and the techniques described

suggest that they could usefully be unified in a single design package,

based on the basic operations of permissible equivalence transformation
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and diagonal dominance checks. The same is also true of 'approximately

(12,13)

comnutative control’ which uses dyadic control elements of the form i

A~

K(s) = ﬁ diag{kj(s)} (32)

1gjsm
where & and % are real approximations to the eigenvector and inverse
eigenvector matrices of G (say) at a specified frequency point. Comparing
(32) with (18), the dyadic controller:can Ee regarded as being induced by

the real permissible transformation (le, W-l) and the diagonal controller

diag {kj} as acting in the transformed plant H = VGW. In fact, the identity

|1 _+G(s)K(s)| = |1 +i(s) diagf kj(S)} (33)

1< st;zl
suggests that the approximations inherent in approximétely commutative
control can be investigated via the diagonal dominance of H. More
precisely if the approximation is exact, then H is diagonal at the
specified frequency and, at other-points, the characteristic loci of GK
lie in the union of the Gershgorin circles centred on the diagonal element
o Hjj(s) kj(s) > 1€j¢m. In other cases, the magnitude of the circles will
give an estimate of the error involved and the approximations qj(s)ijj(s)hj(s)

could be used as a basis for design studies.
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Fig. 1. Unity negative feedback system.
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