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Abstract

Regarding system compensation as the manipulation of the
asymptotic directions and pivots of the root-locus of the
closed-loop multivariable system, this paper describes a
general framework for the construction of forward path and
minor loop compensation elements for a square, invertible
plant with transfer function matrix G(s). The approach is
based on the use of dynamic transformations of G and the

properties of the inverse plant Gml.




1. Introduction

The concept of the root-locus of an m—input/m-output, square,
invertible, strictly proper system S(A,B,C) subjected to unity
(1-10)

negative feedback with scalar gain p>0 is now well-established

and significant progress has been made in the asymptotic analysis

of the behaviour of the closed-loop poles as p+e=. In essence(l),
the results state that, as pte,
(a) If S(A,B,C) has n  zeros, then n, closed-loop poles move
asymptotically to these poinps of the complex plane, and
(b) the remaining n-n, poles are unbounded and take the form,
/v,

sjg(p) =P Jnjﬂl g ejg(p)

lim a.z(p) =0 g 152§vj » l<j<m e

p®

1/v,

y o th
where p J is the positive, real vj root of p and ﬂjR’
1§2§vj, are the distinct thh roots of a non-zero (complex)

number —Aj.

In this paper, attention is focussed on the unbounded pole

Sjl(p)’ termed an infinite zero of order vj with asymptotic
direction .y and pivot uj. Although the orders may be non—integer(l’z)
i pPLVOL

(3)

it has been shown that they are almost always equal to certain

integer invariants of the triple (A,B,C) under a group of trans-

(4) (1,3)

formations More precisely , it is always possible to choose
a proportional controller to ensure that the resulting system only
has integer order infinite zeros and, in fact, a random choice of
such a controller will achieve this objective with probability one.

For these reasons, non-integer orders are not considered in this paper.




The orders, asymptotic directions and pivots of the infinite

zeros have interpretations in terms of stability, response speed
and oscillatory behaviour at high gain. These directly parallel
the well-known interpretations for single-input/single-output
systems and suggest that the manipulation‘of asymptotic directions
and pivots is an important design consideration. For the purposes
of analysis, compensation of system dynamics will be regarded in

this paper solely as the systematic and independent manipulation

of each asymptotic direction and pivot of the root-locus. Although
a rather restricted viewpoint, it will be noted that the desired
compensation can always be achieved by quite simple lead-lag dynamic
structures with a large number‘of degrees of freedom remaining to
aid the inclusion of other design constraints.

Three feedback configurations are considered (see Fig.l) for
the control of the mxm, strictly proper, invertible plant G(s).
In all cases, Kl(s) and Kz(s) are assumed to be proper, invertible
and minimum-phase and H(s) is a minor loop/dynamic state feedback
element. The concepts of uniform rank systems and dynamic
transformations are reviewed in section 2 and shown to be natural
tools in compensation studies. These results are extended in
section 3 to the analysis of minor loop compensation schemes.

Finally, in section 4, these results and others are discussed.

2.  Forward Path Compensation

2.1 Uniform Rank Systems: A Significant Special Case

The techniques described throughout this paper rely on reduction
of the problem to a number of problems of the type discussed below.

Considering, for simplicity, the configuration of Fig.l(a), it is




well known(1’5’6)

that the properties of the infinite zeros can be
deduced from the series expansion

G(e)K () = s 'Q, * 8 Q...

2)
of GKl about the point at infinity.

A simple basis for analysis
and computation is obtained by considering the case when the

Markov parameters Qj’ j>1, satisfy

Q. =0

3 , 1<i<k-1 lo | # 0 )
. ‘ . (1,5 7) '

when GK1 is said to have uniform rank k . Equivalently

lim skGK1 exists and is nonsingular.

S0 '

Assuming, for simplicity, that Qk has a nonsingular eigenvector

matrix Toandndistinct eigenvalues 7., 1§j§£, of multiplicity dj’
1<j<%, and write

=] ’
T QT = block diag {n.I, } s (A
o ko rdj 1<j<t
together with
r Nll ) AW e § N12
To Qk+1To - . : -
Nﬂl . « « N

where NiJ has dimension dixd. and N.. has eigenvalues a. ,

1<r<d.,
|
l1<j<2. A simple technique for the calculation of the asymptotic

directions and pivots is provided by the following result(l’B).




(1,5)

Theorem 1
With the above notation, the system of Fig.1(a) has km kthuorder

infinite zeros of the form,

8...4B) = pl/k n.,. + AL & e.. (p)

ijr ij kn. ijr

li[ﬂ Eijr(P) = 0 ] ]-fifk 9 1ir§'d_] ) 15:}51 ..-(6)

p-?'OO

1/k

. v i .

where p is the positive-real k h root of p and nij’ 1<i<k, are
o @ t s

the distinct k & roots of —nj, 1<3<8. The system has no other

infinite zeros.

The results are easily implemented on a digital computer and
only require knowledge of the two Markov parameters Qk and Qk+1'
If the asymptotic directions and pivots have unsatisfactory numerical
values, suitable compensation elements can be included as indicated
in Fig.1(b) and discussed below.

It is self-evident from equation (2) that the asymptotic
directions and T0 (which depend only upon the eigenstructure of Qk)
can be manipulated by choice of Kl(s) (Kl(s) could also be chosen
to achieve other objectives such as diagonal dominance etc.).

Suppose therefore that the asymptotic directions and T0 are as

required and consider the choice of the compensation element

A : (1 =]
KZ(S) = TO block diag {K2 (S)}lfjfﬂ TO
(j) S+a.r .
K,""(s) = diagl s+bJ } et 1<j<% THL~ .
jx 1§r§dj




‘El

where it is assumed that T is such thathjjiare in diagonal,

Jordan or triangular form.

Theorem 2(1’8)

The system of Fig.1l(b) with K2 as in equation (7) has km kth—order

infinite zeros of the form

8;:.(p) = pllkn.. #* k_l{ EiE # 8. = by ¥ ¥ g fp)

ijr 1] nj jr jr ijr

lim sijr(p) =0 i Igigk , 1§r§dj s 1lgj<t a8
p-%m

Comparing this result with theorem 1, it is seen that the

simple dyadic(ll) compensator of equation (7) leaves the asymptotic
directions unchanged but enables the systematic and independent
manipulation of each pivot by suitable choice of parameters a..
and bjr'

2.2 The General Case:(l’T)

Consider now the configuration of Fig.l(a) and the series
expansion of equation (2) without the assumption that GKl has
uniform rank. The calculation of the orders, asymptotic directions
and pivots of the root-locus is based on decomposition of the
structure of GKl into a number of uniform rank subsystems by the
use of dynamic transformations. More precisely, under very weak
assumptions, there exists integers q, dj (1<j<q) and kj (1<j<q)

such that

1 €k 2k, € aue k<0 saa 0 )




and a constant mxm nonsingular transformation T, together with

1

unimodular dynamic transformations

(1 0 iw s B )
ey
L(s) = O(s_l) Id "
- 2 -
, 0
os™h os™h 1,
J
q
1 Ol T v o » BE )
d
13 .
0 Id2
M(s) = & ’ wen C10)
: o¢s™h
0. . i s m B I, j
q
such that
~-(k_+2)

L(s)Tl_lG(s)Kl(s)TlM(s) = block diag(C; ()}, ; +0(s ey

wcmceil i

where the djxdj TFMs Gj(s) are of uniform rank kj, 1<j<q.

(1,5)

Theorem 3
. th e ae  u ]

The system of Fig.1(a) has kjdj kj order infinite zeros, 1<j<q,

whose orders, asymptotic directions and pivots are identical to those
of the uniform rank systems Gj(s), 1<j<q, subject to unity negative

feedback with scalar gain p>0 (see Fig.2(a)).




An algorithm for the calculation of the relevant Markov

parameter matrices of the systems Gj(s), 1<j<q, and the matrix

T1 has been derived elsewhere(l’S) based on algebraic operations

on the truncated output controllability matrix Ell,QZ,...,Qr] for

(1)

any rqu+1. The existence of the decomposition (11) is known

to be generic and can be arranged by suitable choice of Kl'

Given that it is possible to replace GK., by the uniform rank

1

systems Gj’ 1<j<q, for the basis of computation, it is natural to

ask how compensators K (J)(s), 1<j<q, designed individually

2

(Fig.2(b)) to produce the desired manipulation of the root-locus
of the Gj(s), 1<j<q, can be combined to produce the same effect on

the root-locus of GKl' Consider the configuration of Fig.1(b),

with equation (11) satisfied and K2 of the form

(s)} .71 R )

1<j<q 1

I ; (i)
Kz(s) = T1 block diag { K2

(i)

9 (s) are proper, minimum-phase and

where the djxdj TFM's K

lim K (4

9 (s) exists and is nonsingular, 1<j<q. Then,
g0

Theorem 4(1’8)

o ) -
The system of Fig.l(b) has kjdj kj h order infinite zeros,

1<j<q, whose orders, asymptotic directions and pivots are identical

(j)(s)’

to those of the uniform rank systems Gj(s)K2 1<j<q, subjected

to unity,negative feedback with scalar gain p>0 (Fig.2(b)).

In effect, compensation of the root-locus of GKl can be

undertaken by separate compensation of the uniform rank systems
Gj’ 1<j<q, using Kz(J), 1<j<q, followed by construction of K2 as

in equation (12). The compensation of each Gj could be undertaken

using the techniques of section 2.1.




(1,7)

2.3 Use of the Inverse System

The results of the previous sections can be rederived in terms
of the inverse system

(@)K ()" = sFA_ + KA+ A v E () ... (12)

where A0 # 0 and Ho(s) is strictly proper. The composite plant GKl

has uniform rank k if, and only if, lAOI # 0, when it is readily

verified that

-1 P T | _
= A Qg = A, AJA )

The computation and compensation of the asymptotes could now proceed
using the analyses of section ' 2.1
In the more general case of GK, of non-uniform rank, a parallel

1
(1,7

analysis to that of section 2.2 indicates that (GKl)_1 has a

decomposition of the form

L()T, " (6()K (0) T (s = block diag(G [y ()} ;. *0 iy
(14)
by suitable choice of Tl and

qu 0 o )

afs o E,
L{s) = . q-1 :

0
0(s™H . o(sh Ls




M(s) = : q-1 ‘ el

(1,7

It can be shown that theorem 3 is still wvalid and that

1 <k®¥ = k, <k, < .... <k = k ... (16)

where k* is the index of the first nonzero Markov parameter in

(1)

equation (2). It is also true that theorem 4 is still valid

provided that K2(S) takes the form (c.f. equation (12))

KZ(S) = T1 block diag { Kz(q+lnj)(8)}

e

1<j<q 11 e (L7

A major use of the inverse system is described in the next section.

3. Minor Loop Compensation

Consider now the configuration of Fig.1l(c). Algebraically this

configuration can be regarded as Fig.1l(b) with GK. replaced by

1
(I+GK1H)_1GK1. The advantage of the inverse system for analysis

is suggested by noting that H appears linearly in the inverse

(GKI)“1+H.

3.1 Uniform Rank Systems:

Assuming that GK., has uniform rank k with inverse of the form

1

of equation (12), write

H(s) = skan1 + O(Sk-

2y ... (18)




= 10 =

Consideration of the inverse (GKl)_1+H indicates that the effect
of H(s) on the asymptotic directions and pivots is described by
1 by A1+H1. More precisely, (I+GK1H)_1GK1 has uniform

rank k and Markov parameters (see equation (13))

replacing A

0 = -1 0 = i
Qk - AO 2 Qk+1 Qk+1 AO HIAO .--(19)

In particular, the numerical magnitude of the pivots (as represented
by the structure of ék+1) can be manipulated by choice of H1 (and
hence by minor loop feedback of the (k-1)th output derivative).

For example, choose

(j)} g 1

H, = AOTO block dlag{Hl 1<j<t To

1

(i)

[ = aiagl hr(j)} . 1<j<t ... (20)

l<r<d.

= = ]

with To’ 2, dj as defined in section 2 and Kz(s) as in equation
(7). Application of the algorithm of section 2.} verifies that
the closed-loop system has km kth—order infinite zeros of the form
1/k -1 %4x

i# = v g - F —— + a, =b, - h, +E
sljr(p) ) ns k {ﬂ- By bJr Jr} Eljf(p)

;iz eijr(p) =0 |, l<i<k , lfridj » 1L3<0 soni(21)
and hence that the minor loop feedback provides an additional or
alternative approach to the independent manipulation of the pivots
of the root-locus.

Typical examples of minor loop elements are, in the case of

k =1, H(s) = H1 corresponds to minor loop constant output feedback




I

and, in the case of k = 2, H(s) = 5H1+H2 represents the inclusion

of minor loop rate feedback.

3.2 The General Case:

Suppose now that GK, is not of uniform rank, but that it has

1
the decomposition given in equation (14). Noting that Gj’ 1<j<q,
all have uniform rank, suppose that the minor loop compensation
. . A -

schemes illustrated in Fig.2(c) with KZ(S) proper, minimum phase,

. (i) ;
lim K2 (s) nonsingular and
g-ro0

B () =3 0B o6 i), 1<j<q »4:(22)
have been constructed to produce the desired asymptotic directions
and pivots for each of the orders of infinite zero. This

compensation scheme can be converted into one of the type shown

in Fig.1(c) by choosing KZ(S) as in equation (17), defining

SO N | . (q+1-3) ~] -1
H(s) TlL (s) block diag { H (S)}lfijM (S)T1
sus (23)
and using the following result:
Theorem 5
The system of Fig.l(c) with GKl satisfying equation (14),
Kz(s) given by equation (17) and
G(s)K, (s) {H(s) -~ H(s)} = O(s ) Lo (20)

4 <.,
has k'dj kjth—order infinite zerosﬂwhose orders, asymptotic directiors
i

and pivots are identical to those of the uniform rank configurations
in Fig.2(c¢). Moreover it is always possible to choose H(s) to be a

polynomial matrix.




- 12 -

Proof

Noting that

Ls)T, " ((6k ) THH)T M = block diag{Gq:}_j(s)+H(q+1_j)(s)}

k. =2
+ 0(s 1

the result follows directly from theorem 4 and the following lemma:

(1,7)

Lemma : the orders, asymptotic directions and pivots of the
infinite zeros of the system of Fig.l(c) are independent of H(s)

if G(s)K, (s)H(s) = ols %y .

Equivalently, any H and H satisfying equation (24) are identical
for compensation purposes. The final part of the result follows by
X k.~2
writing H(s) = P(s)+0(s ) where P(s) is a polynomial matrix and

noting that H(s) = P(s) satisfies equation (24) (see equation (16))

Q.E.D.

The availability of any H(s) satisfying (24) is important for
practical applications as ﬁ(s) may have a highly complex dynamic
structure due to the presence of L_l(s) and M_l(s) in equation (23).
It is particularly significant that it is always possible to choose
H(s) to be a polynomial matrix ie the minor loop feedback can be
realized by feedback of outputs, rates,accelerations ete. Finally,
the inversion of L and M does not present numerical problems as they

£1,5)

are easily deduced from previous numerical algorithms as the

product of elementary operatioms.




- 13 -

4, Discussion and Conclusions

Given the plant G and the 'precompensator' K. the paper has

1
described existence and algebraic synthesis results for the

construction of forward path compensators K, and minor loop

2
elements H allocating the asymptotic directions and pivots of

the root-locus to desired numerical values. The minor loop
element can always be taken to be a polynomial matrix representing
output, rate and acceleration feedbacks etc. and the forward path
element can always be taken to be a dyadic system of elementary
lead-lag networks. The technique revolves around the replacement
of GKl by q uniform rank systems Gj, 1<j<q, and systematic analysis

of the q configurations represented by Fig.2(c) and subsequent

construction of suitable K, and H from the designed K (3 (J),

2 9 and H

1<j%q.

The developed approach based on dynamic transformation of GKl
or its inverse is, a priori, only one of many possible compensation
procedures. It does, however, have a natural simplicity for
computation and analysis and suggests design procedures achieving
the desired objectives whilst retaining many degrees of freedom to
achieve other design objectives. In particular the precompensator
could be used to produce diagonal dominance or high frequency
eigenvector alignment and could be used to manipulate Tl' The
choice of eigenvector matrix TO in the analysis of the uniform rank
systems is also a free design parameter and although the differences
ajrﬁbjr may be specified by the desired pivot allocation, the

absolute numerical values of ajr’ bjr are not specified. It is

not clear at the present time, how these free parameters can be




_1[{_...

used to shape the closed-loop transient performance nor, indeed,
is the impact of any given choice of asymptotic directions and
pivots on transient performance fully understood. This area is,
in the authors opinion, a fruitful area for further work. In
particular it appears that the sensitivify problem(l’lo) associated
with the pivots and the associated slow movement to the asymptote
may have profound significance and, by analogy with classical root-
locus techniques, it should be expected that the analysis of the
necessary role and impact of system zeros in design and choice of
compensation elements is a vital unsolved problem.

(1,1 can be deduced

A particularly interesting observation
from the lemma of section 3.2, namely that, for the purposes of

compensation studies, the composite system GK, can be replaced by

1
- k k-1 -1 .
the inverse {s Ab+s A1+..+Ak} of the polynomial component of
its inverse (see equation (12)). An immediate consequence of this

(1,10)

result is that the various design tools available for plants

with polynomial inverses can be brought to bear on the analysis of
(12)

even large-scale systems. In certain cases , such considerations

can lead to complete and highly successful design techniques.
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