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Lattice Dynamical Wavelet Neural Networks Implemented Using Particle 
Swarm Optimization for Spatio-Temporal 

System Identification

Hua-Liang Wei, Stephen A. Billings, Yifan Zhao and Lingzhong Guo 

 
Abstract—By combining an efficient wavelet representation 

with a coupled map lattice model, a new family of adaptive 
wavelet neural networks, called lattice dynamical wavelet neural 
networks (LDWNN), is introduced for spatio-temporal system 
identification. A new orthogonal projection pursuit (OPP) 
method, coupled with a particle swarm optimization (PSO) 
algorithm, is proposed for augmenting the proposed network. A 
novel two-stage hybrid training scheme is developed for 
constructing a parsimonious network model. In the first stage, by 
applying the orthogonal projection pursuit algorithm, significant 
wavelet-neurons are adaptively and successively recruited into the 
network, where adjustable parameters of the associated 
wavelet-neurons are optimized using a particle swarm optimizer. 
The resultant network model, obtained in the first stage, however, 
may be redundant. In the second stage, an orthogonal least 
squares algorithm is then applied to refine and improve the 
initially trained network by removing redundant wavelet-neurons 
from the network. An example for a real spatio-temporal system 
identification problem is presented to demonstrate the 
performance of the proposed new modeling framework. 
 

Index Terms—coupled map lattice, neural networks, particle 
swarm optimization, spatio-temporal systems, wavelets. 
 

I. INTRODUCTION 
PATIO-TEMPORAL systems are complex systems where 
the system states evolve spatially as well as temporally. The 

dynamics of such a system at a specific spatial location and at 
the present time instant are dependent on the dynamics of the 
system at other spatial locations and at previous times. 
Spatio-temporal systems can be viewed as an extension of 
classical nonlinear dynamical systems where the dynamics at 
the present time instant are determined by only the values of the 
associated input and state variables at previous times. The 
evolution trajectory of a traditional nonlinear dynamic system 
at each time instant consists of only one isolated point or just a 
few points, while the evolution trajectory of a spatio-temporal 
dynamical system at each specific time instant is a snapshot, 
pattern or image, formed by a collective of a great number of 
interacting points. Thus, the evolution trajectory of a 

spatio-temporal system can be viewed as a set of moving 
objectives (snapshots, patterns, images or pictures). 
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Spatio-temporal phenomena are widely found in biology, 
chemistry, ecology, geography, medicine, physics, and 
sociology. In the literature, several efficient mathematical 
representations including the well known cellular automata 
(CA) [1], coupled map lattices (CML) [2], and cellular neural 
networks (CNN) [3] have been introduced to described 
spatio-temporal systems.  

Whilst the forward problem of spatio-temporal systems has 
been extensively studied, with an assumption that the 
associated models are known to describe some specific 
dynamics, the inverse problem, which is concerned with 
finding models based on given observations for 
structure-unknown spatio-temporal systems, has received 
relatively little attention and relatively few results have been 
achieved. Identification plays an important role for solving the 
inverse problem for spatio-temporal systems, where the 
structure of analytical models is not available.  
The central objective of this study is to introduce a new family 
of adaptive wavelet neural networks, where wavelet transforms 
will be incorporated into a specific type of CML model. This 
wavelet-based coupled map lattice model will be referred to as 
the lattice dynamical wavelet neural network (LDWNN). The 
construction procedure of the new network model is composed 
of two stages. At the first stage, linear combinations of a 
number of wavelet functions are chosen as the building blocks 
to form the initial candidate wavelet neurons. Inspired by the 
conventional projection pursuit regression method [4], a new 
orthogonal projection pursuit (OPP), implemented by a particle 
swarm optimization (PSO) algorithm, is introduced to augment 
the network by recruiting a number of optimized wavelet 
neurons in a stepwise manner. The OPP learning algorithm, 
similar to the conventional projection pursuit regression, may 
produce a redundant model. Thus, the objective of the second 
stage is to remove redundancy from the initially trained 
network, to produce a parsimonious representation. To achieve 
this aim, an orthogonal least squares learning algorithm [5]-[7] 
is applied to refine and improve the initially obtained network 
by removing potential redundant wavelet neurons from the 
network. 

As will be noted from the proposed learning algorithm, the 
training procedure for the new network model does not need 
any pre-specified dictionary, as required by existing 
wavelet-based CML models [8]. Also, as will be seen later from 
the illustrative example, by combining the PSO based nonlinear 
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OPP training scheme with an effective forward orthogonal 
regression algorithm, the resultant wavelet network model can 
provide good generalization performance. Moreover, one 
feature of the new wavelet network, produced by the two-stage 
hybrid learning algorithm, is that now the resultant model is 
transparent to model users; involved wavelet neurons are 
ranked according to the capability of each neuron in 
representing the total variance in the system output signal. This 
is desirable for many application cases where physical insight 
on the individual variables and associated wavelet neurons are 
of interest. In summary, the objective of this study is to present 
an effective method that can produce sparse and transparent 
network models using wavelet basis functions, which can 
adaptively capture the variations of the associated dynamics. 
The proposed wavelet network is nearly self-implemented, that 
is, all within-network parameters can automatically be adjusted 
by the proposed algorithms. This is desirable for any 
structure-unknown or black-box modeling problems. 

II. THE ARCHITECTURE OF THE NEW LDWNN 
Coupled map lattice (CML) models are a class of dynamical 

models, with discrete time and discrete space, but with 
continuous state variables [3]. Take the 2-D CML model, 
involving the nearest-neighbour cell coupling on a squared 
lattice with Moore neighbourhoods, as an example, this can be 
expressed as 
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where t=1,2, …, i=1,2, …, I, j=1,2, …, J, is the state 

representing the cell C(i,j), 

R∈jis ,

τ is the time lag, are some 

linear or nonlinear functions, are connecting coefficients, 

and  is referred to as neighborhood radius indicating how 
many neighborhood cells are involved in the evolution 
procedure for generating each centre cell from the past 

state space. Clearly, if r=0, model (1) will become a pure 
temporal process. The evolution law for boundary cells often 
needs to be pre-specified. If both I and J are very large, 
boundary conditions may not affect the resultant patterns; if, 
however, one of the two numbers is small, boundary conditions 
may significantly distort the original patterns. For details about 
how to set boundary conditions, see [3]. 
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Note that a total of state variables are involved 
in the CML model (1). For convenience of description, 
introduce d single-indexed variables , with k=1,2,…,d, to 
represent the d involved cells in the neighborhood. Also, let y 
represent the central cell C(i,j). Then, the objective is to 
identify, from available data, a d-dimensional model 
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or, in an explicit form, with respect to the state variables 
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where and are state vectors formed by the relative 
state variables.  
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One of the most commonly used approaches for 
constructing the high dimensional model (2) or (3) is to 
approximate the multivariate function f using a set of functions 
of fewer variables (often univariate) 
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where are called the construction functions (hidden units), 

are the associated parameter vectors, and are the weight 

coefficients that can be assimilated into the parameter vector 
, as shown in the next section. 
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Wavelets [9], due to their inherent property and excellent 

capability, can be used as the elementary building blocks to 
represent these construction functions  in (4) as below jg
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where , with k=1,2, …, d,  

are wavelet basis functions, and  

are the parameter vectors that need to be 

optimized.  
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Assume that a total of m construction functions, 
, are involved in the network, then equation (4) 

can be expressed as 
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where jkjjk cwc ,,
~ = . Now, the remaining key problem is how 

to construct the wavelet network model (6). Unlike in fixed grid 
wavelet network models, where a dictionary of candidate basis 
functions needs to be pre-specified, based on which some 
search and pruning algorithms are applied to find a set of 
significant basis functions [10]-[12], this study will consider a 
type of growing wavelet neural network, where a constructive 
learning algorithm that can be used to automatically and 
adaptively augment such a network will be provided. 

III. TRAINING THE NEW LDWNN 
Many constructive learning algorithms for constructing 

typical neural networks can be found in the literature [13]-[16]. 
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The projection pursuit regression [4] and some variations [16] 
are among the class of the most commonly used approaches for 
augmenting single-hidden-layer neural networks. Inspired by 
the successful applications of these popular constructive 
learning algorithms, this study proposes a practical orthogonal 
projection pursuit (OPP) learning scheme, assisted by a particle 
swarm optimization (PSO) algorithm. Similar to other popular 
constructive algorithms, networks produced by the OPP 
algorithm may be redundant. To remove or reduce redundancy, 
an orthogonal least squares type learning algorithm [5]-[7] is 
applied to refine and improve the initially generated network by 
the OPP+PSO algorithm. 

A. The OPP Algorithm aided by PSO for First Stage 
Network Training 

Let be the observation vector of the 

output signal and   be the  
observation vector for the kth input variable, with k=1,2, …, d. 
For a given parameter vector , let 
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The OPP algorithm is implemented in a stepwise fashion; at 
each step a construction vector that minimizes the projection 
error will be determined. Starting with , find a 

construction function  such that 

The associated residual vector 

may be defined as 01 rr = h can be used as the “fake 
desired target signal” to produce the second construction 
vector . However, it should be noted that the coefficient 

is not always identical to the true (theoretical) optimal value 

, no matter what optimization algorithms are applied. As a 

consequence,  may not be orthogonal with the 

construction vector . To make the associated residual 
orthogonal with the relevant construction vector, the residual is 
then defined as 
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This procedure may need to be repeated many times. At the nth 
step, the residual sum of squares, also called the sum of squares 
error, , can be used to form a criterion to stop the 
growing procedure. For example, the criterion can be chosen as 
error-to-signal ratio:

2
1111 ||||/, ggr >=<α

2|||| nr

22 ||||||||ESR yrn= ; when ESR 
becomes smaller than a pre-specified threshold value, the 
growing procedure can then be terminated. 

The objective function in the OPP algorithm is defined as 
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where , N is the number of 
training samples, X and are defined as in the previous 

section, and
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Equation (7) can be solved by using a particle swarm 
optimization method [17]. Let ‘mPSO’ be the maximum 
number of permitted iterations. The optimization procedure can 
then be terminated when either the iteration index exceeds 
‘mPSO’, or when the parameter to be optimized becomes 
stable, that is, when , whereδ≤−+ 2||)()1(|| tt θθ δ is a 

pre-specified small number, say . 510−≤δ
Note that for each step n in the above OPP algorithm, a PSO 

algorithm repeatedly runs 10 times, and the coefficients that 
produce the smallest value for the object function are chosen to 
be the parameters for the nth step search. By using this 
multi-time run strategy, the performance of the algorithm 
including the stability and convergence properties can then be 
guaranteed. It can be shown that the sequence  is strictly 
decreasing and positive; thus, by following the method given in 
[18],[19], it can easily be proved that the residual is a 

Cauchy sequence, and as a consequence, converges to zero. 
The algorithm is thus convergent. 

2|||| nr
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B. Refine the Network Using the Forward Orthogonal 
Regression Algorithm 

Assume that a total of m construction functions , 

where  and j=1,2, …, m, are 
involved in the network produced at the first stage. It is known 
that each involves d individual wavelets, thus a total of 

);( jjg θx
T
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mdM ×= elementary wavelet neurons are involved in the 

network. Denote the set of these M wavelets by  
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parameters and have already been estimated at the first 

stage. 
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The objective of this refinement stage is to reselect the most 
significant wavelet functions from the set , to form a more 
compact model for given nonlinear identification problems. 
Let and be defined as in the previous section, and let 

, where 
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The network refinement problem amounts to finding, from the 
dictionary D, a full dimensional subset },,{ 1 nnD pp L=  

, where},,{
1 nii φφ L=

kik φα = ,  and k=1,2, …,n    

(generally 
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Mn << ), so that y can be satisfactorily 
approximated using a linear combination of . This 
can be solved by using the orthogonal least squares algorithm 

nppp ,,, 21 L
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given in [5]-[7]. Following the suggestion in [20], the penalized 
ESR criterion below is used for model size determination 

)ERR1(
)/1(

1PESR 12 ∑ =−
−

= n
i in Nnλ

                       (9) 

 that the adjustable parameteIt is suggested [20] r λ  be chosen 
between 5 and 10. 

e interest for theoretical analysis of 
rele

e 
in  finite difference gradients are considered. 

A.

new network model for the identification of the BZ 
rea

of the relevant central cell at t

ta pairs were randomly chosen in each of these 
5

IV. AN EXAMPLE 
As an example of a real spatio-temporal system, the 

Belousov-Zhabotinsky [21] reaction was considered to 
illustrate the application procedure of the proposed new 
network modeling procedure. The BZ reaction, as an excitable 
medium, is an important class of chemical reactions exhibiting 
a spatio-temporal oscillatory behaviour. As a classical example 
of non-equilibrium thermodynamics, the BZ reaction provides 
an interesting chemical model of non-equilibrium biological 
phenomena, and the modeling and identification of these types 
of reactions is of extrem

vant phenomena. 
For a comparison purpose, the well-known Levenberg- 

Marquardt (LM) nonlinear least squares optimization algorithm 
[22], was also used to solve the nonlinear optimization 
problems. In order to fairly and objectively evaluate the 
proposed method, we used an existing LM algorithm availabl

 Matlab, where

 The Data 
By adopting the recipe given by Winfree [23], an 

experiment resulting in a thin layer BZ reaction was carried out, 
and a set of images were captured with equal time intervals 
during the experiment. The sampled images were 
pre-processed and saved as patterns with a resolution of 480 by 
640 pixels. In this example, the LDWNN modeling framework 
was applied to these sampled images, and the objective is to 
apply the 

ction. 
A total of N=2500 data pairs, Nkkyk ,...,2,1)}(),({ =x , were 

used for the network training, where y(k) represents the values 
he present time instant t, and 

Tkxkxkxk )](,),(),([)( 921 L=x represent the observations of 
the nine involved cells at a squared lattice with the Moore 
neighbourhoods, at the previous time instant t-1. These 2500 
data pairs were formed as follows. Firstly, 5 adjacent pattern 
pairs were randomly chosen from the first 50 sampled patterns. 
Secondly, 500 da

 pattern pairs. 

B. Some Results 

The Mexican hat wavelet, defined as 2/2 2
)1()( xexx −−=ψ , 

was used as the elementary building blocks for constructing the 
wavelet network model, where the time lag τ  (defined in (1)) 
was set to be one. A total of 100 construction functions of the 
form (5) were optimized using the OPP+PSO algorithm, and 

the associated ESR index is shown in Fig. 1. The orthogonal 
least squares algorithm [5]-[7] was then applied to select 
significant individual wavelets from the pool that contains 900 

 wavelets of the form 
),;( ,,, jkjkkjk bax

individual candidate
ψψ =  ,  with k=1,2, …, 9 and j=1,2, …, 100, 

and where both the dilation and translation parameters have 
already been optimized. The penalized error-to-signal ratio 
(PESR), produced by the orthogonal least squares algorithm 
suggested that a total of 15 wavelets should be included in the 

oduced network is less than that in the 
LM

ant t by X(t). The

pre

lly normalized mean square 
error (SNMSE) was considered 

wavelet network model. 
For a comparison, the Levenberg-Marquardt (LM) 

algorithm was also applied in the OPP procedure to solve the 
relevant nonlinear optimization problems. Similar to the PSO 
algorithm, we take ten time runs of the LM algorithm at each 
search step in the OPP procedure; at each time run, the initial 
values for the unknown parameters to be optimized were 
chosen in a way similar to that in the OPP algorithm; the 
corresponding ESR index is shown in Fig. 1. The associated 
PESR index suggested that the appropriate number of wavelets 
included in the network should be 17. From Fig. 1, it can be 
noted that PSO yields a better global convergence than the LM 
algorithm for the problem here, meaning that to achieve the 
same approximation accuracy, the number of wavelet basis 
functions in the PSO pr

 produced network.
To evaluate the performance of the identified LDWNN 

model, the short-term predictive capability of model estimated 
using the OPP-PSO algorithm was inspected. Denote the 
observation of the image (pattern) measured at the present time 
inst  k-step ahead predictions, denoted 
by ))(,;|(ˆ tXftktX + , where f  represents the given 
identified model, are the iteratively produced results by the 
model, on the basis of X(t) but without using information on 
observations for patterns at any other time instants. As an 
example, the one-step ahead predictions from the model 
produced by the OPP+PSO algorithm, on the basis of the 
measurements at a certain time instants t were calculated, and 
these are shown in Fig. 2. Clearly, the identified model 
provides good short-term predictions in the sense that these 

dictions capture the main features of the observed images.  
To measure the performance of the identified wavelet 

network models, the 2-D spatia
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where

nt t

)(, ts ji  represent the observations at the time instant t, 

)(ˆ , ts ji  represe he corresponding predicted values from a 

given model, )(ts represents the spatial average value at the 
time instant t, and I and J define the size of the associated 
pattern. The value of SNMSE for the one-step ahead 
predictions, relative to the PSO+PSO produced model 
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consisting of 15 wavelet functions, was calculated to be 0.0787. 
For the LM algorithm produced model consisting of 17 wavelet 
functions, the value of

Fig. 1.   The error-to-signal ratio (ESR) index, versus the number of the 
iterations, for the BZ reaction modeling problem. The solid line is for the 
OPP+PSO algorithm, and the dashed line is for the OPP+LM algorithm. 

 SNMSE for the four cases was 
alculated to be 0.0808. 

 

od and other 
approaches are worth giving in future studies. 
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