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A Novel Spherical Actuator: Design and Control 

Jiabin Wang, Geraint W. Jewel1 and David Howe 
Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3 JD, U.K 

Abstract - The paper describes the design and control of a 
novel spherical permanent magnet actuator which is capable of 
two-degrees-freedom and a high specific torque. Based on an 
analytical actuator model, an optimal design procedure is 
developed to yield maximum output torque or maximum system 
acceleration for a given payload. The control of the actuator, 
whose dynamics are similar to those of robotic manipulators, is 
facilitated by the establishment of a complete actuation system 
model. A robust control law is applied, and its effectiveness is 
demonstrated by computer simulation. 

I. INTRODUCTION 

Recent advances in robotics, office automation, and 
intelligent flexible manufacturing and assembly systems have 
necessitated the development of precision multiple degree-of- 
freedom actuation systems. In general, however, motion with 
several degrees of freedom is realized almost exclusively by 
the use of a separate motor/actuator for each axis, which 
results in complicated transmission systems and relatively 
heavy structures. Thus, it is difficult to achieve a high 
dynamic performance, due to the effects of inertia, backlash, 
non-linear friction, and elastic deformation of gears. Actuators 
which are capable of controlled motion in two or more 
degrees-of-freedom can alleviate the problem, whilst being 
lighter and more efficient. However, although such actuators 
have been the subject of some research [ 11-[3], they have 
rarely been commercialized, due to their complexity, and 
related difficulties in modelling their electromagnetic 
behaviour and optimizing their design. 

arrangement [4],[5]. It is capable of two degrees-of-freedom 
and a high specific torque, whilst having a robust mechanical 
structure and a simple position sensing system. The spherical 
rotor is housed within the spherical stator on a low friction 
surface coating. Accommodated on the stator are three 
orthogonal windings, which may be enclosed by an outer 
spherical iron shell in order to increase the flux-linkage. The 
2-pole rare-earth permanent magnet rotor, may either be solid 
or hollow, when it may include an inner spherical iron core, 
and can be either diametrically or radially magnetized. On the 
application of current to the stator windings, the resulting 
torque will orientate the rotor to minimize the system potential 
energy. Thus, control of the rotor orientation is achieved by 
varying the winding currents. This paper addresses the design 
and control aspects of the actuator, for which a detailed 
analysis and system model is described in [4],[5] 

11. DESIGN OPTIMIZATION 

Due to the simplicity of the actuator topology, the magnetic 
field distribution, and torque vector and back-emf constant 
can be derived analytically[4]. This allows for the design of 
the actuator to be optimized with respect to a given criterion. 
The prime considerations in this paper are either maximum 
torque capability or maximum achievable acceleration with a 
given payload, although other criteria, e.g. minimum cost, 
may similarly be addressed. 

A.  Maximum Output Torque Design 

Fig. 1 Spherical actuator 

Fig. 1 shows a prototype of a new form of actuator with a 
spherical permanent magnet rotor and a simple stator winding 
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Without loss of generality, an air-cored spherical actuator 
is assumed. Its electromagnetic torque is given by [4]: 

c, = Tm0R,~x~(1  - X, - Gp / R") (1) 

where x, is equivalent to the split ratio of conventional 
permanent magnet machines, and is the ratio of the rotor 
radius R, to the outer radius of the stator R,, and Gp is the 
airgap length. T,, is a constant related to the remanence of the 
magnet, B,,,, the winding current density, J, the packing 
factor, Pf, and the winding geometrical angles, SI and 6,,, and 
is given by: 

T,, =27cPfBr,,5(6, -60 +O.S(sin26, -sin26,))/3 (2) 

As has been shown [4], for a given R,s, there is an optimal split 
ratio, viz. x, =3( 1 -GdR,J4, which yields maximum torque. 
This result is obtained when friction-free conditions are 
assumed. In the present actuator, the rotor magnet is in direct 
contact with the stator housing, and the friction torque is, 
therefore, not negligible, although it can be minimized by 
using a low friction coating or a lubricant. Over the range of 
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rotor operating speeds, Coulomb friction, which is 
proportional to the rotor weight, is a dominant factor, and is 
given by: 

Tf =4zpR:gfc 1 3  (3) 

where fc is the Coulomb friction coefficient, p is the mass 
density of the magnet and g is the gravitational acceleration. 
The effective output torque of the actuator can, therefore, be 
written as: 

where b = (1- GJR,) and c = 4npgfc13. It is evident that the 
optimal value of the ratio x, is: 

X ,  =3T,ob I 4(Tm, + C )  ( 5 )  

Fig. 2 shows T,, and Tef as functions of x,, assuming R, = 

0.036[m], B,,,, = 1.2 [TI, J =  4.0 [A/mm2], Pf=0.5, 0.6208 
[rad], 6o = 0.1222[rad], g = 9.8 [m/s2], p = 7 . 5 ~ 1 0 ~  [kg/m3] 
and fc = 0.12. As is seen, the effective output torque is 
reduced by an amount corresponding to the friction torque, 
which is proportional to x:. Consequently, the optimal split 
ratio x, is reduced, compared with the optimal friction-free 
value. Since the optimal value of x, is proportional to (1- 
GJR,), it decreases as R, decreases and approaches 
3T,,/4(Tm0+c) as R, increases, provided that GJR,<< 1. 

v 
0 0.2 0.4 0.6 0.8 1 

x, 

Fig. 2 Torque vs. xr = R,& curves 

B. Maximum Acceleration Design 

A common requirement is for maximum acceleration from 
an actuator so as to achieve the fastest dynamic response for a 
given payload. Assuming that the payload can be 
approximated by a point mass, in,, with its center of gravity at 
r, = R,+l,, then the additional inertia I, , friction torque l jc  
and gravitational torque T, , due to the payload, are given, 
respectively, by: 

I ,  = m,r; ; Tfc = m,gR, f, ; Tg = mcgr, ( 6 )  

The maximum attainable acceleration, when a pair of 
diametrically opposite windings is excited, is: 

(7) 
Aef = (Tem - < ~ f  + ~ f c  + ~g 1) 1 ( I ,  + 1,) 

- - R:x?(Tmo(b - X r )  - cxr)- mcg(rc + f c ~ s x r  ) 

8pnR:xj /15+mc(r,)2 

For a given R,, the optimal value of x, is obtained from the 
solution of the following equations: 

where 

as =cl(Tmo +c)R,8 ; a7 =-2c,TmobR,8 ; u5 =4clm,gf,R~ 

a,=5c,m,grcR~ ; a,=-4(Tmo +c)IcR: ; u2=3Tm,bI,R,~ 

uo=-mcgfcIc ; c1 =8npl15 

Equation (8) may be solved numerically, e.g., using the 
Matlab routine Roots. Fig. 3 shows the maximum 
acceleration, as a function of R, and x, assuming m,=0.05 
[kg], 1, = 0.017[m], which correspond to a payload such as a 
miniature high resolution electronic camera, the other 
parameters being the same as those specified earlier. At R,s = 

0.036[m], the corresponding optimal split ratio x, is 0.583, 
which is lower than the optimal value for maximum output 
torque. As can be seen from Fig. 3, the optimal ratio decreases 
slightly as R,s increases. This is due to the fact that the 
electromagnetic torque increases with R,sf whilst the moment 
of inertia of the rotor increases with RmS. Thus, in order to 
maintain maximum acceleration, any increase in the value of 
R, should be proportionally less than any increase of R,. 

0.8 

Fig. 3 Maximum acceleration as a function of R, and xr 

Based on the above results, an integrated design procedure 
can be formulated to yield optimal designs in terms of a 
chosen criterion for a given specification. 

111. CONTROL OF SPHERICAL ACTUATOR 

A complete dynamic model for the actuator is given by[5]: 

hf& f c& + G + z = K E T i ,  
T '  (9) Li, -+ Ri, - K E T Q E  = uE 
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where QE = [ p a] are the Euler angles representing the rotor 
orientation, the inertia matrix M, the Coriolis and centripetal 
force matrix C, and the gravitational torque vector G being 
given by: 

where a shorthand notation for sine and cosine functions is 
used for clarity, e.g., sa represents for sina. 1 6  is the combined 
moment of inertia of the rotor and payload referred in the 
rotor co-ordinate system, uE = [Ua UB uJT is the winding 
terminal voltage vector, i, = [ i A  iB icIT is the winding current 
vector, L = diag[ LA LB LCIT is the diagonal winding self- 
inductance matrix, R = diag [& RB &IT is the diagonal 
winding resistance matrix, is the vector representing the 
Coulomb and viscous friction, and K,g; defined as the actuator 
torque matrix, is related to the actuator torque constant KT [4] 
by: 

[ -cpsaca spsa 1 (10) 
-spca 0 -cpcci K,,  = K ,  

Note that (9) has a singularity at ci = 90’. However, with the 
present actuator design the angular excursion of ci is within k 
45’, and this singular point will never be encountered. Also, it 
will be noted that in non-singular regions, (9) constitutes a 
Hamiltonian system, and, therefore, possesses a well- 
understood structure and similar important properties as the 
dynamic equations for robotic manipulators. As a result, any 
advanced control law for the control of robotic manipulators 
can be applied to the spherical actuator. 

As an example, a robust outer PD position control law [6] 
in conjunction with an inner PI current control law, as shown 
in Fig. 4, is utilized for the control of the spherical actuator. 
The role of the inner current tracking loop is to minimize the 
effects of back-emf and current transients on the outer 
position servo loop, so that a robust design philosophy [6] can 
be used to determine the control gain matrices KVand A. The 
output of the position controller is two independent torque 
demands, but (9) has three independent control inputs. The 
extra degree of freedom in the control variables suggests that 
there exists a redundant control input which may be used for 
optimal control, e.g., to minimize the total energy 
consumption for a given torque demand. This control strategy 

is implemented by taking the weighted pseudo inverse of Kh,, 
as denoted by PET in Fig. 4. 

The effectiveness of this control strategy has been tested by 
computer simulation, in which all significant dynamic 
components, such as non-linear friction, saturation limits, 
quantization, and the sampling effect of digital control, are 
taken into account. Fig. 5 shows the simulated tracking error 
response to the input demand given by: 

p = 0.7(1-e-50‘2); a=0.8(1-e-50‘2) (1 1) 

with l(ms) sampling interval and KV = diag [O. 1 0. I], A= diag 
[ lo0 1001, Ib = 0.00014(kgmz), KT = 0.3 (“/A), L = diag 
[4.92 14.65 14.651 (mH) and R = diag [9.84 18.3 18.31 (a). 
As is seen, the actuator is able to track the input demand with 
good accuracy. The maximum tracking error is 0.0025 (rad) 
which occurs at 0.1 l(s). The tracking errors are not, however, 
zero even in the steady state, due to the presence of friction 
torque. 

IV CONCLUSIONS 

A design methodology for a spherical permanent magnet 
actuator to achieve maximum output torque or maximum 
acceleration has been developed, and a control strategy for 
the closed-loop actuation system has been described. The 
stability and performance of this control strategy is guaranteed 
through the properties of its dynamic equations, and has been 
further verified by realistic computer simulation. 
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Fig. 4 Block diagram of closed -loop control system Fig. 5 Euler angle tracking error response 


