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Abstract. Kernel methods provide a convenient way to apply a wide
range of learning techniques to complex and structured data by shift-
ing the representational problem from one of finding an embedding of
the data to that of defining a positive semidefinite kernel. One prob-
lem with the most widely used kernels is that they neglect the loca-
tional information within the structures, resulting in less discrimination.
Correspondence-based kernels, on the other hand, are in general more
discriminating, at the cost of sacrificing positive-definiteness due to their
inability to guarantee transitivity of the correspondences between multi-
ple graphs. In this paper we generalize a recent structural kernel based on
the Jensen-Shannon divergence between quantum walks over the struc-
tures by introducing a novel alignment step which rather than permuting
the nodes of the structures, aligns the quantum states of their walks. This
results in a novel kernel that maintains localization within the structures,
but still guarantees positive definiteness. Experimental evaluation vali-
dates the effectiveness of the kernel for several structural classification
tasks.

1 Introduction

Structural representations have become increasingly popular due to their repre-
sentational power. However, the descriptiveness comes at the cost of an increased
difficulty in applying standard machine learning and pattern recognition tech-
niques to them, as these usually require data that reside in a vector space. The
famous kernel trick allows the focus to be shifted from the vectorial represen-
tation of data, which now becomes implicit, to a similarity representation. This
allows standard learning techniques to be applied to structural data for which
no obvious vectorial representation exists.

One of the most influential works on structural kernels was the generic R-
convolution kernel proposed by Haussler [6]. Here graph kernels are computed
by comparing the similarity of the basic elements for a given decomposition
of the two graphs. Depending on the decomposition chosen, we obtain different
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kernels. Most R-convolution kernels simply count the number of isomorphic sub-
structures in the two graphs. For example, Kashima et al. [8] compute the kernel
by decomposing the graph into random walks, while Borgwardt et al. [3] have
proposed a kernel based on shortest paths. Here, the similarity is determined
by counting the numbers of pairs of shortest paths of the same length in a pair
of graphs. Shervashidze et al. [16] have developed a subtree kernel on subtrees
of limited size, where the number of subtrees common between two graphs is
computed efficiently using the Weisfeiler-Lehman graph invariant.

One drawback of these kernels is that they neglect the locational information
for the substructures in a graph. In other words, the similarity does not depend
on the relationships between substructures. As a consequence, these kernels can-
not establish reliable structural correspondences between the substructures. This
limits the precision of the resulting similarity measure. To overcome this prob-
lem, Fröhlich et al. [5] introduced alternative optimal assignment kernels. Here
each pair of structures is aligned before comparison. However, the introduction of
the alignment step results in a kernel that is not positive definite in general [19].
The problem results from the fact that alignments are not in general transitive.
In other words, if σ is the vertex-alignment between graph A and graph B, and π
is the alignment between graph B and graph C, in general we cannot guarantee
that the alignment between graph A and graph C is π ◦ σ. On the other hand,
when the alignments are transitive, there is a common simultaneous alignment
of all the graphs. Under this alignment, the optimal assignment kernel is simply
the sum over all the vertex/edge kernels, which is positive definite since it is
the sum of separate positive definite kernels. While lacking positive definiteness
the optimal assignment kernels cannot be guaranteed to represent an implicit
embedding into a Hilbert space, they have nonetheless been proven to be very
effective in classifying structures.

There has recently been an increasing interest in quantum computing because
of the potential speed-ups over classical algorithms. Recently Bai et al. [1]
introduced a graph kernel based on a Quantum analogue of the Jensen-Shannon
divergence between average states of continuous-time quantum walks over the
structures to be analyzed. Being based on the divergence which is conjectured to
be negative definite [4], the kernel is thought to be positive definite. However it
lacks permutational invariance, thus different permutations of the same graphs
result in different values of the kernel. This fact, while mitigated by the long
range interactions reinforced by the interference patterns in quantum walks, is
a rather undesirable property for a structural kernel. For this reason in this
paper we modify the kernel by adding a novel alignment step that rather than
permuting the nodes of the structures, aligns the quantum states of the walks.
This results in a novel kernel that is permutationally invariant and maintains
similar localization property of the alignment kernels [5, ?]. Further, we prove
that the alignment transformations between multiple structures are transitive
and that, for this particular alignment, the kernel is always positive definite.
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2 Quantum Mechanical Background

Quantum walks are the quantum analogue of classical random walks. Given a
graph G = (V,E), the state space of the continuous-time quantum walk defined
on G is the set of the vertices V of the graph. Unlike the classical case, where
the evolution of the walk is governed by a stochastic matrix, in the quantum
case the dynamics of the walker is governed by a complex unitary matrix i.e., a
matrix that multiplied by its conjugate transpose yields the identity matrix. As
a consequence, the evolution of the quantum walk is reversible, which implies
that quantum walks are non-ergodic and do not possess a limiting distribution.
See [9] for an overview of the properties of quantum walks. Using Dirac notation,
we denote the basis state corresponding to the walk being at vertex u ∈ V as |u〉.
A general state of the walk is a complex linear combination of the basis states,
such that the state of the walk at time t is defined as |ψt〉 =

∑

u∈V αu(t) |u〉

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C
|V | are both complex.

At each point in time the probability of the walker being at a particular
vertex of the graph is given by the square of the norm of the amplitude of the
relative state. More formally, let Xt be a random variable giving the location
of the walker at time t. Then the probability of the walker being at the vertex
u at time t is given by Pr(Xt = u) = αu(t)α

∗
u(t) where α∗

u(t) is the complex
conjugate of αu(t). Moreover, in a closed system

∑

u∈V αu(t)α
∗
u(t) = 1.

The evolution of the walk over graph G = (V,E) is governed by Schrödinger
equation, where we take the Hamiltonian of the system to be the graph Laplacian
L, which, eliminating scaling constants, yields

d

dt
|ψt〉 = −iL |ψt〉 (1)

Given an initial state |ψ0〉, we can solve Equation 1 to determine the state
vector at time t |ψt〉 = e−iLt |ψ0〉 = Φe−iΛtΦ⊤ |ψ0〉, where L = ΦΛΦ† is the
spectral decomposition of the Laplacian matrix.

While a pure state can be naturally described using a single ket vector, in
general a quantum system can be in a mixed state, i.e., a statistical ensemble
of pure quantum states |ψi〉, each with probability pi. The density operator (or
density matrix) of such a system is defined as

ρ =
∑

i

pi |ψi〉 〈ψi| . (2)

Density operators are positive unit-trace matrices directly linked with the
observables of the (mixed) quantum system. Let O be an observable, i.e., an
Hermitian operator acting on the quantum states and providing a measurement.
The expected value of the measurement O over a mixed state can be calculated
from the density matrix ρ: 〈O〉 = tr (ρO), where tr is the trace operator.

The Von Neumann entropy of a density operator ρ is

HN (ρ) = −Tr(ρ log ρ) = −
∑

j

λj log λj , (3)
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where the λjs are the eigenvalues of ρ. With the Von Neumann entropy to hand,
we can define the quantum Jensen-Shannon divergence between two density
operators ρ and σ as

DJS(ρ, σ) = HN

(ρ+ σ

2

)

−
1

2
HN (ρ)−

1

2
HN (σ) (4)

This quantity is symmetric, bounded between 0 and 1, and negative definite for
pure states and is conjectured with ample experimental evidence to be negative
definite for all states [4].

Finally, for a graph G(V,E), let |ψt〉 denote the state corresponding to a
continuous-time quantum walk that has evolved from time t = 0 to time t = T .
We define the time-averaged density matrix ρ†G for G(V,E)

ρ
†
G =

1

T

∫ T

0

|ψt〉 〈ψt| dt . (5)

Let φxy denote the (xy)th element of the matrix of eigenvectors Φ of the
Laplacian. Following [14], we compute the (r, c)th element of ρT as follows:

ρ
†
G(r, c) =

n
∑

k=1

n
∑

y=1

φrkφcyψ̄kψ̄y

1

T

∫ †

0

ei(λy−λk)t dt. (6)

If we let T → ∞, Eq.(6) further simplifies to

ρ∞G =
∑

λ∈Λ̃

Pλρ0P
⊤
λ (7)

where Λ̃ is the set of distinct eigenvalues of the Laplacian matrix L and Pλ is
the orthogonal projector onto the eigenspace associated with λ.

3 State-Aligned QJSD Kernel

In [1] the Bai et al. defined a kernel based on the Quantum Jensen Shannon
divergence between two continuous-time quantum walks between the graphs.
The QJSD kernel was defined as

KQJSD(G1, G2) = exp (−βDJS(ρ1, ρ2)) (8)

where ρ1 and ρ2 are the time-averaged density matrices associated with the
quantum walks over G1 and G2 respectively, and β is a decay parameter of the
kernel. The walks are initialized in the starting state

|Ψ0〉 =
∑

u∈V

√

du
∑

v∈V dv
|u〉 . (9)
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The kernel is positive definite under the conjecture that the quantum Jensen-
Shannon divergence is negative definite for all states, and exhibited good per-
formance on several graph classification tasks, but its value is dependent on the
order under which the nodes are presented due to the mixing term ρ+σ

2 in the
definition of the divergence.

In this paper we solve the permutational invariance problem of the QJSD
kernel by adding an alignment step to the computation of the kernel. In con-
trast to alternative alignment kernels such as [5] and [?], the alignment is not
performed over the node permutations Σn of the graphs. Rather it is performed
over the quantum basis under which the walker can be observed. In classical
random walks the nodes of the graph provide a preferred basis for observation
as the walker cannot be simultaneously on multiple nodes, thus the only avail-
able degree of freedom is in the choice of an order within the basis vectors, i.e.,
the observation basis is fully defined up to a permutation π ∈ Σn. This is in
stark contrast with quantum mechanics where, due to quantum superposition,
prior to observation a quantum walker can be simultaneously at multiple nodes,
and the observation itself can be performed under any quantum superposition of
states. This means that any orthogonal basis is valid for observation and, thus,
the basis is defined up to a unitary transformation O ∈ U(n), where U(n) is the
Unitary group over Cn.

Following this property, we define a State-aligned QJSD kernel as

KSAQJSD(G1, G2) = max
O∈U(n)

exp
(

−βDJS(ρ1, Oρ2O
†)
)

(10)

= exp

(

−β min
O∈U(n)

DJS(ρ1, Oρ2O
†)

)

In the following we will prove some important properties of the state-aligned
kernel. Namely we will give a closed form solution to the alignment, prove that
the optimal transformation are transitive, and prove that the resulting kernel is
positive definite without making use of the negative-definiteness conjecture for
the quantum Jensen-Shannon divergence.

3.1 Properties of the State-Aligned QJSD Kernel

We start by enunciating a theorem relating the optimal state-alignment to the
eigenvectors of the density matrices. For a proof of this result see [18].

Theorem 1. Let ρ1 = Φ1Λ1Φ
†
1 and ρ2 = Φ2Λ2Φ

†
2 be the singular value decom-

positions of ρ1 and ρ2 respectively, with the eigenvalues in descending order in

both Λ1 and Λ2, then the global minimum of H̄N (O) is attained by O∗ = Φ1Φ
†
2.

This theorem tells us how to efficiently compute the state alignment. Further,
this transformation aligns the eignevectors resulting in a mixed density matrix
1
2 (ρ1 + O∗ρ2O

∗†) with eigenvalues 1
2 (λ1 + µi) where λ1, . . . , λn and µ1, . . . , µn

are the eigenvalues of ρ1 and ρ2 respectively taken in descending order with their
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multiplicity. This means that the aligned Jensen Shannon divergence only needs
the eigenvalues of ρ1 and ρ2 to be computed, in fact:

min
O∈Un

DJS(ρ1, Oρ2O
†) =

n
∑

j=1

−
λj + µj

2
log

(

λj + µj

2

)

+
λj log(λj) + µj log(µj)

2
.

(11)
This reduces the computational complexity of computing the kernel for all times
at which the mixed density matrix is computed, as we do not need to perform the
eignedecomposition of the mixed matrix 1

2 (ρ1+ρ2) for each pair of graphs in the
kernel. Rather, we only need to compute the eigenvalues (not the eigenvectors)
of all the density matrices beforehand. The resulting complexity for the whole
kernel computation is O(Nn3 + N2n) where N is the number of graphs and n
their (maximum) size. In contrast, the QJSD kernel has complexity O(Nn3 +
N2n2) due to the eigenvalue computation for each pair of graphs.

Further, in the case of the infinite-time mixing matrix, we can significantly
reduce the computational burden of computing the eigenvalues of the density
matrix, by using a result presented in [14]. There it was proven that the infinite-
time mixing matrix commuted with the graph Laplacian. As a consequence,
ρ∞ expressed in the eigenbasis of the Laplacian, is a block diagonal matrix
where blocks correspond to eigenspaces associated with a single eigenvalue. Let
L = ΦΛΦ†, be the spectral decomposition of the graph Laplacian, we denote
with Φj the matrix formed with the columns of Φ corresponding to the eigen-
vectors associated with the j-th distinct eigenvalue. The j-th diagonal block of
ρ∞ expressed in the eigenbasis Φ is Φ†

jρ
∞Φj . using Eq. (7) and recalling that

Pj = Φ
†
jΦj , we have

Φ
†
jρ

∞Φj = Φ
†
jρ

∞Φj = Φ
†
jρ

0Φj = Φ
†
j |ψ0〉 〈ψ0|Φj =

∣

∣

∣
Φ
†
jψ0

〉〈

Φ
†
jψ0

∣

∣

∣
(12)

which is a rank 1 matrix with a single non-zero eigenvalue λj = ‖Φ†
jψ0‖

2. Hence,
once the singular value decomposition of the graph’s Laplacian is to hand, we
can compute the eigenvalues of the infinite-time mixing matrix directly, without
the need for an additional decomposition. This makes the infinite-time kernel
particularly efficient to compute.

It is worth noting that as the graph Laplacian has eigenvalues with higher
multiplicity the infinite-time mixing matrix has more zero eigenvalues resulting
in a lower Von Neumann entropy. This is particularly interesting since higher
multiplicities of the eigenvalues is associated with the presence of symmetries in
the graph [12] which, in turn, have been used to characterize the entropy of the
structure [11].

We can now prove the following properties for the state-aligned kernel

Theorem 2. The Unitary transformations minimizing the quantum Jensen Shan-

non divergence between pairs of density matrices in a set are transitive, i.e. let

Oi,j = argmin
O∈U(n)

DJS(ρi, OρjO
†)
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with i, j ∈ {1, 2, 3}, then

DJS

(

ρ1, O1,2O2,3ρ3O
†
2,3O

†
1,2

)

= DJS

(

ρ1, O1,3ρ3O
†
1,3

)

Proof The optimal transformation between two density matrices is completely
determined by the relation O∗

1,2 = Φ1Φ
†
2 up to a change of sign of the eigenvalue

and a change of base for each eignespace associated with an eigenvalue with
multiplicity greater than one. In any case these changes do not affect the value
of the divergence. However,

O∗
1,2O

∗
2,3 = Φ1Φ

†
2Φ2Φ

†
3 = Φ1Φ

†
3 = O∗

1,3 (13)

QED.

Theorem 3. The quantum aligned QJSD kernel is positive definite.

Proof As a consequence of the previous theorems, the value of the quantum
Jensen Shannon divergence of the optimally aligned density matrices is equal to
the normal Jensen Shannon divergence of the sorted eigenvalues of the density
matrices (taken as probability distributions). Since the Jensen Shannon diver-
gence is proven to be negative definite [4] the state-aligned QJSD kernel, being
an exponentiation of a negative definite kernel is positive definite [10]. QED.

4 Experimental Results

We now evaluate the performance of the State-Aligned (SA) QJSD kernel and
we compare it with a number of well-known alternative graph kernels. More
specifically, we compare our kernel with the unaligned QJSD kernel [1], the
Weisfeiler-Lehman kernel [16], the graphlet kernel [17], the shortest-path ker-
nel [3], and the random walk kernel [8]. Note that for the Weisfeiler-Lehman we
set the number of iterations h = 3 and we attribute each node with its degree.

We run our experiments on the following datasets: 1) The PPI dataset,
which consists of protein-protein interaction (PPIs) networks related to histidine
kinase [7] (40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria).
2) The PTC (The Predictive Toxicology Challenge) dataset, which records the
carcinogenicity of several hundred chemical compounds for male rats (MR), fe-
male rats (FR), male mice (MM) and female mice (FM) [15] (here we use the
344 graphs in the MR class). 3) The COIL dataset, which consists of 5 objects
from [13], each with 72 views obtained from equally spaced viewing directions,
where for each view a graph was built by triangulating the extracted Harris
corner points. 4) The Reeb dataset, which consists of a set of adjacency ma-
trices associated to the computation of reeb graphs of 3D shapes [2]. Further
information on the four selected datasets is shown in Table ??.

We use a binary C-SVM to test the efficacy of the kernels. We perform 10-
fold cross validation, where for each sample we independently tune the value
of C, the SVM regularizer constant, by considering the training data from that
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Fig. 1. The average classification accuracy as the time parameter of the continuous-
time quantum walk varies, for an optimal (left) and sub-optimal value of the decay
factor β.

sample. The process is averaged over 100 random partitions of the data, and the
results are reported in terms of average accuracy ± standard error.

Fig. 1 shows the value of the average classification accuracy (± standard
error) on the PTC dataset as we let the time parameter of the continuous-time
quantum walk vary. Here the red horizontal line denotes the average accuracy
for T → ∞. Note that in Fig. 1(a) we set the decay parameter β of the kernel
to a sub-optimal value, while in Fig. 1(b) we set it to its optimal value, i.e., the
value that results in the best classification accuracy. The plot shows that when
β is sub-optimal the choice of the time parameter has a clear influence on the
performance of our kernel. In fact, we see that the average accuracy reaches a
maximum before stabilizing around the asymptotic value. On the other hand,
when β is optimized the best classification performance is achieved when T → ∞.
Moreover, in the latter case the average classification accuracy is higher than that
recorded for smaller values of T and a sub-optimal β.

Table 1. Classification accuracy (± standard error) on unattributed graph datasets.
SA QJSD and QJSD denote the proposed kernel and its original unaligned version,
respectively, WL is the Weisfeiler-Lehman kernel [16], GR denotes the graphlet kernel
computed using all graphlets of size 3 [17], SP is the shortest-path kernel [3], and RW
is the random walk kernel [8]. For each kernel and dataset, the best performing kernel
is highlighted in bold.

Kernel PPI PTC COIL Reeb

SA QJSD 75.69± 0.85 60.13± 0.51 67.84± 0.15 38.50± 0.26

QJSD 69.12± 1.01 56.06± 0.45 69.90± 0.22 35.78± 0.42

WL 79.40± 0.96 56.95± 0.31 29.00± 0.57 50.53± 0.41

GR 51.94± 0.97 55.22± 0.19 66.46± 0.44 22.80± 0.36

SP 63.31± 0.80 56.51± 0.36 69.68± 0.36 55.93± 0.36

RW 50.37± 0.78 55.68± 0.14 12.18± 0.21 16.47± 0.43
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Table 2. Runtime comparison on the four graph datasets.

Kernel PPI PTC COIL Reeb

SA QJSD 4.11” 14.90” 46.49” 20.07”

QJSD 118.16” 39.81” 1911.452” 495.46”

WL 4.55” 4.32” 23.46” 12.29”

GR 2.90” 0.85” 7.99” 2.23”

SP 5.09” 1.03” 22.43” 7.30”

RW 20.19” 246.20” 505.75” 833.16”

Table 1 shows the average classification accuracy (± standard error) of the
different kernels on the selected datasets. As expected, we see that the state
alignment almost invariably yields an increase of the performance with respect
to the standard QJSD kernel. Indeed, the localization property of the kernel that
results from the quantum state alignment leads to a better discrimination, and
thus a higher classification accuracy. Moreover, while the QJSD kernel has not
been proven to be positive definite, as the quantum Jensen-Shannon divergence
has only been experimentally shown to be negative definite for mixed states, our
kernel is indeed positive definite, as proved in the previous Section.

Finally, Table 2 shows the runtimes of the different kernels on the four graph
datasets. Note that in terms of runtime the SA QJSD kernel easily outperforms
the other spectral methods, i.e., the QJSD kernel and the random walk kernel,
and it is still competitive when compared with the remaining kernels.

With respect to the other kernels, the SA QJSD kernel achieves the best
accuracy on the PTC dataset, and it remains competitive with the best per-
forming ones on the PPI and COIL dataset. On the Reeb dataset, on the other
hand, the shortest-path kernel and the Weisfeiler-Lehman kernel outperform our
kernel and the remaining ones. Note also that the Weisfeiler-Lehman mitigates
the localization problem by making use of the node labels and thus improving
node localization in the evaluation of the kernel. On the other hand, our kernel
does not take node attributes into account.

5 Conclusions

In this paper we have generalized a recent structural kernel based on the Jensen-
Shannon divergence between quantum walks over the graph by introducing a
novel alignment step which, rather than permuting the nodes of the structures,
aligns the quantum states of their walks. We proved that the resulting kernel
mantains the localization within the structures, but still guarantees positive
definiteness. We tested our kernel against a number of alternative graph kernels
and we showed its effectiveness in a number of structural classification tasks.

Acknowledgments. Edwin Hancock was supported by a Royal Society Wolfson
Research Merit Award.
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shape matching through topological structures, in: DGCI, pp. 194–203, 2003.

3. K.M. Borgwardt, H.P. Kriegel, Shortest-path kernels on graphs, in: Proc. IEEE
Int. Conf. Data Mining (ICDM), pp. 74–81, 2005.
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