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Commute Time for a Gaussian Wave Packet on

a Graph

Furqan Aziz, Richard C. Wilson, and Edwin R. Hancock ⋆
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Abstract. This paper presents a novel approach to quantifying the in-
formation flow on a graph. The proposed approach is based on the solu-
tion of a wave equation, which is defined using the edge-based Laplacian
of the graph. The initial condition of the wave equation is a Gaussian
wave packet on a single edge of the graph. To measure the information
flow on the graph, we use the average return time of the Gaussian wave
packet, referred to as the wave packet commute time. The advantage of
using the edge-based Laplacian of a graph over its vertex-based coun-
terpart is that it translates results from traditional analysis to graph
theoretic domain in a more natural way. Therefore it can be useful in
applications where distance and speed of propagation are important.

Key words: Edge-based Laplacian, wave equation, wave commute time,
speed of propagation, graph complexity

1 Introduction

One of the most challenging problems in the study of complex network is to char-
acterize the topological structure of a network, i.e., the way in which the nodes
interact with each other. Each real-world network exhibits certain topological
features that characterize its structure. Examples of such features are clustering
coefficient, maximum degree, average degree, and average path-length. Over the
recent years, researchers have developed different models that have similar prop-
erties as the real-world network. These models help us to understand or predict
the structure of these systems. Examples of such models are scale-free networks
[15] and small-world networks [14].

Recently, spectral methods have been successfully used for quantifying the
complexity of a network. Passerini et al. [3] have used the spectrum of the nor-
malized discrete Laplacian to define the von Neumann entropy associated with a
graph. They have shown that this quantity can be used as the measure of the reg-
ularity of a graph. Han et al. [4] have approximated the von Neumann entropy
using quadratic entropy and have shown that the approximate von Nuemann
entropy is related to the degree statistics of the graph. Escolano et al. [5] have
used the diffusion kernel to quantify the intrinsic complexity of the undirected
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networks. They have also extended their work to directed networks [6]. Suau et
al. [7] have analyzed the Schrödinger operator for characterizing the structure of
a network. Lee et al. [9] have used the spectral methods to discover the genetic
ancestry.

The structure of complex network also plays an important role in the dynam-
ics of information propagation. For this reason the study of complex networks is
becoming increasingly popular in epidemiology, where the goal is to study the
mathematical models that can be used to simulate the infectious disease out-
breaks in a social contact network. Grenfell [1] has discussed the traveling waves
in measles epidemics. Abramson et al. [2] considered traveling waves of infection
in the Hantavirus epidemics. Other real-life applications of information propa-
gation over a network include the study of spreading a message over a social
network and the study of a computer virus spreading over the internet [10].

While spectral method using discrete Laplacian have been successfully used,
they suffer from certain limitations. Since the traditional graph Laplacian is
an approximation of the continuous Laplacian to the discrete points, one of its
limitations is that it cannot be used to translate most of the continuous results
to a graph theoretic domain. For example the wave equation, defined using the
discrete Laplacian, does not have finite speed of propagation. This makes it
inappropriate for the applications that require spatial analysis or finite speed
of propagation; e.g., spread of information in a network. The problem can be
overcomed by treating edges of the network as real length intervals. This allows
us to define a new kind of Laplacian, the edge-based Laplacian (EBL) of the
graph [11][12]. The study of the edge-based Laplacian may be of great interest
in appplications where the distance and speed of propagation are important.

In this paper our goal is to study the use of a wave equation, for the purpose
of measuring the information flow across the network. The wave equation is
defined using the edge-based Laplacian of a graph, where the initial condition is
a Gaussian wave packet on a single edge of the graph. We define the wave packet
hitting time, i.e., the time required for a wave packet to reach an edge f starting
from an edge e, and the wave packet commute time, i.e., the time required for a
wave packet to come back to the same edge from where it started. The remaining
of this paper is organized as follows: We commence by introducing the edge-
based Laplacian of a graph. Next we give a solution of a wave equation defined
using the edge-based Laplacian, where the initial condition is a Gaussian wave
packet. Based on the solution of wave equation we define wave packet hitting
time (WHT) and wave packet commute time (WCT). Finally, in the experiment
section, we apply the proposed method to different network models.

2 Edge-based Laplacian of a graph

Before introducing the edge-based Laplacian (EBL), in this section we provide
some basic definitions and notations that will be used throughout the paper. A
graph G = (V, E) consists of a finite nonempty set V of vertices and a finite
set E of unordered pairs of vertices, called edges. A directed graph or a digraph
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D = (VD, ED) consists of a finite nonempty set VD of vertices and a finite set
ED of ordered pairs of vertices, called arcs. So a digraph is a graph with an
orientation on each edge. A digraph D is called symmetric if whenever (u, v)
is an arc of D, (v, u) is also an arc of D. There is a one-to-one correspondence
between the set of symmetric digraphs and the set of graphs, given by identifying
an edge of the graph with an arc and its inverse arc on the digraph on the same
vertices. We denote by D(G) the symmetric digraph associated with the graph
G. The oriented line graph is constructed by replacing each arc of D(G) by a
vertex. These vertices are connected if the head of one arc meets the tail of
another, except that reverse pairs of arcs are not connected, i.e. ((u, v), (v, u)) is
not an edge.

We now define the EBL of a graph. The eigensystem of the EBL of a graph
can be expressed in terms of the normalized adjacency matrix of a graph and the
adjacency matrix of the oriented line graph [11][12]. Let G = (V, E) be a graph
with a boundary ∂G. Let G be the geometric realization of G. The geometric
realization is the metric space consisting of vertices V with a closed interval of
length le associated with each edge e ∈ E . We associate an edge variable xe with
each edge that represents the standard coordinate on the edge with xe(u) = 0
and xe(v) = 1. For our work, it will suffice to assume that the graph is finite with
empty boundary (i.e., ∂G = 0) and le = 1. The eigenfunctions of the EBL are
of two types; vertex-supported eigenfunctions and edge-interior eigenfunctions.

2.1 Vertex Supported Edge-based Eigenfunctions

The vertex-supported eigenpairs of the EBL can be expressed in terms of the
eigenpairs of the normalized adjacency matrix of the graph. Let A be the adja-
cency matrix of the graph G, and Ã be the row normalized adjacency matrix.
i.e., the (i, j)th entry of Ã is given as Ã(i, j) = A(i, j)/

∑

(k,j)∈E A(k, j). Let

(φ(v), λ) be an eigenvector-eigenvalue pair for this matrix. Note φ(.) is defined
on vertices and may be extended along each edge to an edge-based eigenfunction.
Let ω2 and φ(e, xe) denote the edge-based eigenvalue and eigenfunction. Here
e = (u, v) represents an edge and xe is the standard coordinate on the edge (i.e.,
xe = 0 at v and xe = 1 at u). Then the vertex-supported eigenpairs of the EBL
are given as follows:

1. For each (φ(v), λ) with λ 6= ±1, we have a pair of eigenvalues ω2 with
ω = cos−1 λ and ω = 2π − cos−1 λ. Since there are multiple solutions to
ω = cos−1 λ, we obtain an infinite sequence of eigenfunctions; if ω0 ∈ [0, π] is
the principal solution, the eigenvalues are ω = ω0 + 2πn and ω = 2π − ω0 +
2πn, n ≥ 0. The eigenfunctions are φ(e, xe) = C(e) cos(B(e) + ωxe) where

C(e)2 =
φ(v)2 + φ(u)2 − 2φ(v)φ(u) cos(ω)

sin2(ω)

tan(B(e)) =
φ(v) cos(ω)− φ(u)

φ(v) sin(ω)
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There are two solutions here, {C,B0} or {−C,B0 + π} but both give the
same eigenfunction. The sign of C(e) must be chosen correctly to match the
phase.

2. λ = 1 is always an eigenvalue of Ã. We obtain a principle frequency ω = 0,
and therefore since φ(e, xe) = C cos(B) and so φ(v) = φ(u) = C cos(B),
which is constant on the vertices.

3. If the graph is bipartite then λ = −1 is an eigenvalue of Ã. We obtain a
principle frequency ω = π, and therefore since φ(e, xe) = C cos(B + πxe)
and so φ(v) = −φ(u), implying an alternating sign eigenfunction.

2.2 Edge-interior eigenfunctions

The edge-interior eigenfunctions are those eigenfunctions which are zero on ver-
tices and therefore must have a principle frequency of ω ∈ {π, 2π}. These eigen-
functions can be determined from the eigenvectors of the adjacency matrix of
the oriented line graph.

1. The eigenvector corresponding to the eigenvalue λ = 1 of the oriented line
graph provides a solution in the case ω = 2π, and we obtain |E| − |V| + 1
linearly independent solutions.

2. Similarly the eigenvector corresponding to the eigenvalue λ = −1 of the
oriented line graph provides a solution in the case ω = π. If the graph is
bipartite, then we obtain |E| − |V|+ 1 linearly independent solutions. If the
graph is non-bipartite, then we obtain |E|−|V| linearly independent solutions.

This comprises all the principal eigenpairs which are only supported on the
edges.

Note that although these eigenfunctions are orthogonal, they are not norm-
laized. To normalize these eigenfunctions we need to find the normalization factor
corresponding to each eigenvalue and divide each eigenfunction with the corre-
sponding normalization factor. Once normalized, these eigenfunctions form a
complete set of orthonormal bases.

3 Wave packet commute time

Recently, we have solved a wave equation on a graph, where the initial condition
is a Gaussian wave packet on a single edge of a graph [8]. The wave equation is
a second order partial differential equation, defined as

∂2u

∂t2
(X , t) = ∆Eu(X , t), (1)

where ∆E is the EBL, and X represents the value of a standard coordinate x
on an edge e. Let ω2 represents the eigenvalue of the EBL with the correspond-
ing eigenfunction φω,n(X ) = C(e, ω) cos (B(e, ω) + ωx+ 2πnx). The complete
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solution is given as [8]

u(X , t) =
∑

ω∈Ωa

C(ω, e)C(ω, f)

2

(

e−aW(x+t+µ)2

cos

[

B(e, ω) +B(f, ω) + ω

⌊

x+ t+ µ+
1

2

⌋]

+ e−aW(x−t−µ)2 cos

[

B(e, ω)−B(f, ω) + ω

⌊

x− t− µ+
1

2

⌋])

+
1

2|E|

(

e−aW(x+t+µ)2 + e−aW(x−t−µ)2
)

+
∑

ω∈Ωb

C(ω, e)C(ω, f)

4

(

e−aW(x−t−µ)2 − e−aW(x+t+µ)2
)

+
∑

ω∈Ωc

C(ω, e)C(ω, f)

4

(

(−1)⌊x−t−µ+ 1

2⌋e−aW(x−t−µ)2

−(−1)⌊x+t+µ+ 1

2⌋e−aW(x+t+µ)2
)

. (2)

HereW(z) wraps the value of z to the range [− 1
2 ,

1
2 ), and ⌊z⌋ is the floor function.

Once we have the solution of the wave equation, we can define a number
of interesting invariants to understand the properties of the flow of information
across the network. This also helps us to quantify the structure of the network.
We commence by defining the wave packet commute time of a graph. Given a
graph G = (E ,V) we define the wave packet commute time (WCT) of an edge e
as follows. Assume that the initial condition of the wave equation is a Gaussian
wave packet on the edge e ∈ E and zero elsewhere. Then

WCT(e) = mint>0{t : u(e, 0.5) > δ}, (3)

i.e., the WCT is the time when the wave packet with amplitude at least δ (at
the middle of the edge), returns back to the edge e. Figure 4(a) demonstrates
the wave commute time for a simple graph with 5 nodes and 7 links. Here the
initial condition is a Gaussian wave packet on the edge e1 of the graph. The
bottom right figure shows the fraction of the wave packet returned back at time
t = 3. Note that at time t = 1, a wave packet with negative amplitude (a trough)
returns to the edge e1. A trough will always be created when a wave packet is
traveling along an edge (u, v) in the directed of v, and the degree of v is at least
3.

Edge-commute time can also be defined in terms of the hitting time of the
wave packet. Given two edges e, f ∈ E , the wave packet hitting time (WHT) can
be defined as follows. Assume that the initial condition of the wave equation is
a Gaussian wave packet on the edge e ∈ E and zero elsewhere. Then

WHT(e, f) = mint>0{t : u(f, 0.5) > δ}, (4)

i.e., the WHT is the time when the wave packet with amplitude at least δ (at the
middle of the edge), reaches the edge f , starting from edge e. The edge-commute
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Fig. 1. Commute time of a Gaussian wave packet on a graph

time can then be defined as:

WCT(e) =
1

|E|

∑

f∈E

WHT (e, f), (5)

i.e., the WCT for the edge e is the average of the WHT over all the edges of
the graph. However, the WCT defined using the WHT is computationally more
expensive, and therefore in the experiment section we use the WCT defined in
Equation 3.

To quantify the complexity of a network, we define a global invariant based
on the WCT as:

GWCT(G) =
1

|E|

∑

e∈E

WCT (e), (6)

i.e., GWCT of a network is the average of the WCT over all the links of the
network. In the next section we will show that GWCT provides a good measure
for distinguishing graphs with different structures.

4 Experiments

In this section we study the flow of information across a network using WCT and
WHT and demonstrate the ability of GWCT to distinguish graphs with different
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structural properties. We experiment our proposed method on the following three
different types of network models.

Erdős-Rényi model(ER) [13]: An ER graph G(n, p) is constructed by con-
necting n vertices randomly with probability p. i.e., each edge is included
in the graph with probability p independent from every other edge. These
models are also called random networks.

Watts and Strogatz model(WS) [14]: AWS graphG(n, k, p) is constructed
in the following way. First construct a regular ring lattice, a graph with n
vertices and each vertex is connected to k nearest vertices, k/2 on each side.
Then for every vertex take every edge and rewire it with probability p. These
models are also called small-world networks.

Barabási-Albert model(BA) [15]: A BA graph G(n, n0,m) is constructed
by an initial fully connected graph with n0 vertices. New vertices are added
to the graph one at a time. Each new vertex is connected to m previous
vertices with a probability that is proportional to the number of links that the
existing nodes already have. These models are also called scale-free networks.

Figure 2 shows an example of each of these models.

(a) random graphs (b) small-world graph (c) scale-free graph

Fig. 2. Graph models

As mentioned earlier, one of the advantages of the wave equation defined us-
ing the EBL is that it has finite speed of propagation [11]. This makes it suitable
for applications that require finite speed of propagation. In our first experiment,
we demonstrate the ability of edge-based wave equation for identifying infected
links in a network. For this purpose, we generate a BA network and a WS net-
work each with 60 nodes and 175 links. We have computed the WHT for each
edge of the graph starting from an edge e. The edge e = (u, v) ∈ E is selected,
such that u is the highest degree vertex in the graph and v is the highest de-
gree vertex in the neighbours of u. Figure 3 shows the cumulative frequencies of
infected links for both graphs with different values of δ. As expected, the cumu-
lative number of infected links decreases as δ increases. Note that the links in
WS network are infected quickly than links in BA network. This is due to the
presence of hub in BA network, which distributes the wave packet with small
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amplitudes to more links. The WS network, on the other hand, has more regular
structure that allows the wave packet to transmit across the network with high
amplitudes.

Fig. 3. Number of links infected with time

The above experiment shows that the WCT behaves differently on different
graphs. This suggests that the WCT can be used to quantify the structure of a
complex network. In our next experiment, we demonstrate the ability of WCT to
distinguish networks with different substructures. For this purpose, we generate
100 graphs for each model with n = 50 + (d − 1)k with k = 1, 2, ..., 100, where
n is the number of vertices. We have chosen the other parameters in such a
way so that all three types of graphs with the same number of vertices have
approximately the same number of edges. For ER models we choose p = 10/n,
for WS models we choose p = 0.25 and k = 8, and for BA models we choose
n0 = 5 and k = 4. For each graph we compute the wave commute time and
average it over all the edges. Figure 4(a) shows the average value for the three
different types of graphs. Results suggest that the wave commute time is highly
robust in distinguishing the graphs with different structures.

Figure 4(b) shows a similar analysis for vertex commute time, which is defined
as the expected number of steps for a random walk starting from a vertex u, hits
vertex v and then returns to u. The commute time of a vertex u to a vertex v can
be computed from the eigenvalues and eigenvectors of the normalized Laplacian.
Let (λ, φ) be the eigenpair of the normalized Laplacian. Then the commute time
is defined as:

CT (u, v) =

|V|
∑

i=2

(

√

vol

λidu
φi(u)−

√

vol

λidv
φi(v)

)2

, (7)

where du represents the degree of the vertex u and vol represents the sum of
degrees for an unweighted graph. The x-axis in Figure 4(b) shows the average
commute time over all vertices.
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(a) Wave commute time (b) Vertex commute time

Fig. 4. Wave commute time vs commute time

The mean and the standard error of the edge-commute time depend on the
regularity structure of the graph. As the regularity of the graph increases, the
value of the standard error decreases. Note that the value of WCT depends on
the size of the smallest cycle to which the edge belongs. Figure 5 shows the
mean values and the standard errors for the graphs generated in the previous
experiment. Since WS networks are more regular as compared to BA networks,
they therefore have smaller standard errors. Also, if the probability p of rewiring
is kept low, then the WS network has more small length cycles. Therefore the
mean values of WS networks are small as compared to BA networks. Note that
ER graphs exhibit more variation in the mean values due to their random struc-
ture. Their mean and standard error values lie between that of the BA graphs
and the WS graphs.

Fig. 5. Mean values and standard errors
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5 Conclusion

In this paper we have studied the properties of the commute time (WCT) and
the hitting time (WHT) of a Gaussian wave packet on a graph. The WCT and
WHT are based on the solution of the wave equation defined using the edge-
based Laplacian of a graph where the initial condition is a Gaussian wave packet
on a single edge of the graph. We have shown the application of WCT and WHT
for quantifying the structure and information flow of a network. The advantage
of using the edge-based Laplacian (EBL) is that this approach is more closely
related to mathematical analysis than the usual discrete Laplacian. This allows
us to implement equation on graphs which have finite speed of propagation.
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