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Abstract

If bus service departure times are not completely unknown to the passergers)iform passenger arrival

patterns can be expected. We propose that passengers decide their arrivabtipe ldsed on a continuous
logit model that considers the risk of missing services. Expected passaitjeg Wmes are derived in a bus

system that allows also for overtaking between bus services. We tigos@ran algorithm to derive the dwell
time of subsequent buses serving a stop in order to illustrate whdsubcising might occur. We show that

non-uniform arrival patterns can significantly influence the bushimg process. With case studies we find
that, even without exogenous delay, bunching can arise whenahdirigprate is insufficient given the level of
overall demand. Further, in case of exogenous delay, non-unifioimals can either worsen or improve the
bunching conditions, depending on the level of delay. We concludeththiafore such effects should be
considered when service control measures are discussed.

Keywords: Bus bunching; passenger arrival process; service reliability

1. Introduction

Service irregularities increase passenger waiting times, decreasing the attractVendxdis transport. The
more the passengers can trust the service schedule, the better they cheitiareal at stops. Whereas under
completely random service arrivals the passengers can also do no better than “randomly” arrive at stops, in many
cases at least some coherence of the actual arrivals with the service schedube miglected. Therefore, even
if the schedule might not be known to all passengers and uncertainties inc#ss #me to the stop are
considered, non-uniform passenger arrival patterns can be expected. &litheackptions, the effect of such
non-uniformity on bus loads has been largely ignored in the literatarés the topic of this contribution.

We propose a “mixed behaviour”: Passengers consider the likely service departure times and leave some
safety margins in order to ensure that they do not have to wait todoloagous but also minimise the chances
of missing a service. Such a behaviour seems reasonable for passengers with fairly good bus services.
As a motivating example familiar to the authors, consider the bus stogninof Kyoto University. The stop is
close to the office buildings and the most frequent service arrives aroendl&/minutes during the evening
hours. Some passengers, possibly those without knowledge of tedusehwill arrive randomly though the
bulk of passengers will time their arrival to32minutes before scheduled service arrival. Some “risky”
passengers, or those delayed by for example waiting times at the elevilt@rrive even closer to the
scheduled departure.
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In general, it is well known that passenger arrival is influenced by seshiEmacteristics, such as average
value of headways and headway deviations. In particular, it is comraoodypted that passengers tend to arrive
closer to the scheduled departure time (i.e., their arrivals are not unifanar) the headways are large
(scheduled-based behaviour). Bowman and Turnquist (1981jdpravmodel of passenger arrival behavjour
which links the arrival distribution to the characteristics of the service, ingutdimeliability.

Therefore a good understanding of arrival patterns is the foundatinadelling boarding demand. Deriving
bus loads are important to estimate potential capacity bottlenecks and poss#iye splits among bus
operators. Furthermore, bus loads and bus service dwell times atstoglesely correlated, and unexpected
high loads can lead to the wéltown “bus bunching” process. The seminal work of Newell and Potts (1964)
presents a simplified model of the phenomenon, which casts light a cmuses. However, their model does
not provide a realistic representation of bunching as they neglect aspecss ®rchoute service perturbations,
transport operator policies concerning holding and overtaking as well gdesonetwork features such as the
presence of “common lines” among which some of the passengers at a stop might choose. Some of these issues
have been dealt with in later literature as reviewed in more detail in the next section

Newell and Potts further assume uniform passenger arrival. In the aboie BOgostop example this might
overestimate the bunching phenomena as only a few additional passengeris &nevtime interval between the
scheduled and actual service departure and hence delayed buses have to kboadditenal passengers than
predicted with uniform arrival. Furthermore, Newell and Potts do not eapiar effect of severe bunching
where buses might be overtaken.

The contributions of this paper are twofold. Firstly, a model of passemieal @&xtending the approach of
Bowman and Turnquist (1981) to allow for overtaking betweerdas a stop. We refer to our model as the
“reliability-based arrival pattern model” in line with the above example. Secondly, we include these passenger
arrival patterns in a model of bus propagation, highlighting causésirehing which are not identified by
Newell and Potts.

In line with above discussion, our model will be mainly applicable tatsitas in which passengers consider
timetables in deciding their arrival at stops. It is conventionally accep&dimetables influence passengers
decisions for services with expected headways of more than 1@esiiand that, instead, if service headways
are shorter, uniform passenger arrival patterns can be expected. Acteallgreshold between schedule-
dependent and uniform passenger arrival can be lower than the conventmnalreview of existing studies on
the relation between service headway and passenger arrival at stopsidedroy Luethi et al. (2006).
Interestingly, this study finds that passengers consult schedules éemtiae headway is 5 minutes. We
consider the topic discussed in this paper especially of topical importance theeit@reasing presence of
service schedule information to passengers before arrival at a stop eveasgengers unfamiliar with the
network due to online availability of journey planners. More andersidies now provide real-time information
(RTTI) for passengers. RTI changes the “visibility of the network™ and hence passenger behaviour. For instance,
it is reasonable to expect that ubiquitous RTI on departure time (accessgerbgt and/or mobile phone apps)
induces non-uniform passenger arrivals also for short headwaysemadar services.

The reminder of this paper is organized as follows: Section 2 provides aletailed review of the two key
references for this paper, Newell and Potts (1964) and Bowman anguist (1981) as well as further related
and newer literature. Section 3 then introduces the notation that is utilized in latensseé®¢iction 4 describes
the passenger arrival model and Section 5 the bus propagation model. Sectidraegli®th models through
case study applications before Section 7 concludes this paper.

2. Literature Review

Bus bunching is generally defined as the effect of two successiveees of a single line arriving at stops
with shorter than scheduled headways. The effect occurs by thefirgtesbeing delayed at previous stops due
to unplanned long boarding times, or being delayed en-route byegeen traffic congestion. The subsequent
service then has to pick up fewer passengers at that stop and departdhearlmrheduled. At downstream
stops, the effect is than emphasised as the initial delay to the first vatictae early arrival of the subsequent
service result in increasingly longer dwell times for the first bus and Bingdg shorter dwell times for the
second bus.

Bus bunching has a direct negative impact on the passengers as it Jeadaverage, longer dwell-times.
Lisco (1967) found that transit passengers value their time waitingotworee times more than their time on
board travelling. Using a stated-preference survey, Hollander and Li8)(&hd that bus passengers value
service reliability four times higher than they do to mean travel time. Higfaet al. (2007) further demonstrate
that bus unreliability has a significant impact on passengers’ response in their departure-times.



Bus bunching is a common feature in urban public transport, alehgastanding problem facing the
bus/transit service providers and academic researchers alike. The bunchingreffesingle line has been first
analytically described by Newell and Potts (1964). Assuming that travel tietegen stops are identical and
that passenger loads are constant, Newell and Potts show that if the passiemageatarat a stop is larger than
half the loading rate of buses the bunching effect occurs for seralirpations in the original schedule. If the
ratio (referred to below ag-ratio) is smaller, the system can recover from perturbations. Funther bus
bunching is more noted in high frequency services, where the hgdikbtween buses is small and the delay to
headway ratio is more likely exceeding the threshold for a localised bakibg to amplify (rather than being
damped) further down the route. Recently, Schmécker et al. (2015 edtéme bunching research to a route
section served by two lines with high frequency so that some passengers might board “whichever line comes
first”. They show therefore how bunching can spread to initially unaffected lines but also how a line serving
similar stops can also help with service recovery on the initiallytafidme.

There has been a significant body of research designing operational strategldsegs the bus bunching
problem. In particular, holding strategies of early buses as well as stsat@giEep minimum distances between
subsequent services have been analysed and shown to be successfully iaplitézdture. The holding
strategies are implemented through building slacks in the schedule amkey gioints and holding buses at
these points to keep them to schedule (e.g. Osuna and Newell, 1971; N@W&lIHickman, 2001; Xuan et al.,
2011; Cats et al., 2012).

Due to the complexity of the problem, most of the analytical studies invaivimdh just one controlled
timing point. Hickman (2001) developed a simulation approach to sodvéuh bunching problem through
optimal holding points. These are static holding solutions, which doespbnd to dynamical changes in the
actual bus performances on the day. Eberlein et al. (2001) developetebfonalynamical bus holding which
take real-time information on bus headways into consideration afel/ashio minimise passenger waiting time.
The model assumes deterministic passenger demand and bus travel dimesnbstops. Daganzo (2009)
developed a more systematic approach for dynamical holding analysisresitiime bus performance
information. Dagazo’s method is able to consider holding at multiple timing points, therefore providing
opportunity for return to schedule for long bus routes. In addittenmodel takes into account random effects,
such as the random variations in bus travel time, bus dwell time and persdengand, making it resemble
more realistically to real-life situations. Daganzo and Pilachowski (2pddjosed an adaptive bus control
scheme based on a two-way hagsus cooperation, where a bus adjusts its speed to both its fromeamd
headways. They show that the scheme yields significant improtenmebus headways and bus travel time.
Moving away from the traditional ideal of schedule and a prior targetasadartholdi and Eisenstein (2012)
proposed a self-coordinating method to equalise bus headway, whileoRitke{2009) proposed to use the
GPS data to counteract the cause of the bunching directly by allowingighe to cooperate with each other
and to determine their speed based on relative position.

Most of the existing studies are concerned with a simplified bus syswably with a single line, fixed
service frequency, constant passenger flows, and no bus overthliewgll and Potts (1964), for instance,
assume fixed frequency, constant dwell times, edisiénce stops and equal-travel time between stops, and that
buses cannot overtake. In real-life situations these simplifying assusmmtiiously might not hold. Boyd
(1983) presented empirical evidence that demonstrated the impact of variabilitysijourney time on
bunching. Nagatani (2001) shows a strong relationship betweerlysahd the passenger number on bus, and
proposes skipping a bus stop as a way of keeping to schedundraly bus corridors operating multiple lines
that interact through sharing passengers and bus stops are considgrkeck sgenarios for most of the existing
analytical studies (Daganzo and Pilachowski, 2011).

Another significant simplification in the existing studies mentionedénntroduction is the assumption of a
uniform passenger demand distribution over time and space. Yihighlesis of random passenger arrivals is
common in models of public transport. When the randomnes$ieofotis arrival at stops is taken into
consideration, a model of passenger arrivals is needed to compute the tiraiirmnd so the overall journey
time. In networks with frequent transit services and no ubiquitealstime information, models based on the
random incidence assumption can be justified: in fact passengers nm@oneter schedules if they know that
their waiting time for the next service will be low in any case. Asvshfor instance in Larson and Odoni
(1981), under the assumption of passenger random arrival, the waitegxpectation can be easily derived
from the first and second moment of the bus arrival distribuRamdom incidence is assumed in most of the
literature on frequency-based route choice and assignment, notably emnthmalswork of Spiess and Florian
(1989) when deriving “optimal strategies”. The assumption can be still retained when passengers have access to
real time information but only once they have reached a stop, dad@musby Gentile et al. (2005). Conversely,
passenger arrival distributions can be expected not to be uniform wHeimeanformation is available to
passengers even before they go to a stop. With the increasimgjatifbf internet-based information and smart



phones, this scenario is becoming more and more common in nti@syacound the world. It can be anticipated
that passengers who know the predicted bus departure times in adwéilhtrgdo coordinate their arrival with
that of the next attractive bus. Watkins et al. (2011) observed a reductienaztual waiting time from 11 to 9
minutes for passengers of King County Metro using informatioseditnated by internet. Clearly real time
information is not perfectly reliable: bus arrival prediction normally entailsrimation about the current
position of transit vehicles and the use of models to predict the travel timevistdeam stops. Both these
elements are affected by uncertainty (see for instance Crout, 2007).

Liu and Sinha (2007) have further confirmed the non-uniformftglemand. They collected data on bus
travel time, dwell time, and passenger boarding and alighting along autenas route in the city of York, in
England. Significant variations of demand (boarding and alightiege @etected both across bus stops and over
time. Building their observed data into a microsimulation model of thecbur&dor, Sorratini et al. (2008)
showed that the variability of the passenger demand distribution has the igrotasit impact on bus
reliability measures.

Based on this empirical evidence therefore it appears reasonable to argue thaepakessign making
contemplates the overall system reliability deriving from the combinatitimafansport service reliability and
the information system accuracy. A model in which some “schedule-aware” passengers choose their arrival
considering system reliability was put forward by Bowman and quist (1981). In their model, the passenger
arrival pattern at a bus stop is described by a continuous logit functienutility function depends on the
expected waiting time calculated by averaging waiting times over all possibbriue times for a specific
passenger arrival time, i.e.

E(W®) =[1-P®OIW() + POW'(D) 1)

whereE(W(t)) is the expected waiting tim&(t) the probability that the intended bus is missed by a passenger
arriving att, W (t) the expected waiting time in case the intended bus arrivest a@iteliV’'(t) the expected
waiting time in case the bus has departed befoBowman and Turnquist provided no details regarding the
calculation of the probabilities and expected values. Considering the contegir giaper, it seems that they do
not consider overtaking. This assumption can be valid for stopsdsbya single line, when severe bunching is
not likely or when overtaking is prohibited by the operator or naik&due to road space. It has to be relaxed
though when bus bunching is such that the presence of more tbdrusrat the same stop can be an issue,
and/or when more attractive lines serve the same stop and their servicegedap. Bowman and Turnquist
showed that their model predicts the actual arrival patterns very well, arithélratnodel can cover both the
headway ranges normally modelled with a frequency-based approatiivaadnodelled by a scheduled-based
one. Furthermore, they demonstrated that passengers are more sensitivedtde reliability than to service
frequency. A limitation of their model, stressed by the authors #lgess is the use of the continuous logit
model. GEV models like the logit one are commonly used for discrete choicés thighframework of random
utility maximization. The application of the logit model is constrained byutiderpinning hypothesis of the
independence of errors across alternatives. The validity of this assumptimmds particularly debatable when
the decision dimension is continuous. The problem has been addresisediterature concerning the topic of
the departure-time choice of travellers using private transport. Choices itiraioar setting instead have been
often described by models based on hazard functions; but such an appreodthized because it lacks a
proper behavioural support. Recently Lemp et al. (2010) suggestedrauocoistcross-nested logit model, which
retains the behavioural justification of the logit models and allows foelkation across alternatives.

In summary, most literature related to bus bunching since Newell @tsl (964) has focused on deriving
control strategies to minimize the bunching effect. There is a separatditbtire discussing arrival patterns
ard the value of waiting times but, to the best of our knowledge, thegedlie latter set of literature have not
yet been included in bus bunching models. We propose that consideniagadvanced passenger arrival time
models seems necessary to build a realistic model of bus bunebpegially in the era of ubiquitous (real-
time) information.

3. Notation

The following notation is used throughout the paper.

Table 1 Notation
i Stop number. Stof is the bus depot, where no boarding is allowed.

n Busindex or bus run (concisely, “bus”) designated by index n (the meaning will be clarified b




the context)

it Arrival, departure time of bus from stopi. Superscriptl is omitted when redundant.
Perceived probability distribution function of,; perceived cumulative distribution function
fins Fi 7;,. These and all the remaining probabilities mentioned in the paper havedodigered as
describing the perception of the travellers rather than the actual characterigtes@ifvice.
T In}terval of perceived possible departure times of#ausom stopi, i.e. Ty, = {7 |fin (Tin) >
m
0
B; Set of buses serving stop
B;(t) Set of buses available at stopftert, i.e.B;(t) = {n € B;| sup Ty, = t}
Ay () Set of buses alternative to the focal bus servingistdiert, i.e.A;,(t) = {m € B;(t),m # n}
A (D) Set of alternative buses which can depart from stopeforet, i.e. A;,(t) ={me
n A ()| inf Ty, < t}
?(Ai‘n(t)) Power set ofi;,, (t), i.e. is set of all subsets a4f,, (t), including the empty set amg,, (¢) itself.

P (t); Pip(0)

Generic element aP(4;,(t)); set of elements of, () not included inP,, (t), i.e.P,(t) =
{S € 4;i, (WIS & P (1)}

Probability distribution function of the event “bus n departs from stopatz;, > t and before

@i(t,Tin, S) any other bus in the s&t.
®,,.(¢,5) Probability thath departs from stopaftert and before any bus in the set
Z,(t,S) Probability that all buses in the sehave departed from stageforet
(6 7) Proba’t’)ility distribution function of the event “passenger arriving at stop i att and boarding bu
n att
I, (t) Probability that a passenger arriving at st@pt boards bus
E(wi (t)) Expected waiting time of a passenger arriving at siafg
E(wm(t)) Expected waiting time for bus of a passenger arriving at stoptt
W (t) Anticipated risk-averse waiting time of a passenger arriving ati siop
a,pB Parameters measuring aversion of passengers to wait
q;(t) Passenger arrival rate at stop
b;(t),b Time-dependent boarding rate at stpfime and stop independent boarding rate
p Ratio between arrival and boarding rate, referred to later as the saturation rate
Vin Travel time of bus: from stopi to stopi + 1
Din Dwell time of busn at stopi
Sin Exogenous delay of busat stopi

4. Reliability-based passenger arrival

4.1. Assumptions and model limitations

To explore the impact of non-uniform passenger arrivals on bushimg in this section we derive a model
of passenger arrival at bus stops based on the assumption that travellévsredince their expected waiting
time considering that they may miss some or all of their intended beseside of service irregularity. Our
passenger utility function is based on an anticipatedasiskse waiting time. By “anticipated” we mean that
passengers decide their arrival time based on their perceived probabibtys adeparture times in a non-
perfectly reliable system, i.e. in a system in which the actual depart@® ¢an differ from the scheduled ones.
By “risk-averse” we mean that passengers attach a cost to the possibility of missing their last service.ildyr ut
function is based on a behavioural model similar to that considered by &oana Turnquist, but we extend
their approach by allowing for the existence of an indefinite rexnd§ buses and for the possibility of
overtaking among buses. Different specifications of the utility functemes discussed below. The model
presumes that passengers have a priori information on the schedulddrdejpae of buses and on the accuracy
of such information. The first hypothesis holds in the caseelatively low-frequency services for which a



timetable is published and known by the travellers. In the case of sefvicgisich schedules are not published,
it may still be valid if the dayy-day service regularity is high. The accuracy of the information ceresidin
the decisionmaking process depends both on the punctuality of the service and on the passenger’s knowledge of

it: passengers who have used a given transit system only few tinigde not trust the information they have
and hence consider a large variability of departure times even when the sy#tefact very reliable. In the
following, by system reliability we mean the reliability accounted forhia tlecision-making process, as a
consequence of the perceived information accuracy.

Both the expected waiting times and the derived utility function are detstimitHowever, we consider that
the perception of the value of each arrival time varies among usersurtloufar, following Bowman and
Turnquist, we assume that the passenger arrival distribution can be desgridbedriinuous logit model. Not
much work has been done concerning passenger arrival patterns afmnttifition of Bowman and Turnquist
(1981). Since our focus here is on the derivation of the utilitgtion, we use the continuous logit model as it
has been proven in the Bowman and Turnquist paper to be able to edkeriactual behaviour of public
transport users for their scenario assumptions despite its theoretical limithtions.model, passengers always
get to a bus stop at their intended arrival time. In reality, this mighhagpen because passengers cannot
always anticipate their walking time exactly. This phenomenon excesdsdpe of this study.

It is assumed that passengers board the bus that departs first aftermrivedir Such an assumption is realistic
if we assume that only one bus line serves the stop or that all bugrdinelsthe same route downstream from
the boarding pint. In these cases passengers do not face the “common line issue” where the choice set might
depend on the time spent waiting at the stop already (see Noekel and {@ad@kfor elaboration of such
cases). The “board the first departing bus” behaviour is further justified by the empirical findings that passengers
put more cost on wait time than in-vehicle travel time (e.g. Lisco,)1®%6&¥vever, we acknowledge that there
are cases in which “board the first bus” strategy is not realistic, for instance when crowding on buses affects the
decision/possibility to board, when passengers might anticipate variatidosvirstream travel times between
buses, or when passengers prefer express services. Our model does emothesg cases. Statistical
independence is assumed for both the departure times of differestdiute same stop and the departure times
of the same bus at consecutive stops. This assumption is cleanrasimplified representation of reality as
departures of buses from the same stop can be correlated. Our asswtopsonot hold if, for example,
particular operational policies exist, such as a FIFO rule for buses departinthé@top, or, if the stop layout
does not allow more than one bus to board passengers at a time.

We further assume that the passenger arrival distributions at each stopependeht from what happens at
other stops and therefore in this section the subscript representirtgghis redundant and will be omitted for
the sake of simplicity. We add the subscript in Section 5 when consideerighiviously correlated) departures
of the same bus from subsequent stops. This stop-independenogtimsin the behavioural model implicitly
assumes that real time information are not available but that passengers onlth&renheduled information
(plus their perception of the service reliability and the variance in their stopsaiice) when deciding their
stop arrival time.

We hypothesize that a bus leaves a stop as soon as all waiting passengers It beawe do not
consider any holding policy. In our model, as in most works in litezathe dwell time depends only on the
boarding process. This is realistic when the boarding time is longerthbaalighting time, which can occur
because (a) either passengers who board are generally less than thasighthand/or (b) the boarding time
per passenger is considerably longer than the alighting one, dirstfomce to the fact that tickets are issued
when boarding. In addition, no influence between boarding andtialigls considered. This happens when
buses are not crowded, and/or boarding and alighting take place at diffesentiloally, we note that we also
do not include capacity effects in this model; thus assume all waiting passeag board the first departing
bus.

4.2.Perceived probability of boarding a bus

Clearly if B(t) = {n} (i.e. if busn is the only departing after time t), the probability that a passenger who
arrives at the stop at time t boards hus equal to the probability thatdeparts aftet. Consider now that the
passenger arrives abutB(t) = {n,n + 1} andinfT,,,; < t. Still the passenger can only boardf it departs
aftert. In this case he will actually boardif n + 1 has already departed or it has not departed yet and actually
leaves aften. In the remaining scenario, in whieh+ 1 has not departed yet but it leaves beforethe
passenger boards+ 1. In other words, the overall probability of boardings equal to the sum of the
probability of boarding it in each of two casesAdi(t) € P(4; (1)) = {@,{n + 13}



IM,(t) =Pr(t, >t NTpyq <) +Pr(z, >t N1y > 1Ty) (2)

In the general case in which= |SD(A,;(t))| > 2, i.e. considering the possibility of more than one alternative
ton which can depart befoten is boarded in all the cases in which some of the alternatives have departed
beforet and all others depart after The number of the scenarios to consider in the calculatidh, @ is
equal to the number of combinations of busesji{t), i.e.

I,(t) = Z Pr ((rn >1t) n(7, <tVIEP®))

P(DEP(A7 (D) (3
N (T, >1,VME Pn(t)))

fl.m A

| ,
| | time
t' t

Fig. 1. Example of bus arrival probability distributions functiaha stop

To illustrate] (3), consider the case in Fig. 1, in which lines of diffecelours represent the perceived
probability distribution functions of different buses (in thelaration of the example, buses are indicated with
the initial letter of their  colour). Following  the  definitions in Section 3,
B = {Purple,Yellow, Red, Green, Cyan}, B(t) = {Y,R,G,C},Ax(t) = {Y, G, C}, Az(t) = {VY,G},

P(A;(t)) = {@, {r},{G}, {Y,G}}. BusP has surely departed gtthereforeP ¢ Ax(t) and it does not influence
the probability of boarding. Note that it does influence such probability if the passenger arrivésTdtere are
four possible circumstances (note tha(A; (t))| = 4) under whichR is boarded by a passenger arriving:at

e No bus has departed before andR departs before all alternative bus@s(t) = @, Pz(t) =

Ap(©) ={Y,G,C}

e Y has departed before, and R has not departed yet and departs beforand P: Pz (t) =

e (G has departed before, andR has not departed yet and departs beforand P: Pz(t) =

e (G andY have departed before, andR has not departed yet and departs beforeP;(t) =

The four cases are mutually exclusive; therefore, the overall probalibiyaodingR is equal to the sum of
the probability of each case, as indicate@y 3

To calculate the probabilities in the summatiolﬂh (3) we need to derive thabpitis that a bus leaves
before or after a set of other buses. As to the former, consider a sedesf lternative tom and assume
without loss of generdl S = {1, ..., k}. In general, the probability thatdeparts aftet and before any other
bus inS can be calculated from the joint distribution of departure time probability as

®,(t,85) = J- f (T Tey ooy Ty ) ATpdTy ... ATy (4)

Tn2t;Tj>Tp,j=1,..k

Under the assumption that passengers perceive the departure timesewdndiffuses as statistically

independenk, {4) becontes

YIn the following, we stick to the usual conventidrconsidering an empty summation, i.e. a summatioh mitaddend, equal to 0 and an
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The integrand function used to calculdig(t, S) can be interpreted as the pdf of the event “bus n departs at
T, > t and before any other bus in the $&ti.c.

On(t,70,8) = fulr) - | [(1 = Fu@) ©)

meS

Note that, as expected, the probability of huteparting before any other bus in the $diecreases when
tincreases. In fact

Proposition 1®,,(t, S) is a non-increasing function of

Proof ¢, (t,t,,,S) = 0 because it is a product of pdf and CDF. Applying the Leibniz’s rule for integral
differentiation

d b® b(6)
a0 f(x,0)dx = f Oof (x,0)dx + f(b(6),6)b"(6) — f(a(6),0)a’(6)
a(6) a(6)
it follows i
M%@ = f Otfn(Th) - 1_[(1 - Fm(Tn)) AT+ (510, 9)0-0, (6,70, 9)' 1 = =@, (£,7,,5) < 0

t mesS
which shows tha®,,(t, S) is a non-increasing function of QED.

In general the probability that all buses in theSskave departed earlier thais

E(t,S) = f f(Tn, Ty, vy T ) AT dTy ... dTy, (7

‘L']'<t,j=1,...,k

Under the assumption of independence of the departures

t t
5(t,5) = f F(ty ot ) dey o dry = Jf(rl)... Jf(rk)drk ..d1, :ﬂFm(t) ®8)

meS

Intuitively such probability has to increase in time and in fact
Proposition 2E(t, S) is a non-decreasing function of
Proof: The proposition follows immediately by the fact thaft) are non-decreasing functionstof

Let E and L denote two disjoint sets of buses not including n. USlnand (8) the joint probability that all
buses inE depart before, andn departs aftet and before all buses inis

Z(t,E) - d,(t, L) (9)
Using this resulf_(B) becomes
MO = ) ELRO) Ot AO) 10
Pr()EP (AR (D)

The pdf of the event “a passenger arriving at t departs at with busn” is

empty product, i.e. a product with no factor, edqodl.
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Proposition 3: The probability of boarding a bus not influenced by the presence of services which can
depart only after bus has surely left the stop.

Proof: It is sufficient to prove that,(t,7) is not influenced by a bua that surely departs aftar In fact,
I1,(t) is the integral oft, (t, T) overt.Therefore ifr,, (¢, 7) is not affected byn, neither idl,, (t). We show now
that the presence i affects neitheg(t, B, (t)) nor @, (t, B,(t)).

Case 1t > maxT,. Slncet >maxT, © f,(t,|t, =t) = O |t turns out that

Pu(t,5) = f faeo [ [ - Fee) dr, = f Ja-ra)dn=0

keS keS
Independent fron#, (rn)

Case 2t < maxT,. The hypothesis that a buscan depart only after bushas surely left the stop implies
thatmin T,,, < maxT It follows that E,,(t,,|7;, < minT,, <maxT,) = 0. Therefore

(pn(t S) - f fn(Tn) 1_[(1 - K (Tn)) dTn

kES
max Ty max Ty

f fn(Tn) 1_[(1 - Fk(Tn)) dTn - f fn(Tn) 1_[ (1 - Fk(Tn)) dTn
kEeS kes\m
The previous holds for ara/so also for any,(t). Sincem cannot be part a8, (t) for anyt < maxT,, the
presence ofn does not affecE(t, B,(t)). Sincem does not influence,(t, B,(t)) andZ(t, P,(t)), it does not
influence their product,, (t, 7). QED.

4.3.Expected waiting time

The waiting time of a passenger arriving @&nd departing atisw = 7 — t. Since boarding different buses
are mutually exclusive events, the probability that a passenger arrivintgparts at is equal to the sum of the
probabilities that he departs with any of the available buses. Thereforgptwezkwaiting time for a passenger
arriving att is

E(w(®)) = f -0 ) mdr (12)

neB(t)

and the expected waiting time corresponding torbus

E(Wn(t)) = f (t—t)m,(t,T)dt (13

Proposition 4: The overall expected waiting time is equal to the sum @xpexted waiting times of all
available services
Proof:

E(w(t))=f (=0 ) mDdr= f(‘r—t)rtn(t Ddr= ) E(w,(®)

neB(t) neB(t) ¢ neB(t)
QED.

4.4.Passenger arrival distribution

The expected waiting time obtained fr cannot be used to specify the utility function of passengers
deciding their arrival time at a stop as we need to consider the possbifitigsing all buses after a certdin



i.e. if 3t|B(t) = @vt =t or, more commonly, the possibility that the passenger aims to be&otk a timg
and attaches higher disutilities to later departures. To solve this shorjcamiconsider

w(t) =E(w(®) + (1 - Z Hn(t)> c (14

neB(t)

wherec is a constant representing the aversion to the possibility of missintash attractive boarding
opportunity. We further assume that the utility function has the form

U =a(w)’ (15)
and that the arrival time choices can be described by the continuous logit model
eU®
q@t) = ——F——— 16
ftflzeu(t)dt ( )

Wherel[t,; t,] is an interval spanning all the possible departure times of the bussidered by passengers.
We note that different specifications of the anticipated risk-averse expected \@aj@ssible. For instance, an
optimistic passenger may choose the arrival time with

Wopt (8) = min{E, (w(t))|1 — F,(t) > 0} 17

i.e. considering the bus with the minimum waiting time among the hhaésan depart after Instead, the

utility function of a pessimist could be based on the maximum waiting &mong those buses that can be
surely boarded, i.e.

Whes () = max{E, (w())|1 — F,(¢) > 0} (18)

Our reliability-based passenger arrival model is iIIustratig. 2 for the €abeece buses with the
triangular pdf as in (a). We assume that the modal value is the smtheldyparture time of each bus (in general,
the modal value may differ from the scheduled departure time, tantces when passengers think that the buses
are systematically delayed). Note that perceived departure times earliethéhacheduled ones, although
normally unlikely, cannot be completely ruled out, for instance bedausalrivers may not comply with the
schedule, or because of discrepancies between the time of the passengetimedofithe bus system.

(@) (b)
bus departure time pdf probability of boarding a bus arriving at t
1 T T T I ! ! '
—bus 1 1 —bus 1
—bus 2 —bus 2
0.8F —hus3 —bus 3
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06
= = 0.6+
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04 0.4
02 02-
0 . ! 0 : . e —
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© (d)
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Fig. 2. lllustration of the reliability-based passenger arrival model

In (a) it can be seen that bus 1 is scheduled to depart before tuisit2can be overtaken by bus 2. Instead
bus 3 departs surely after buses 1 aig. 2(b) shows ¢batide of the possibility that bus 1 is later than
bus 2, the perceived probability of boarding bus 1 (and analggthatlof bus 2) is always smaller than 1. The
probability of boarding 1 and 2 are constant while the pdf ofthigsil, i.e. until the first possible departure of
bus 1. After that, the chances of missing bus 1 increase, soothebpity of boarding it decreases and instead
the probability of boarding bus 2 increases. Analogously, the pergeiebdbility of boarding bus 3 is nil until
the moment when the passenger is sure to be able to board at léadthiensit starts increasing. Different from
buses 1 and 2, the probability of boarding bus 3 reaches 1, bdistuseen times 7 and 8 it has not departed for
sure and it cannot be surpassed by any other bus. The overallilitsob&boarding at least one bus is equal 1
until the possibility of missing bus 3 arisgs. Fif. 2(c) showesetkpected waiting times of each bus and the
corresponding overall expected waiting time. After time 7, the probabilicatching a bus coincides with the
probability of boarding bus 3 and therefore the overall waiting tinegusl to the expected waiting time of bus
3. Such expected waiting time decreases when the probability of bobardirg) decreases. Hence, without the
correction suggested , the perceived expected waiting time of a passenger arriving>a& would
decrease with the paradoxical consequence that the probability of arrivial iworease when the chances of
missing the last service increase. In Fig. 2(d) it is evident that th@larwhen service reliability and risk
aversion are considered are far from being uniform as commonly as$umbes load models.

5. Bus propagation model

In the following, we develop a bus bunching model consistent watimom-uniform arrival process. Consider
a common scenario of a route served by buses of different lines velniehthe same destinations. To avoid the
issue of having to consider different passenger destinations and difacent attractive sets, we assume that
the buses might originate from different terminals, then mergeeiniti centre and all are destined for the same
terminal. As in Newell and Potts (1964), the undisturbed trajectorigm dfuses are described by the following
bus propagation equations

_d

Tian =Ti—1n + Vi—1n
19

1l =13 + Dy + Oy

Assuming thav;,, and the scheduled departure times of the buses from the firstr§topage known, (19)
can be solved recursively if a formulationR®f, is available as a function of andzf;, withj < i;k < i;1 < n.
Remember thal;,, is an exogenously determined delay, and so it is considered kn.i
5.1.Newell & Potts model

In their bus propagation model, Newell and Potts assume that passengéraadivoarding rate are time-
independent, and that the boarding process follows the law

Dy = p(TgL - Tldn—l) (20)



wherep is the (time-independent) ratio between the passenger arrival and boatdisag That is, they
consider boarding as a stationary unsaturated deterministic queuing puiitbessnstant degree of saturation.
They also assume that the bus departs as soon as the queue of waiting passeisperss independent of any
schedule or holding policy.

5.2.0ur model

We retain the hypotheses that boarding can be represented as a stationargtedsdd¢terministic queue,
and that buses depart immediately after boarding all waiting passengeng. With Section 4 we relax though
the assumption that the degree of saturation is constarft26lqcan be regarded as a particular case of the
general relationship (21) regulating an unsaturated deterministic boardinggwite time-dependent arrival
and boarding rates:

d

T‘-i ‘L'd T

f [4:(0) — b®)]dt = f g (O dt - j b(D)dt = 0 (21)

Note that evidentlyp;(t) = 0 betweerr, _, andr?,. We consider that passengers do not arrive uniformly but
they follow the distribution derived fro . We further assume that the boarding rate is constant which
appears to be a reasonable assumption since the rate is mainly linkbatl® elegaracteristics and the ticketing
system. Under our hypothedeal)(simplifies to

T?n+Din
in-1

In our formulationg; (t) does not depend on the actual bus arrival and departure times but prlysemger
perception of the pdf of the bus departure times. Therefore it is exaynthe bus propagation model, i.e. it is
known in[@2). If ¢ andz?_, are known[ 22} can be easily solved with the iterative approach described in
Table 2. Note that the algorithm works also if the boarding rate is nalobhst it can be known oncﬁ and
75, Withj < i;k < i;1 < n are known. Sinc®;, in is a function ofrd,_, andr{’;, an@ can be
easily used to derive the bus trajectories fagn

Table 2 Algorithm to calculatB,,,,

Initialisation 6t « small time step
me1

Main Tiptn 6t Obtain number of passengers who arriver
0 f q.(6)dt betweenc?,_, andtd, + mét
i

d

Tin-1

a
Tintm &t

B« f bi(t)dt = bmét

d
in-1

Obtain number of passengers who board:
betweerrf,_, andtf, + mést

T
If @ < B thenD;,, < mét otherwise
m < m + 1 and repeat Main

6. Bus bunching with passenger reliability-based behaviour

To illustrate the effects of reliability-based passenger arrivals on bunchang;ompare the solutions
provided by our model of bus propagation to those given by thveelNand Potts model in an analogous
situation. The exemplification is carried out by varying some paramet#rs bhsic scenario described in Table
3.

Table 3 Case study, base parameter settings



Bus service
» 6 buses, 10 stops (including the depot)
= Scheduled headwayg,,, — t&, = 10min,n =1, ...,5
= Travel timew;, = 3min,i =0,..,.8,n=1,..,6
0ip = Omin,i =0,..9n=1,..,6

Reliability-based arrival model
= Perceived pdf of departure time at all stops: triangular functionmiittil,, = 7,, — 1min, maxT,, =
7, + 2min whereft,, is the scheduled departure time. The scheduled departure time coinitde
the departure time predicted by the Newell and Potts model when no delas. occur
= To avoid the influence of boundary conditions and to have periaehcand, the considered s
buses do not include the first and the last service along the routea$enger arrival probabilit
function in the basic scenario is shown in Fig. 3.
= a=-1,8=0.55asin Bowman and Turnquist (1981)
= Ateach stop
o Passengers start arriving one scheduled headway (i.e. 10min) befecbdbaled
departure of the first bus from the stop (so that there are passengerg foaitie first bus
at the stop);
o All passengers have arrived before the schedule departure of the last bus;
o Therefore passenger arrival simulation time:
T = number of buses * scheduled headway = 60min
= Total demand@Q = 100pax when not specified differently

4g° Passenger arrival time probability
3.5% ‘ :
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Fig. 3. Arrival patterns under basic demand conditions

In the following, to allow for easy comparison of our model wittwislik and Potts model, in the latter we
assume that th@ passengers arrive uniformly during the simulation pefiahd so we set

) (%/r)/

b

In the figures showing bus trajectories, red lines represent the resuliis NEwell and Potts model (with
“uniform” arrival of passengers, blue lines the results of our model (the arrival distribution is indicated in the
legend of each figure).

6.1. Effect of boarding rate

In we present the results provided by the two bunchiodets with different boarding rate values,
namely b=11.1% and b=2.78 pax/min.

2 We developed our case study by setting the value of p, and then deriving the boarding rate corresponding to therassl total demand.
This explains the “unusual” value of b. Although it has not been possible to retrieve literature on the boarding rates, 11.11 pax/min seems
realistic for passengers using travel cards.



Since no random delay is considered, the Newell and Potts model predimtmciong. When a variable
passenger arrival rate is considered, a regular service is provided forahigls of boarding ratgs (Figl 4(a)).
But when the boarding rate is low, the service can be severely dismiptedvithout exogenous delays (Hig.
b)). Note that our bus propagation model, as well as the Newell dteddPe, is not adjusted to deal with
cases in which overtaking occurs. In case of low saturation gaes mostly expected in reality) this does not
lead to large errors as the overtaking and overtaken buses will remain hummvedler, for large this might
lead to some more significant errors in the trajectories of, both, ovedakieovertaking buses.

To avoid the issue and exclude overtaking, one could introduce a conditoa lmises do not depart prior to
the departure of the previous bus in the main loop in Table 2.aflhistment can be easily implemented. To
explicitly deal with overtaking, further adjustments are needed in d@d)the main loop in Table 2 In the
present paper, we decided to avoid both adjustments to allow for coitipavéth the Newell and Potts model
and to remain the focus of this paper.
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Fig. 4. |Effect of boarding ra\{e; no exogenous delay

The trajectories in Fig. 4(b) can be explained by looking at the cumulativenpassarival and boarding
functions[ Fig.  shows cumulative arrivals and boarding for twereifit values of boarding rates. The two
scenarios share the same scheduled headway (10 min). Sincaume #3s schedule equal to that predicted by
the N&P model with no delay, 5(b) the first scheduled arrigelis at minute 4 and the following ones
every 10 minutes after; eachsteaves the stop after 6 minutes dwell time (corresponding to p=0.6). In (b), with
p=0.15, the first scheduled arrival is at minute 8.5 and the following ones every 10 minutes after; the dwell time
of each bus is 1.5 minutes.

Both the Newell and Potts model and our model assume that a bus leagsspt as soon as all the waiting
passengers have boarded, i.e. when the cumulative boarding functisedtge¢he cumulative arrival function.
As illustrated in both Fig. 5(a) and 5(b), in the case of uniform passamngval the first departure happens at
time 10 and then every 10 minutes (when the red line crossetutherte. In Fig. 5(a) the cyan and red lines
overlap), i.e. the service operates according to schedule. Conversely, ehgerssarrive considering the
schedule as well as system unreliability (basic scenario) and the boarding ratdRglog(b)), at each instant
the cumulative number of passenger arrivals is smaller than in the caséoohuarrivals. Therefore, when the
first bus arrives at time 4, it has to board fewer passengers aneei kearlier, in the figure at the time in which
the cyan line crosses the green one. This earlier departure triggehninigunc

(a) (b)



queue processes {ueue processes
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Fig. 5. Queue processes under different scenarios
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Fig. 6. Effect of small positive (a) and negative (b) deviations fsigimno exogenous delay

Note that the case 5(b) is a case of serious bunching.tjragsaiming that all waiting passengers
board the bus arriving at time 14, this bus would leave at 26, i.e. adt#ritth bus is due at the stop. Of course,
the possibility for passengers to choose between two buses canaligietling process show. 5(b) but
this clearly exceeds the scope of the analysis ig. 5(a) showlaalbanching is not triggered by non-
uniform arrival ifb is high enough, In other words, there is a critical vajyesuch that non-uniform passenger
arrivals generate instability fdér < b, whereas they do not compromise stability fos b.,. Even a small
negative deviation frorh,,;, can induce large perturbations: For example_in Hig. 6 the difference behireen
(a) and (b) is only 0.05pax/min. The existence of the critical value idycleded to the shape of the passenger
arrival function: suffice it to notice that if the green line was above the bleiérFig. 3(b), the cyan line would
not intersect it before time 10 and bunching would not arise.

6.2.Effect of total demand

In the Newell and Potts model the boarding rate does not appear explitityylinked to the arrival rate via
the degree of saturatign It follows that an increase of the total dem#&htkesults in a lower saturation rate,
assuming that the boarding rate stays constant. Therefore higher total dioeanbt lead to bunching in the
Newell and Potts model unless the saturation rate is assumed to be bus. $pamif model, the boarding and
arrival rates are represented explicitly and enter the model separately. The coreség|tieat, as illustrated in
[Fig. 7 bus bunching can arise in case the demand is diffecentttfie one planned for by the operator, even if
the boarding rate remains constant (b=11.11pax/min) and there is genexs delays. Note that bunching
arises for values of total demand both lower (Q=75pax, Rig. 7(a)) ahdrhi@=125pax, Fig.]7(b)) than the
“design” one i.e. that used to derive the scheduled departure times. In the former case, bunching is triggered by
an early departure of the first bus, in the latter by a delay of the sasnéAgain the phenomenon can be



explained by considering the cumulative arrival and boarding functioo®alsing the total demand while the
boarding rate stays constant means tht_in Rig. 5(a), the cyan linecda#mnge whereas at each instant the
green line is below (if the demand is smaller) or above (if the deisagreater) that in the figure. Therefore
they can intersect before (in case of smaller demand) or after (inpbsitepcase) the first scheduled departure
time.
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Fig. 7. |Effect of total demand; no exogenous delay

6.3. Effect of exogenous delay

In the Newell and Potts formulation, bunching arises only when ageeras delay occurs at any stop. In the
following we study what happens when the second bus is dedagtap 1, with b=11.11pax/min and Q=100pax

g. 8) Fi§. é(c) to (f) show system performance measwresvb values of delay. The bars in Fig. 8(c) and
8(d) represent the mean of the absolute deviations of the headway$iéacheduled ones calculated over all
buses at each stop. The bars in Fig. 8(e) and 8(f) instead showedimeof the absolute headway deviations from
the schedule calculated over all stops for pairs of subsequent busesesChatch the bars when not all buses
(stops) are used in the calculations because the models predict overtaksrgtaedesults from the moment of
the overtaking on are not fully comparable. For the sake of comparigogathe subsets of buses (stops) are
used to calculate the means for both passenger arrival processes. It is evidmgahatitial delays give rise to
larger deviations, and that bunching becomes a more significant probleopatfiether from the depot. The
performance of the system is more or less similar under thartival processes at the initial stops. In fact, the
schedule deviations are slightly lower if passengers consider service reliaHitityever, the headway
deviations in case of reliability-based passenger arrivals are greater ¢isenottturring in case of uniform
arrival for stops further downstream. The differences betweenvthprocesses diminish for larger initial delay.
In Fig. 8(e) and 8(f) it can be observed that irregularities at the hegimtrease but then tend to reduce. In
both cases, the system performs better under reliability-based passenger faritfa@sfirst runs. The better
performance of non-uniform passenger arrivals in the cadeedirst delayed bus can be easily explained by
considering the cumulative number of passengers arriving at bps stown if_Fig. . At each instant the
cumulative passenger number in the basic scenario is smaller than that undefotine arrival assumption,
except at time 0 and time 100. Therefore, when bus 2 experiences/atdstap 1, the additional passengers
waiting to board at stop 2 will be fewer in the case of reliability-based artivafsin the case of uniform
arrivals, and so bus 2 is less delayed along its route. The differepegfofmance for later runs between the
two arrival processes is attenuated for the larger delay in this case as well. Famisténe headways tend to
be less different from the scheduled ones if passengers arrive unifdioly. that deviation peaks for
intermediate runs, in particular, in the casé@f= 1.5, the maximum headway deviation is between the second
and the third bus, when the performance with non-uniform arrivalli®etter than with uniform ones. In the
latter scenario, the deviation between bus 2 and 3 is so large that oveotzting, i.e. the system experiences a
very serious distortion at stop 8. In contrast, there is no overtakthg #rrivals are non-uniform. This shows
that despite the system underperforming on average with non-unifoimalgr consideration of system
reliability in passenger arrival times avoids the occurrence of extremehimg conditions in the presence of
large delays.
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Fig. 8 |Effect of exogenous delay

6.4. Effect of passenger perceptions and preferences

The passenger arrival distribution depends on the perceived pdf of thdepadure times, linked to the
system reliability, and to the passenger risk-aversion, measuredametarsx andg.
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Fig. 9. Arrival processes for different values of system reliability shdaversion

In the following we analyse the effects of three different argivafiles (the cumulative arrival distributions
under the different scenarios are represented in Fig. 9 for one scheduledy)eadmely

=  Unreliable system: The perceived unreliability is higher than in the basic scenario, i.e. triangular pdf
functions are considered by the passengers with minT, =7, — 2, maxT, = 7, + 4. Therefore
passengers anticipate that bus arrivals can occur along a wider interval, therefore their arrivals tend
to be more spread as well and the distribution is more similar to that predicted under the uniform
arrival assumption.

= Wait averse: The aversion to wait (@ = 1.55) is higher than in the basic scenario. High expected wait
times have higher disutilities under this scenario than under the basic one. The opposite holds for low
expected wait times. Therefore passengers tend to avoid both very early arrivals — because they
might give rise to long waits for the intended buses — and very late arrivals — because the might wait
long for the next bus, in case the intended one is missed. The consequence is that passenger arrivals
tend to be concentrated around a specific time.

=  Early departures: In this scenario we consider passengers who fear the possibility of very early
departures but not of late departures, so that we set minT,, = 7,, — 8, max T,, = 7,,. Because of high
aversion to long wait, arrivals tend to be concentrated as in “wait averse”. Given the pdf of the bus
departure times, the arrival time is earlier than in “wait averse”. As a result, there are times in which
the cumulative arrivals are higher than under uniform arrivals. This scenario is unlikely in reality,
where normally buses cannot leave long before the scheduled departure time. We add this scenario
mainly in order to illustrate the effect of a partly concave cumulative arrival function.

shows the bus trajectories arising from the three profiles asguh@rsame exogenous delays of bus
2 at stop 1 (and same b and Q) considerfd in Fig. 8. Since the NewBbtémdesults depend only on the value
of the exogenous delay, the red trajectories are the same in (a), &)d (@)(b), (d), (f), and they coincide with
those i) and (b) respectively. Under the “unreliable system” scenario the behaviour of the system ((a)
and (b)) is more similar to that with uniform arrivals than thasthated ifi Fig. B, as it can be anticipated by the
fact the arrival distributions tend to be more uniform.
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Fig. 10. Effect of passenger perceptions and preferences

The worst performance of the system occurs under “wait averse” arrival patterns, i.e. when passenger arrivals
are concentrated near the scheduled departure time. In this case, mahdelgy gives rise to large headway

deviation[(Fig11}a)).
(a) (b)
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Fig. 11 System performance under different values of system reliabilityisiadversion

When real time information on bus arrival/departure is available, one pactekat most passengers using
the information arrive at stops very close to the advised time. Given the result obtained for “wait averse”, the
impaa of this behaviour in the presence of unpredicted bus delays should be carefully examined. Under “early
departure” the system is only little disturbed, because in the first instants of the scheduled headway there is
almost no passenger arrival and therefore a delayed bus faces a bsiwditign very similar to the case with
no delay. In this case, the system performs even better thaonifithm passenger arrivajs (Fit](b)).

7. Conclusions

In this paper we discussed the relationship between passenger busistdpatterns and dwell times of
buses that might lead to bunching effects. We advanced the Bowmaruamglist (1981) arrival model by
developing a “reliability-based arrival pattern model” in which possibly overlapping perceived departure time
probability density functions for several buses are considered. Passbagee consider the schedule as well as
possible early or late departures in order to minimize their expected waitingWenthen implemented these
behavioural assumptions into a bus propagation model similar to that@&fliNend Potts (1964) but in which
passenger arrival and boarding rates enter the model separately. In cstudgisge compared our model to the
assumption of uniform arrival as commonly done in the literature sibbaching.

Throughout the paper we assume that after the release of the buses fronothkedepses are uncontrolled.
That is, buses leave stops whenever there are no more waiting passerigerg. péints or headway equalizing
strategies are not considered. This allows us to illustrate how a mismatch between the operators’ perception of
service demand and actual demand can lead to bunching effects evaunt exkbgenous delays. Remarkably
bunching occurs also for values of demand lower than the planredBanching generated by unexpected
demand cannot be derived with previous models, which assumednuiémand. As all holding related control
measures introduce inefficiency for the operator into the serviceesefohe suggest that our model shows the
importance for operators to correctly assess the demand and geduléh time at stops.

Another main finding is that non-uniform arrival patterns can lead to sewere bunching effects over time.
This highlights the need for control measures. We believe thereforth¢haiodel developed here could be used
to test the effectiveness of various control strategies, i.e. that it is wortltingvliterature discussed in our
review section with consideration of the behavioural issues discussthiisipaper. An alternative helpful
implication from this research for operators might be to aim to smoditleearrival pattern of passengers if on-
time arrivals cannot be guaranteed. That is, if exogenous delays arededrbdarding rates are substantial it
might be worth for operators to consider making notes to schethdeslightly early or late departures are
possible in order to encourage a more spread arrival pattern of passengers.

Our approach is based on the assumption that passengers are aware of a “static” service schedule information.

In the introduction we already mentioned the importance of real timamafon (RTI) to our topic as it will
encourage even more peaked arrival time patterns also for services withesitlwaiis. Modelling the effect of
upstream delays on downstream arrival patterns we leave though as Wuwtk. Not only due to the modeling
challenges (consideration of RTI requires a dynamic modelling framgWwatlalso since it is not clear in how
far RTI is (and should be) trusted by passengers from available lieerRnssibly, a simple Bayesian approach
could be investigated to model behaviour once passengers obtain inforamati@next departure(s).

In this paper, we have considered an unsaturated boarding prosssmjirg that buses can always
accommodate all passengers waiting to board. This might not be true inuggripus systems where capacity



constraints affect system operations. On the supply side, considertioa capacity is equivalent to constrain
the dwell time. In addition, the interaction between boarding and on-baaseéngers may reduce the boarding
speed at high levels of bus occupancy. Therefore, system perforfosgrast requires knowledge about origin-
destination matrices, so that the number of on-board passengers can be idegizeld bus trip leg. On the
demand side, one can expect that at least some categories of passenggrsovdalioid demand peaks; hence,
risk aversion may change in time in the presence of time-deperetaand. Finally, the utility of a given arrival
time should include the level of comfort, which may vary considerablyf@scéion of crowdedness.

We note further the effect of electronic ticketing. Through smart card dleghies, boarding has become
faster which possibly reduces the bunching effect. At the same timehthmare efforts are made by bus
operators to cater also for the needs of population groups with speeidé such as wheelchair users. These
require additional boarding times, leading to more variability in the boarding rdtesefdre, one possible
further work direction is to consider non-constant boarding ratekdseaboarding per passenger in off-peak
times might take longer when less passengers with travel cards andipray more passengers with special
needs travel (Khoo, 2013). More generally, one might consider diffgr@sgenger classes with different
boarding rates as also considered in Bowman and Turnquist (1981isfitiguish a group of randomly
arriving passenger and a group of optimizing passengers.

There are various other directions in which this work could be extepdetihlly already mentioned within
previous sections but we believe worth summarising here. Firstly, develaping propagation model that,
different from Newell and Potts (1964), gives a realistic representatidheo$ystem operations after once
overtaking between buses has taken place. Secondly, more complexknstwotures with common lines
should be considered. In combination with the work presented hereothit lead to conclusions in how far
network structure and information to passengers could avoid the memdcftange the characteristics of holding
strategies. Thirdly, better understanding of passenger behaviour is nééelédke the parametesandp in
our model from Bowman and Turnquist (1981) and showed tkatthalues affect the service quality which
might justify further calibration efforts. Furthermore, currgnite assume that passengers consider all the
possible departures from the stop, but some passenger groupdenigtarested only in a subset of the services
as indicated in Schmdcker et al. (2013). Related to this, the value obsh of missing the last desired service
has been simply set to a large value in our model. Furthermore, alshape of the perceived departure
probabilities needs calibration. Finally, obviously the bus choice modéd dmu made more complex by
considering crowdedness on buses and expectations on residual trasdbtidiéerent lines (similar to Gentile
et al., 2005).
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