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Abstract

In this paper we present the RobotMODIC pro-
cedure (robot modelling, identification and char-
acterisation), as a process which lets us identify
the robot’s motion through a non-linear polyno-
mial function (Narmax). This procedure repre-
sents an important step towards a science of mo-
bile robots, because the Narmax function can be
analysed to understand the underlying phenom-
ena governing the robot’s behaviour, and it also
can be used to subsequently control the movement
of the robot.

As we'll see through this paper, the Robot-
MODIC procedure has another important ben-
efit, it allows very easy and fast cross-platform
transfer of robot code. The mathematical descrip-
tion of robot’s behaviour (in the form of a polyno-
mial function), can be easily exchanged between
different robot platforms, thus essentially “pro-
gramming” mobile robots not through the explicit
definition of a control mechanism, but through
a model derived from the observation of robot’s
motion. In this way, the RobotMODIC proce-
dure produces an extremely compact code which
contributes towards saving in memory space and
reduces processing time on the host robot during
execution.

1. Introduction

Fundamentally, the behaviour of a robot is influenced
by three components: i) the robot’s hardware, i) the
program it is executing and iii) the environment it is

operating in. A robot program written with a specific
task in mind almost never produces the desired robot be-
haviour right from the beginning. This is because many
idealistic assumptions are made as far as the the robot’s
hardware and the environment are concerned.
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We believe that there are currently two major prob-
lems in mobile robotics research: i) the lack of a theory-
based design methodology for mobile robot control pro-
grams, and ii) the lack of accurate mobile robot models
as a design tool.

The lack of a formal design methodology, based on
a theory of robot-environment interaction (which would
allow the methodical design of mobile robot control pro-
grams) means that control programs have to be devel-
oped through an empirical trial-and-error process. This
is costly, time-consuming and error prone. In addition,
the lack of a theoretical foundation for mobile robotics
means that development tools have to be based on gen-
eral assumptions (e.g. idealised, simplified models of
sensors) that commonly result in significant discrepan-
cies between predicted and actually observed behaviour
of the physical mobile robot.

As part of the RobotMODIC project conducted at the-
universities of Essex and Sheffield, in this paper we pro-
pose a novel procedure to exchange control programs
between different robot platforms, based on system iden-
tification techniques. System identification lets us iden-
tify and model the behaviour of a robot driven man-
ually (Iglesias et al., 2005), or using a control program
(Iglesias et al., 2004), through a non-linear polynomial
function (NARMAX). This function identifies the rele-
vant input-output parameters of the robot control pro-
cess, and can be used afterwards, during autonomous
operation, to determine the translational and rotational
velocities that are suitable for the desired behaviour.
Given that this function is amenable to mathemaiical
analysis, it can be used to understand better some im-
portant properties of the robot’s behaviour. This is an-
important step towards the development of a theory of
robot-environment interaction that supports the off-line
design of robot controllers, and that makes testable and
falsifiable hypotheses about that interaction.

On the other hand, as the NARMAX function en-
codes the control of the robot, it can be directly imple-
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mented in any computer language, resulting in a very
compact code, which is useful for applications where
memory and processing speed matter. As we'll see in
this article, in many cases the generated code is platform-
independent and can be used without modifications on
different robots with similar configuration and kind of
SEnsors. _

As the developed code is based on a mathematical
function which relates the motor responses of the robot
with its sensor perceptions, it can be more easily shared
between different research groups. This makes the de-
sign of mobile robot controllers more transparent, as the
control strategy is clearly expressed in closed form. Fur-
thermore, unlike opaque models (such as for instance
artificial neural networks, or fuzzy controllers), trans-
parent models have obvious benefits when reasons for
any failures need to be established.

In this paper we explain how we used the NARMAX
process to obtain a model of a wall-following task. The
task was originally executed by a Magellan Pro mobile
robot running in a real environment setup in the robotics

lab at the University of Essex, UK. We have then sent
the task model to colleagues in the Department of Elec-
tronics and Computer Science of the University of San-
tiago de Compostela, Spain, to run it on their Nomad
200 mobile robot. The Nomad robot was operated in the
corridors of the department.

2. Experimental procedure and methods

2.1 Ezperimental procedure

Our first goal was to identify the behaviour of a Magellan
Pro mobile robot following a wall. The experimental
scenario is the one shown in figure 1. The Magellan
Pro is equipped with front-facing laser, sonar, infrared,
tactile and vision sensors (figure 2).

During execution of the task under investigation we
log information every 250ms that define the state of the
robot. The logged data includes all sensor and actuator
values of the robot. We also log the position and orien-
tation of the robot using an overhead camera in order to
avoid drift errors associated with the robot’s odometry
measurements. Figure 1 shows an overhead image of one
such experirnental setup.

After the collection of the experimental data a NAR-
MAX model is estimated that relates robot sensor val-
ues to robot actuator signals. The choice of which sensor
modalities to use as inputs and which actuators to use as
outputs depends on the nature of the task we intend to
model. For example, to model a wall-following task, the
robot’s sonar distance sensors can be used as inputs and
the robot’s rotational velocity can be used as the output.
The general rule in choosing suitable inputs and outputs
is that at least some of the inputs should be causing the
output.
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Figure 1: The environment in which experiments were con-
ducted and the robot's trajectory. The robot is visible in the
bottom of the image. The dimensions of the navigable space
in the environment are approximately 3.3m x 2.8m. The
robot is executing a wall-following behaviour (following the
Tight wall), i.e. the direction of motion is counter-clockwise
with respect to the image.

The NARMAX model estimation methodology is ex-
plained in the next section.

2.2 NARMAX Modelling

The NARMAX modelling approach is a parameter es-
timation methodology for identifying both the impor-
tant model terms and the parameters of unknown non-
linear dynamic systems. For multiple input, single out-
put noiseless systems this model takes the form:
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Figure 2: Rodiz, the Magellan Pro mobile robot used in the .

experiments described in this paper.

ug(n), ualn — 1)}, ug(n — 2L, ug(n — My,
y(n - 1):3"(“’ - 2): R ’y(n - Ny):
y(n = 1)219'(” = 2)23 S 2’9("‘ - Ny)zs

y(n = 1)r=y(n - 2)1:-' o 1y(n = Ny)[)

were y(n) and u(n) are the sampled output and input
signals at time n respectively, Ny and N, are the regres-
sion orders of the output and input respectively and d is
the input dimension. f() is a non-linear function and it
is typically taken to be a polynomial or wavelet multi-
resolution expansion of the arguments. The degree lof
the polynomial is the highest sum of powers in any of its
terms.

The NARMAX methodology breaks the modelling
problem into the following steps: i) Structure detection,
ii) parameter estimation, iii) model validation, iv) pre-
diction, and v) analysis. These steps form an estimation
toolkit that allows the user to build a concise mathemat-
ical description of the system. These procedures are now
well established and have been used in many modelling
domains (Billings and Chen, 1998).

A detailed procedure of how structure detec-
tion, parameter estimation and model validation
is done is presented in (Korenberg et al., 1988,
Rillings and Voon, 1986). A brief explanation of
these steps is given below.

Any data set that we intend to model is first split
in two sets (usually of equal size). The first is called
the estimation data set and it is used to calculate the

model parameters. The remaining data set is called the
validation set and it is used to test and evaluate the
model.

The structure of the NARMAX polynomial is deter-
mined by the inputs u, the output y, the input and out-
put orders N, and Ny respectively and the degree [ of
the polynomial. The number of terms of the NARMAX
model polynomial can be very large depending on these
variables, but not all of them are significant contributors
to the computation of the output. In fact most terms can
be safely removed from the model equation without this
introducing any significant errors.

The calculation of the NARMAX model parameters is
an iterative process. Each iteration involves three steps:
i) estimation of model parameters, ii) model validation
and iii) removal of non-contributing terms.

In the first step the NARMAX model is used to com-
pute an equivalent auxiliary model whose terms are or-
thogonal, thus allowing their associated parameters to be
calculated sequentially. This increases the speed of com-
putation of the model parameters. Once the parameters
of the auxiliary model are obtained the NARMAX model
parameters are computed from the auxiliary model.

The NARMAX model is then tested using the vali-
dation data set. If there is no significant error between
the model predicted output and the actual output, non-
contributing model terms are removed in order to reduce
the size of the polynomial as much as possible. This is
primarily done to increase the speed of computation of
the model output during its use.

To determine the contribution of a model term
to the output the Error Reduction Ratio (ERR)
(Korenberg et al., 1988) is computed for each term. The
ERR of a term is the percentage reduction in the total
mean-squared error (i.e. the difference between model
predicted and true system output) as a result of includ-
ing (in the model equation) the term under considera-
tion. The bigger the ERR is, the more significant the
term. Model terms with ERR under a certain threshold
are removed from the model polynomial.

In the following iteration, if the error is higher as a
result of the last removal of model terms then these are
re-inserted back into the model equation and the model
is considered as final.

3. Experimental results

This section presents an example of model exchanging
between different robot platforms. First, the task un-
der investigation (wall-following) and the data collection
procedure, using the Magellan Pro mobile robot, is ex-
plained. After that, the NARMAX modelling process
which led to the task model is described. In order to
verify that the model obtained is a faithful representa-
tion of the task, suitable statistical tests are chosen to
compare the behaviour of the robot when executing the




task and that when executing the NARMAX model of
the task. Finally, the model was sent to colleagues in the
Department, of Electronics and Computer Science of the
University of Santiago de Compostela in Spain, to run
on their Nomad 200 mobile robot. The Nomad robot ex-
ecuted the task in the corridors of the department while
continuously recording its sensor data. For comparison
purposes the Nomad 200 was also run in the same envi-
ronment with the original ANN controller.

3.1 The wall-following task

An artificial neural network (ANN) based wall-following
task similar to the one described in (Iglesias et al., 1997)
and (Iglesias et al., 1998) was used in this experiment to
drive the robot. An overhead image of the lab environ-
ment used to collect data using the Magellan Pro robot
and the resulting trajectory of the robot is shown in fig-
ure 1.

The program uses as input the information coming
from the sonar sensors facing the frontal obstacles and

the wall being followed, and as output the appropriate:

robot rotational velocity w to effect the desired wall-
following behaviour (see figure 3). The transitional ve-
locity v of the robot is kept constant at 0.08m /s.

Briefly, the wall following behaviour is achieved as fol-
lows:

To reduce the dimensionality of the input space a self-
organising map (SOM) (Kohonen, 1997) is used. This
reduces the input to a six-component vector . which is
subsequently thresholded using a simple low-pass filter
(LPF) to produce a binary vector u4. This thresholding
is done to further reduce the input space to 64 (2°) pos-
sible states. The binary vector is then fed into a multi-
layer perceptron (MLP) which outputs the appropriate
rotational velocity for the robot. The MLP is trained
using data generated using a robot driven by a human
operator.

At executing time, because the number of possible in-
put states is relatively small, a lookup table is used in-
stead of the MLP to provide the output. This is done
in order to minimise computational load during the real-
time execution of the code.
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Ei=n="

gae } Velocity

r_som “ [Trpr |L%_ 1 wmwp
Sonar # % = Rotational

Figure 3: Diagrammatic representation of the ANN wall-
following program used in the experiments conducted in this
paper.
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Table 1: The NARMAX model of the ANN wall-following
task, showing the rotational velocity w as a function of the
sonar sensor values 8;, Vi=1,..,,16.

8.2 Task identification

Using the procedure described in section 2.2, a model
of the ANN wall-following task was obtained. In order
to avoid making assumptions about the relevance of spe-
cific sonar sensors, all the ultrasound measurements were
taken into account. The model structure was of input or-
der N, = 2, output order Ny = 0 and degree [ = 2. This
initially produced a polynomial of 1225 terms of which,
after iterative refinement, only 29 remained. The final
model equation is shown in table 1.

Note that, although this was not essential for the mod-
elling process, the sonar sensor values were inverted be-
fore they were used to obtain the model. This was done
as a matter of convenience in order to avoid having to
deal with the sonar sensor range limitation.

3.8 Original and model behaviour comparison

Figure 4 compares the actual and model-predicted ro-
tational velocities for part of the validation data set.




To validate the model further, we computed the Pear-
son and Spearman rank correlation coefficients and g
between the original rotational velocity worig and the
model-predicted rotational velocity wmadei- These were
found to be r = 0.81 and rg = 0.74 (both significant,
p < 0.05), thus indicating no significant, difference be-
tween Woriy and Wmedel-

a7

Anpular velocity (rad/s)

— NARMAX Model

~—— ANN Wall-follower

-0s T % T T T T o T

10 30 50 90 110 130 150

70
Discrete time sample

Figure 4: A plot of the actual and model-predicted rota-
tional velocities for part of the validation data set for the
wall-following behaviour.

Of course, the final and most important validation of
any model of robot-environment interaction is to actu-
ally execute the model on a real robot in the target en-
vironment. We therefore used the model given in table 1
to actually drive the Magellan Pro Radiz. The behaviour
of the robot was then compared to that obtained when
the original ANN wall-following program was being run.
Figure 5 shows the two trajectories superimposed for the
purposes of this comparison.

3.8.1

By merely looking at the two robot behaviours in figure
5 we can subjectively say whether one is a faithful model
of the other. We believe that this is the case here, since
the model trajectory follows the original trajectory well,
with few deviations. The model certainly displays a wall-
following behaviour especially at the most challenging
aspects of the environment, which are the convex and
concave corners.

Qualitative comparison

3.8.2 Quantitative comparison

We also performed numerical tests to determine the de-
gree of similarity between the two robot behaviours in
figure 5. Since this is a wall-following behaviour in a
gtatic environment and the robot moves with a constant

y-coordinate

=297}

— ANN Wall-follower — NARMAX Model
-50 T T T x T

=80 -46 -2 42 B6 130
x—coordinate (cm)

Figure 5: A comparison between the trajectory of the robot
when executing the ANN wall-following program and when
executing the estimated NARMAX model of this task.

transitional velocity, there are two distributions we can
test for similarity for each of the two behaviours: i)
the distribution of minimum robot distance to the wall
and ii) the distribution of the robot’s rotational veloc-
ity. Each of these statistical measures is plotted for both
trajectories in figures 6 and 7 respectively.
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Figure 6: The distributions of the minimum robot distance
to the wall for the ANN wall-following program (top) and the
NARMAX model (bottom).

The Mann-Whitney U-test (Barnard et al., 1993,
Snedecor and Cochran, 1989) was performed on both
pairs of distributions in figures 6 and 7 in order to check
whether they are significantly different or not. Both tests
indicated that the distributions are not different at the
5% significance level.

Another test was also used to compare the two be-
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Figure 7: The distributions of the robot’s rotational velocity
for the ANN wall-following program (top) and the NARMAX
model (bottom). :

haviours in figure 5. This test compared the space oc-
cupancy of each trajectory, thus essentially treating the
two trajectories as static monochromatic images. To do
this the space occupancy of each trajectory along the =
and y axes was compared. Figure 8 shows the distribu-

tions of the robot’s position along the z-axis for both the -

ANN wall-follower and the NARMAX model. Figure 9
shows the same distributions for the y-axis.
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Figure 8: The distributions of the robot’s x-coordinate for
the ANN wall-following program (top) and the NARMAX
model (bottom)

Again the Mann-Whitney U-test was used to compare
each pair of distributions. Both tests indicated that the
distributions are not significantly different (p < 0.05).
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Figure 9: The distributions of the robot’s y-coordinate for
the ANN wall-following program (top) and the NARMAX
model (bottom) '

5‘.4 Platform-independent programming

Several advantages become apparent as a consequence
of compressing the ANN wall-following algorithm into a
single NARMAX polynomial shown in table 1. These re- .
late to the ease of transferring the wall-following task to
different programming platforms within the same robot
or even different robot platforms with the same sensor
configuration.

In order to demonstrate this, we have used the NAR-
MAX model in table 1 to run on a Nomad 200 robot (see
figure 10), moving in the corridors of the department of
FElectronics and Computer Science of the University of
Santiago de Compostela, Spain. Like the Magellan Pro,
the Nomad 200 robot uses 16 sonar sensors distributed
around it (one per 22.5 degrees).

To verify that the Nomad robot behaves in a gimilar
fashion as if the ANN wall-following code was executed,
sensor data was also collected with the original task code.
It is important to note that the environment in both
cases was unchanged, (figure 11).

As with the Magellan Pro robot, in order to compare
the behaviour of the Nomad robot when running the
original task and the task model, we used the Mann-
Whitney U-test to compare the minimum distance to the
wall and the rotational velocity of the robot. Both tests
revealed no significant difference (p < 0.05) between the
two pairs of distributions shown in fipures 12 and 13.

A comparison of the trajectory of the Nomad robot
when executing the original code and the model could
not be made in this case because there were no reliable
means to accurately record the position of the robot dur-
ing its operation.

It is important to note that, even though the same task




Figure 10: The Nomad 200 robot while executing the wall-
following task. '

was executed in two robots with very similar sonar sen-
sor specifications, when a comparison is made between
the behaviour of the Magellan Pro robot and the Nomad
robot, a significant difference is observed. This can be
seen when comparing figures 6 and 12 or figures 7 and 13.
This difference is also confirmed with the Mann-Whitney
U-test. This is because the environments where the ex-
periments were carried out and the robots were different.
In the first case, the Magellan Pro robot was run in a
closed environment build out of carton boxes (see figure
1) whereas in the second case, the Nomad robot was op-
erated in a corridor with open or closed doors (see figure
10). The fact that the robots are different may also affect
in the trajectories observed. In this case the difference
between the command sent to the robot every 250 mil-
liseconds and the real velocities achieved by the motors
may differ between the Magellan and the Nomad.

4. Summary and Conclusions

In this paper we have shown how the NARMAX mod-
elling approach can be used to obtain a non-linear
polynomial model of the robot’s task in a real robot-
environment-task system. We have also shown how these
models can be validated in order to prove that they are
faithful representations of the task program codes and so
they can used to make realistic predictions of the robot’s
behaviour. A transparent model of the task has several
advantages over opaque models (such as those produced
using artificial neural networks). Perhaps the most im-
portant advantage is that it can be directly analysed
using established mathematical methods.

As an example, an artificial neural network based wall-
following task was modelled and validated in this paper.
This has demonstrated the applicability of the NAR-
MAX approach in situations where a polynomial repre-

£

Figure 11: Trajectory followed by the Nomad robot in its
first lap in a L-shaped environment, and when the Narmax
model was used to control it. The symbol ‘4! reflects the
sensor measurements provided by one of the lateral sensors
during this first lap.

sentation cannot be derived from the original code.

Both qualitative and quantitative approaches were fol-
lowed in order to validate the estimated model of the
wall-following task. No attempt has been made in the
past to analyse robotic behaviour quantitatively. Here
we do this by selecting to compare statistical measures
which are relevant to the task being modelled. In the
case of the wall-following task these were: i) the distance
of the robot to the wall and ii) the robot’s rotational ve-
locity.

Several advantages become apparent as a consequence
of compressing the ANN wall-following algorithm into a
single NARMAX polynomial shown in table 1. These re-
late to the ease of transferring the wall-following task to
different programming platforms within the same robot
or even different robot platforms with the same sensor
configuration. As an example of one such cross-platform
implementation, we have used the NARMAX model in
table 1 to run on a Nomad 200 robot, moving in the cor-
ridors of the department of Electronics and Computer
Science of the University of Santiago de Compostela in
Spain. The robot performed identically when running
the original ANN code and the NARMAX model code.
The most interesting aspect of this experiment was the
small amount of time spent, between us and our col-
leagues in Spain, in communicating the task and setting
up the robot to run using the NARMAX model.
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