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Abstract: Hysteresis is a common and severe nonlinear phenomenon associated with
the Duffing oscillators, which can be induced by either varying the amplitude or the
frequency of excitation. In this paper both cases are studied using the Volterra time
and frequency domain modelling techniques.

Introduction

Oscillations widely exist in the physical world, especially in mechanical, electronic
and marine systems. Although most systems are nonlinear to some extent, where
possible, linearised models should be used because of the simplicity of analysis and
availability of a relatively complete theory. However under certain conditions many
physical systems are not even nearly linear, and new phenomena such as
subharmonics, superharmonics, limit cycles, and chaos can be observed. Important
theoretical results on these topics can be found in the books of Stoker(1950), Nayfeh
and Mook(1979) and Hagedorn(1982), etc.

Duffing oscillators have been used to represent many practical systems and have often
been used as benchmark examples for nonlinear oscillator analysis. The present study
focuses on an important nonlinear phenomenon, the jump phenomenon, of the
Duffing oscillator. Jump phenomena can occur when either the amplitude or the
frequency of the excitation is varied and both types of jump phenomena are
investigated in this study. First, the validity of the Volterra series representation for the
Duffing-Ueda oscillator excited by a single-tone excitation within a low excitation
amplitude range, where the system has multiple-valued response solutions, is assessed
and an additional model is derived to accommodate the Volterra representation for
different ranges. These analyses are then extended to represent the jump phenomenon
of a typical Duffing oscillator when the frequency of the excitation increases while the
amplitude of the excitation is held constant.
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Volterra Modelling in the Time and Frequency Domain
Volterra(1930) series modelling has been widely studied for the representation,
analysis and design of nonlinear systems. The Volterra model is a direct generalisation
of the linear convolution integral, therefore providing an intuitive representation in a

simple and easy to apply way. For a SISO nonlinear system, with u(¢)and y(z) the

input and output respectively, the Volterra series can be expressed as

()= iy,, () (1.a)
n=1

and y,(f) is the ‘n-th order output’ of the system
v =[ - [ hyoe)] Jut -7z, n>0  (Lb)
o0 0 i=1
where % (7,,--,7,) is called the ‘nth-order kemel’ or ‘nth-order impulse response

function’. If n=1, this reduces to the familiar linear convolution integral.
The discrete time domain counterpart of the continuous time domain SISO Volterra
expression (1) is

y(k) =y, (k) (2.2)
n=l
where
v, (k)= iu-ihﬂ (7, ,---,r,,)ﬁu(k -1,) n>0keZ (2.b)
-0 —c0 i=l

In practice only the first féew kernels are studied on the assumption that the
contribution of the higher order kemels falls off rapidly. Systems that can be
adequately represented by a Volterra series with just a few terms are called a weakly
or mildly nonlinear system. A discrete time Volterra series is also called a NX
(Nonlinear model with eXogenous inputs) model.

The multi-dimensional Fourier transform of &, () yields the ‘ath-order frequency
response function® or the Generalised Frequency Response Function (GFRF):
H (0, 0,)= f e Ehn (71, Jexp(=jloT, + -+ @,7,))dr, - d7, . (3)

The generalised frequency response functions represent an inherent and invariant
property of the underlying system, and have proved to be an important analysis and
design tool for characterising nonlinear phenomena. In practice, the GFRF’s can be
estimated using non-parametric or parametric methods. The parametric method
involves mapping a nonlinear differential equation(Billings and Peyton Jones, 1990)
or mapping a nonlinear difference equation(Peyton Jones and Billings, 1989) into the
frequency domain using the probing method.
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Volterra Modelling for the Duffing-Ueda Equation with Varying Excitation
Amplitude
Considering the Duffing-Ueda oscillator

Ly 4 k2 +py’ = Ecos(t) @)

Where g is normally a smaﬂ number. In this example, x# is chosen as 0.15, and

k is chosen as 0.1.

By varying the external input amplitude E, the corresponding bifurcation diagram in
Figure 1 can be produced. The Response Spectrum Map(RSM) introduced by Billings
and Boaghe(2001), provids a frequency domain counterpart of the bifurcation
diagram, and gives straightforward insight into the frequency domain behaviour of the
system. The RSM for equation (4) is plotted in Figure 2.
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Figure 1. Bifurcation diagram for Duffing-Ueda equation (4)
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Figure 2. Response Spectrum Map(RSM) for Duffing-Ueda equation (4)
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Figure 2 shows that for the initial amplitude variation m [0.2 3.5] the harmonic
content consists of a dominant frequency component at the driving frequency of 1
rad/sec and odd multiples of the driving frequency at 3, 5, 7 rad/sec. As the amplitude
E increases, a third order subharmonic occurs at around 3.5 rad/sec. It is well-known
that generally Volterra series cannot represent subharmonic systems. Hence this study

will focus on the Volterra modelling for0 < E<3.5.
Inspection of both Figure 1 and 2 shows that although for both the input amplitude

ranges E<[0209] and E€(0.93.5] no subharmonics exist and the output response

has the same period, the responses are significantly different in amplitude. This is
usually called a jump phenomenon or hysteresis. The amplitudes of response for each
value of E can be roughly estimated using the harmonic balance method as below.

Because the linear damping factor & is not zero, there will be an intermediate phase

angle shift with the response. Instead of writing u = Esin(?) for the excitation and

y = Csin(t—¢) for the dominant periodic solution, it is more convenient to write

{u = Psin(f) + Qcos(f) with E = 4/P? +0Q*,and )

y = Csin(?)

Substituting (5) into (4), together with the use of sin®(f)=2sin(¢) - ;sin(3)
yields |
3 pC? sin(t) — Csin(t) + kC cos(z) = Psin(z) + Q cos(t) (6)

where the term containing sin(3¢) has been neglected.
Equating coefficients of the same harmonic terms in (6) and using

E =P +Q* gives

2uCt - C)? +k°C* = E? 7

Equation (7) gives the approximate relationship between the amplitude of excitation
and the amplitude of response.

For the specific values of the coefficients in equation (4), thatis, k¥ =0.1and 4 =0.15,

the multiple amplitude solutions for C can be obtained for each value of E. Following
the actual amplitude shown in Figure 1, the middle solutions were neglected, leaving
the two solution curves of (7) shown in Figure 3.
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Figure 3. Response amplitude curves using the harmonic balance method

The solid line in Figure 3 is used to reflect the fact that the amplitude of the response
jumps, making it comparable with the bifurcation diagram Figure 1. Figure 3 agrees
well with Figure 1 for the excitation range [0.2 3.5]. '

Both the bifurcation diagram in Figure 1 and the Response Spectrum Map in Figure 2
clearly reveal the jump phenomenon around the point of excitation amplitude E=1.
Moreover, the time invariant and analytical nature of the Duffing-Ueda equation (4)
suggests that for the excitation variation range [0.2 3.5] the system is weakly
nonlinear and can therefore be represented by a Volterra series. The Volterra series
representation could be derived from the GFRF’s obtained by mapping equation (4)
into the frequency domain(Billings and Peyton Jones, 1990). However the GFRF’s for
any system representation result in a unique steady state solution. In the current
example, the GFRF’s from (4) will only provide an explanation for solution 1
trajectory, along the solid and dotted lines in Figure 3, but will fail to explain the
response along solution 2 trajectory. Therefore an additional analysis is needed to find
a Volterra representation for the solution 2 trajectory, and this is one of the main
objectives of this study. To this end, the system (4) was simulated using a Fourth
order Rungé-Kutta algorithm for excitation amplitude E=1 at a sampling frequency

f, =120/nwith zero initial conditions. By using the input-output data a simple
discrete time NARX model was identified (Billings and Chen, 1998) as
y(k) =1,99738 y(k-1)-0.99738 y(k —2)-0.00010260 y* (k —1) + 0.0006848 u(k — 2)

(8)
The GFRF’s associated with this model were obtained by mapping (8) into the

frequency domain(Billings and Peyton Jones, 1990). H,(w)for model (8), and for
comparison, H,() from the continuous time model (4), are plotted in Figure 4. It can

be seen that H, () from (8) is almost the same as H,(w) from (4), indicating that (8)

is nothing more than the discrete time version of (4). Equation (8) will therefore




produce the same bifurcation diagram and response spectrum map as (4) and will only
be valid in the sense of the Volterra representation along ‘solution 1’ in Figure 3.
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Figure 4. H,(®) from (8)—solid, and /(@) from (4) — dashed

The same input-output data used in the identification of model (8) were then used in a
different model structure—in either a NARX model, or a NX model form. This time a
new identified discrete time model was obtained which is capable of providing a
frequency domain solution along ‘solution 2’ trajectory in Figure 3. One such model
is given below:

(k) = 33.180 u(k — 2) — 30.466 u(k — 1) +23.288u° (k — 2) + 22.754u(k — 1)’ (k —2)

€))
This NX model is actually a truncated discrete time Volterra model of the form of

equation (2).

The GFRF’s can be derived directly from equation (9). Only the first and the third
order GFRF’s exist for equation (9) and these can be used to synthesis the response.
Figure 5 shows both the first and up to third order nonlinear output responses. It can
be seen that an excellent solution is achieved using the truncated third order Volterra
series representation. ‘
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Figure 5 (a) First order output response, and (b) up to the third order response Solid—- synthesized output
from the GFRF’s of eqn (9); Dashed- original output from (4)




The decomposed output response for each frequency component can easily be
obtained using the GFRF’s. The fundamental frequency component(excitation
frequency) comes from the first order and the third order GFREF’s contributions, and

the amplitude can be determined as C_gpe, =3.2717, which is very close to the

harmonic balance solution, C_j.. =3-3720at the excitation amplitude E=1 in

equation (8).

Volterra Modelling for the Duffing Equation with Varying Excitation
Frequency
Hysteresis can also occur when the frequency of the excitation changes. Consider the
following Duffing equation -

£2 4022 +y+0.05y° = Acos(wt) (10)

with fixed excitation amplitude 4 =1. The dynamics of (10) have been studied by
Thompson and Stewart(2002) with varying driving frequency @ . Generally there will
be two jump paths corresponding to slowly-increasing and slowly-decreasing®. In
this study, the time domain and frequency domain Volterra modelling for the
increasing @ path will be investigated.

Figure 6. Resonance response curve for Duffing Equation (10)
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Figure 7. Response Spectrum Map for Duffing Equation (10)

The resonance response curve, which is the maximum amplitude of the response y
versus the driving frequency @ , for Duffing equation (10) with increasing @ is shown
in Figure 6. Clearly there is a jump in the response from point C to point D, which
suggests a severe behaviour change at this location. This will be studied by an
inspection of (10) in the frequency domain. This shows that as the frequency @
increases, the GFRF’s derived from equation (10) are valid for the range A to
B( @ =0.75tad/sec) in Figure 6. The GFRF’s start to become invalid for the range B to
C(w=1.24) in Figure 6, and become valid again for the range D to E. In other words,
in the frequency domain, besides the same jump point as in the time domain at
=124, there is another change point at around @=0.75. However, the change at
around ®=0.75 develops gradually, and is not as abrupt as-the ‘jump’ at w=1.24.
This kind of frequency domain change does not appear to be revealed by traditional
tools, such as the resonance diagram in Figure 6. The Response Spectrum Map, which
is plotted in Figure 7, does provide some information about this frequency domain
change. First of all, there are no subharmonics shown in figure 7, suggesting that the
system for the whole frequency range of interest is ‘mildly’ nonlinear and that a valid
Volterra/frequency domain representation should exist over all the frequency range.
Secondly, the apparent ‘jump’ from C to D at frequency point ® =1.24 in Figure 6 is
not clearly detected by the first order(linear) harmonic line H1, but is clearly shown
on the subsequent higher order harmonic lines H3, H5, etc by a stronger higher order
harmonics presence. Finally the frequency domain change at point B in Figure 6 is not
detected on the dominant first order(linear) harmonics line H1, but again the H3 line
shows a significant third order harmonic change around the frequency point @=0.75.
In order to find the frequency domain representation for the range B to C, the
technique in section 3 can be used repeatedly, that is, discrete time Volterra-- or
equivalently NX—models can be identified from each pair of single tone excitation




and response data, over the frequency range [0.75, 1.24]. For example, for excitation
frequency @ =1, the corresponding discrete time Volterra model can be expressed,

with a sample frequency f, = 60/, as

(k) =26.816 u(k —2) - 24.40u(k —1) +1.3984 u° (k —2) —1.3792 u” (k — Du(k —2)
_ (1)
from which the H,(-)and H,(-)data at frequency @=1 can be obtained(Billings

and Peyton Jones, 1990).
By repeating this procedure for a number of excitation frequencies along [O 75, 1.24],
the GFRF’s can be acquired by putting together the frequency response data recorded

at each frequency péint The first order frequency response function A, (-) computed in-

this manner is plotted in Figure 8 (dashed)
Using the approach introduced in Li and Billings(2001), a nonlmear continuous time

model can be reconstructed from the H,(-)and H,(-) data, as been given below

y+021727% 4 0.87564“-’)’+0.01713 Ly +0. 180052 €y +0.01939y° —0.002162y> 2
—0.04358y(2)*+0.0001961(2)* =1. 0037cos(cor)
(12
The H,(-) computed from equation (12) (solid) is compared with the H,(-) from the

Volterra modelling such as equation (11), in Figure 8, which shows a good match.
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Figure 8. H,(*) by reconstructed continuous time model (12) —solid and H,(*) by

Volterra modellings—dashed
To test the validity of the reconstructed continuous time model (12), arbitrarily choose
an excitation frequency from the specific frequency range [0.75, 1.24], say, @=0.9
rad/sec, and compare the response from the original Duffing equation (10) and the
response synthesized from the GFRF’s obtained from equation (12). It can be seen




that up to third order GFRF’s from (12) can provide a satisfactory representation for
the system, as shown in Figure 9.
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Figure 9 (a) First order output response, and (b) up to the third order response Solid— synthesized output
by GFRF’s from (12); Dashed--simulated original output from (10)
It is interesting to show the synthesised response result for the same frequency
@=0.9 rad/sec computed using the GFRF’s from the original Duffing equation (10) as
a comparison, in Figure 10. It can be seen that in this case the GFRF’s from the
original Duffing equation totally fail at this frequency.
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Figure 10 (a) First order output response, and (b) up to the third order response Solid— synthesized output
by GFRF’s from (10); Dashed--simulated original output from (10)

Therefore the whole picture of the frequency domain representation for the Duffing

oscillator (10) when the excitation amplitude is fixed as A= 1 would look like Figure

11 for the first order frequency response function for example. This diagram is similar

to the resonance response curve in Figure 6, but with one more ‘jump’ point at

@=0.75. In summary, the frequency response function initially follows H, from the
original Duffing equation (10) from A to B, then jumps to /by the new equation

(12) from B to C, and finally jumps back to H by the original Duffing equation (10)
from D to E.
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Figure 11. First order frequency domain response function for the Duffing oscillator (10)

Conclusions
Despite the apparent simplicity the Duffing oscillator can produce very complicated
behaviours from weakly nonlinear leading quickly to chaos as the amplitude or
frequency of the excitation is varied. Even over a low excitation range, the behaviour
of this oscillator is not consistent and can exhibit jump phenomena, that is, the output
response will jump from one trajectory to another.
It has been shown that the original Duffing-Ueda model is only valid in the
Volterra/frequency domain sense for a very limited excitation range. For the majority
of the excitation range, the original Duffing-Ueda equation losses the ability to
provide a Volterra representation or frequency domain interpretation. In this paper it
has been shown that additional models valid in the Volterra representation sense can
be derived based on discrete time parametric modelling over different ranges. The
original equation and the additional models and the frequency domain equivalents,
GFRF’s, form important new tools in the time and frequency domain analysis and
design of the Duffing-Ueda oscillator.
It was also demonstrated that under certain circumstances the Duffing oscillator can
lose some frequency domain properties as the frequency varies. It has been shown in
this study that a new parametric modelling approach can provide the frequency
features to fill in these gaps. This should help to better understand the behaviour of
the Duffing oscillator. ‘
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