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Abstract 

The high-temperature pyrolysis behaviour of a sample of refuse derived fuel (RDF) as a 

model of municipal solid waste (MSW) was investigated in a horizontal tubular reactor 

between 700 – 900 °C , at varying heating rates, and at an extended vapour residence time. 

Experiments were designed to evaluate the influence of process conditions on gas yields as 

well as gas and oil compositions. Pyrolysis of RDF at 800 °C and at rapid heating rate 

resulted in the gas yield with the highest CV of 24.8 MJ m-3 while pyrolysis to 900 °C at the 

rapid heating rate generated the highest gas yield but with a lower CV of 21.3 MJ m-3. A 

comparison of the effect of heating rates on oil products revealed that the oil from slow 

pyrolysis, contained higher yields of more oxygenates, alkanes (C8 to C39) and alkenes (C8 

to C20), while the oil from rapid pyrolysis contained more aromatics, possibly due to the 

promotion of Diels-Alder-type reactions. 

 

1.0  Introduction 

There is a continuously growing need for new and sustainable sources of energy in the world 

as our populations grow and countries become more developed. There is also an increased 

demand for renewable sources of energy, resulting in increased interests in the processing of 

municipal solid waste (MSW) as an energy resource both by biochemical and 

thermochemical means. Among the thermochemical technologies for MSW conversion, 



pyrolysis is arguably, the most versatile in relation to the flexibility of obtaining primary 

products. The application of pyrolysis technology to MSW is quite promising as the energy 

content of the MSW can be extracted in the form of primary pyrolysis products including gas, 

liquid and solid product [1]. The production of the product fraction of choice (gas, liquid or 

solids) from RDF pyrolysis can be maximised by controlling the basic process conditions of 

temperature, heating rate, residence time etc. These primary products can be used directly for 

energy or subsequently converted into other fuels and or feedstock. However there are 

problems with the pyrolysis of MSW, especially due to its heterogeneity [2], which makes for 

inconsistent energy characteristics and lack of uniform thermal behaviour . One method of 

overcoming this problem involves converting MSW into refuse derived fuel (RDF). This 

process involves the densification of the combustible fractions of MSW, usually into pellets, 

after other non-combustible fractions like metals and glass have been recycled. This creates a 

feedstock with a; more uniform composition, relatively constant density and size, easier 

transport logistics and higher heating value than raw MSW. RDF is therefore a better 

feedstock for thermal conversion, including via pyrolysis, than MSW [3].  

Literature shows that pyrolysis of biomass and MSW is usually carried out at temperatures 

between 400 °C and 600 °C [4-8]. The yields of the three product phases (gas, liquid and 

solid) can be largely controlled by the heating rates applied within this temperature range. 

During fast heating rates oil is the dominant product, while slow heating rates give a 

dominant solid product. In addition, the gas fractions tend to increase with increased 

pyrolysis temperatures.  Velghe et al. [4] studied the slow and fast pyrolysis of MSW at 

temperatures up to 550 °C and reported maximum solids yield at slow pyrolysis to 550 °C 

while maximum oil yield was reported for fast pyrolysis to 510 °C. Results showed that 

higher temperatures favoured gas yields. Miskolczi et al. [5] conducted the pyrolysis of RDF 

in a two stage reactor at temperatures of 550 °C and 450 °C for the first and second stage 



(catalytic) respectively and reported oil, gas and char yields of 67.3, 10.2 and 18.4 wt% for 

the first stage temperature of 550 °C.  

Pyrolysis oils from MSW are often a mixture of several organic compounds with different 

functional groups, making its direct application difficult without further processing. For this 

reason, conversion of MSW to gas represents a refining process in which the lightest possible 

molecules are obtained. This is the objective of conventional gasification which converts 

biomass and MSW to mainly hydrogen and carbon monoxide.  However, the production of a 

gas product with high content of hydrocarbon gases, rather than hydrogen may sometimes be 

expedient from the utilization point of view. There are still problems with hydrogen storage, 

whereas technologies for the storage and utilization of hydrocarbon gases have matured.   

Hence, the essence of high-temperature pyrolysis would be to obtain high yields of gas 

products, with high calorific values. 

There are however few works available on the production of gases from fast pyrolysis of 

MSW at much higher temperatures. High-temperature pyrolysis produces a high yield of gas 

along with tarry oil and solid products. Garcia et al [9] investigated the pyrolysis of MSW at 

temperatures between 700 and 850 °C, and reported that gas yield increased from 41.1 to 56 

wt%.  This paper investigates high-temperature pyrolysis of RDF at different heating rates 

between 700 and 900 °C in a horizontal tubular reactor. The objective is to determine if there 

are any relationships between the yields of products, the characteristics of the RDF sample 

including its composition, and the pyrolysis conditions including heating rate.  

2.0  Materials and Methods 

2.1  Materials. 

In this present study refuse derived fuel (RDF) pellets of approximately 16 mm diameter and 

80 mm length were obtained from a UK MSW treatment facility. In order to increase the 



sample homogeneity, the RDF pellets were thoroughly mixed, ground and then sieved to 

obtain 1mm particle size used in this study  

2.2  Characterisation of feed sample 

The moisture, volatile, fixed carbon and ash content of the fresh RDF were determined by 

proximate analysis using a Stanton-Redcroft Thermogravimetric analyser (TGA). Moisture 

content was determined according to EN 15414-3, volatile content was determined according 

to EN 15402, ash content was determined according EN 15403, while fixed carbon was 

determined as the difference of moisture, volatile and ash contents from 100%. The TGA 

temperature programme was set to heat the sample from 25 °C to 110 °C at a heating rate of 

25 °C/min and a hold time of 10 min in nitrogen, then to 900 °C at 25 °C min-1 for 20 min in 

nitrogen and finally to 910 °C at 10 °C min-1 for 20 min in air. The TGA programme was 

capable of indicating separate maxima for the degradation temperatures of biogenic and 

plastic fractions of RDF, respectively.  Elemental analysis to determine the carbon, hydrogen, 

nitrogen and sulphur contents of RDF were carried out with a Carlo Erba Flash EA 1112 

elemental analyser, while the oxygen content was determined by difference. Table 1 shows 

the results of the proximate analysis and the elemental analysis of the 1mm samples of RDF. 

The table also shows the characteristics of separate samples of cellulose and a mixed waste 

plastic samples for comparison.   

2.3  Pyrolysis Reactor 

Pyrolysis experiments were carried out in a horizontal tubular reactor, shown in Fig. 1, which 

was designed for this purpose. The reactor was made up of a horizontal stainless steel 

cylindrical tube of length 650 mm and internal diameter of 11 mm. The reactor was heated 

externally by an electrical tube furnace which provided a heated zone of length 450 mm and 

could be easily controlled to provide the desired final temperature and heating. The sample 



was introduced to the reactor via a sample boat, which was a cylindrical tube with a cup at its 

end for holding the sample. The sample boat was designed to be easily, horizontally inserted 

into and withdrawn from one end of the reactor, placing the cup at the centre of the reactor’s 

heated zone for effective heating. A thermocouple was also integrated into the sample boat, 

designed to be placed concentric to the walls of the sample boat, thereby providing the 

temperature at the centre of the sample. Tests were carried out in order to investigate the 

effects of temperature (700, 800 and 900 °C) and heating rates at the sample centre on the 

pyrolysis of the RDF. Experiments were performed with 1 g of the RDF loaded unto the 

sample boat and inserted into the reactor which was continually purged with nitrogen at a 

flow rate of 100 ml/min. The volatiles residence time within the reactor was estimated as 9 

sec. The reactor was heated to the desired final temperatures and at the desired furnace 

heating rates of (5, 20, 90 and 350 °C min-1), these were found to be very close to the heating 

rate for the sample as measured by the thermocouple. The heating rate was determined by the 

equation.1. 

dT/dt = (T2 – T1) / (t2 – t1)  ………………(1) 

Where, T2 is the final pyrolysis temperature  

T1 is the initial sample temperature 

t2 –t1 is the time taken from the start of the experiment till  the RDF attains final temperature. 

.Pyrolysis volatile products were purged from the reactor by the nitrogen flow into two sets of 

glass condensers, one was immersed in water and the other with a glass wool trap was 

immersed in dry ice in order to trap the liquid products. The non-condensable gases were 

finally collected in a sampling bag for off-line analysis by gas chromatography. Solid 

products remained in the sample boat and were weighed and collected for analysis after the 

reactor cooled. Each experiment was carried out twice in order to determine the repeatability 



of each experiment and the reliability of the pyrolysis reactor, under identical conditions. 

Standard deviations on product yields were within 5%.  

2.4  Method development for tar/oil sampling and analysis 

The tar/oil products trapped in the condensers for each experiment were weighed and then 

collected for analysis by gas chromatography/mass spectrometry (GC/MS). The two 

condensers collected the tarry products which were brownish in colour for the first condenser, 

while the product in the second condenser was a mixture of water and a pale yellow liquid. 

During sampling, the tar products in the condensers were separated into two fractions 

namely; the hexane-soluble fraction and the dichloromethane-soluble fraction. In the 

procedure, the condensers were initially rinsed with minimal aliquots of hexane in order to 

collect the hydrocarbons into the hexane fraction. After this, minimal volume of 

dichloromethane was used to dissolve and collect the remaining tars. This enabled the 

separate analysis of these fractions with minimal co-elutions and mis-identification of the 

compounds. 

Before analysis in the GC/MS/MS, each fraction of tar/oil product was passed through a 

packed column of anhydrous sodium sulphate to remove water. This was followed by a 

further cleaning procedure in which the fractions were passed through packed EPH columns 

containing a sorbent of mixed silica and alumina, designed to fractionate aliphatic and 

aromatics from petroleum hydrocarbons. In this procedure, one EPH column was used for the 

clean-up and fractionation of the oil and tar products from each experiment. The hexane 

fraction was first passed through the EPH column and eluted with hexane to obtain the 

aliphatic hydrocarbons fraction. Then the DCM fraction was also passed through the same 

column and eluted with more dichloromethane solvent to obtain the aromatic 

hydrocarbon/oxygenates fraction. The EPH columns were supplied by Biotage, a Swedish 

company. 



Appropriate dilutions of the prepared fractions were made prior to GC/MS/MS analysis. 

Identification and quantification was carried out using external standard method. For the 

aliphatic compounds a calibration curve was developed using a standard mixture of C8 – C40 

compounds obtained from Sigma-Aldrich UK. In addition, standard solution of 36 aromatic 

compounds was prepared and used to create 4-point calibration curves for their analysis. The 

GC/MS/MS system consisted of a Varian 3800-GC coupled to a Varian Saturn 2200 ion trap 

MS/MS equipment. The column used was a 30m x 0.25mm inner diameter Varian VF-5ms 

(DB-5 equivalent), while the carrier gas was helium, at a constant flow rate of 1 ml min-1. 

The GC injector was held at 290 °C. The oven temperature programme was as follows; 40 

°C, held for 2 min and ramped to 280 °C at a rate of 5 °C min-1 and then held at 280 °C for 10 

min., the transfer line temperature was 280 °C, manifold was at 120 °C and the trap 

temperature was held at 200 °C. Spectral searches on the installed NIST2008 library were 

used to qualitatively identify the major ‘unknown’ compounds in the oil products. 

2.5  Gas Analysis 

Non-condensables were collected in the sample gas bag and analysed by GC. A Varian 

3380GC with dual packed columns and dual thermal conductivity detectors (GC/TCD) was 

used to analyse and determine the permanent gases (H2, CO, O2, N2 and CO2). The column 

for CO2 analysis was of 2 m length by 2 mm diameter with Haysep 80 – 100 mesh packing 

material. Analysis for H2, CO, O2 and N2 was carried out in a second column of 2m length by 

2 mm diameter packed with 60 – 80 mesh molecular sieve. The GC oven was held at 40 °C 

during the analysis while the detector oven and filament temperatures were at 120 °C and 160 

°C respectively. The carrier gas was Argon. A second Varian 3380 GC with a flame 

ionization detector (GC/FID) was used to analyse and determine the C1 – C4 hydrocarbons 

(CH4, C2H4, C2H6, C3H6, C3H8, C4H8 and C4H10) in Nitrogen carrier gas. The column was 2 

m length by 2mm diameter, packed with Haysep 80 – 100 mesh. The GC oven temperature 



was set to 60 °C for 3 min and ramped to 100 °C at 5 °C min-1 held for 3 min and finally 

heated to 120 °C at 20 °C min-1 held for 17 min. The gross calorific value (GCV) of the gases 

where calculated from the equation 2 below 

   GCV = CVm / Zm…………………………..(2) 

Where CVm is  product of the mole fractions and the calorific values of the individual gases 

Zm is the compressibility factor of the gases. 

2.6  Solids analysis 

The carbon deposits on the reactor wall together with the residue left over on the sample boat 

after pyrolysis were weighed and collected as the reacted solid residue. The surface area of 

reacted RDF solids were measured using the Brunauer, Emmett and Teller (BET) method via 

nitrogen adsorption in a Quantachrome Corporation (FL, US) Autosorb 1-C instrument. The 

gross calorific value (GCV) of the produced solids was determined using a bomb calorimeter.  

 

3.0  Results and Discussion 

3.1.1  RDF characteristics 

The elemental analysis results earlier presented in Table 1 indicate that the RDF sample has 

similar hydrogen and carbon contents to the cellulose sample. These in addition to the high 

oxygen content suggested that the RDF contained much more biogenic fraction than plastics. 

Such high oxygen content is typical of RDF in literature [10, 11], mostly as a result of the 

chemically bound oxygen in the cellulosic fractions of the paper, cardboard and wood that 

make up RDF. The high ash and fixed carbon contents of the RDF was mostly responsible for 

the lower contents of volatile matter compared to the cellulose and plastic samples. The 

presence of silica and other inorganic materials often contribute to high ash contents of RDF, 



while other easily carbonized organic materials other than common plastics and cellulose 

would be responsible for the much higher fixed carbon contents.  The thermal degradation 

behaviours of the RDF, cellulose, mixed waste and simulated RDF samples are depicted in 

Fig 2, which shows the rate of weight loss and the derivative (dTG) curve and temperature 

with reference to time. TGA experiments were carried out with a sample mass of 10 mg using 

a heating rate of 10 °C min-1. The dTG in Fig. 2a shows four major peaks for RDF. The first 

and the last peaks from the left side of Fig. 2a represent weight losses due to moisture release 

and the combustion of the fixed carbon, at the 100 °C region and at the introduction of air at 

the 910 °C temperature regions, respectively. The two centre peaks which are made up of a 

major peak between 200 and 425 °C, and a minor peak from 425 to 565 °C, represent the 

decomposition of the volatiles in RDF. However it is important to note that the volatile 

decomposition of RDF continued gradually up till 800 °C, which may be due to the presence 

of lignin [12, 13] in the biogenic fraction of the RDF. The TGA/DTG profile of the RDF 

mirrored those of a combination of the cellulose (major biomass component) and mixed 

waste plastics.  The degradation of cellulose (Fig. 2b) coincided with peak 2 of Fig. 2a, while 

the degradation of the waste plastics (Fig. 2c) also coincided with peak 3 in the TGA/DTG of 

the RDF sample. This observation provided further confirmation that the 2 volatile 

decomposition peaks from the RDF TGA pyrolysis were mostly from the degradation of 

cellulosic matter and plastics.   

The degradation of cellulosic matter has been reported to take place around the temperature 

ranges of 200 to 400 °C [11, 14] while plastic decomposition was reported to occur around 

the ranges 425 to 565 °C [10, 15]. The mass loss analysis of the TGA results showed that the 

RDF sample was roughly composed of 13 wt% ash and 83 wt% fuel (organic) material. In 

addition, the DTG analysis indicated that the fuel fraction consisted of 79% biogenic material 

and 21% plastic fractions.  To confirm this observation, a simulated mixture of the mixed 



plastics and cellulose samples in a similar ratio to the one found in the RDF, was prepared 

and analysed by TGA. This is presented in Figure 2d which shows 73.6% loss of volatiles 

from cellulose and 18.7% loss from the plastics. These results indicated that for the RDF 

sample used in this present study, the degradation pattern of its volatile content could be 

recreated by degrading an appropriate mix of cellulose and mixed waste plastics, thus giving 

a quick way of estimating the proportions of the biogenic and plastic fractions. The results 

above indicated that the pyrolysis of RDF is mostly as a result of the thermal degradation of 

the biogenic (cellulosic) and plastic fractions. Further investigations are necessary to 

determine the contributions of these fractions to the pyrolysis products, as well as what 

interactions if any, exist between the individual products of these fractions which may 

influence the pyrolysis products. However the results of such investigations will be presented 

in future work. 

3.2.  Results from varying the heating rate during pyrolysis of RDF 

The pyrolysis of RDF just like biomass always yields three major product fractions: gases, 

liquids and solids [11]. However, the variation in the yields of these products with varying 

process conditions could help explain any possible interactions between the components of 

RDF during the pyrolysis runs. Controlling the pyrolysis heating rate is one way of 

investigating this effect [16]. 

3.2.1 Effect of heating rate on product yields 

Table 2 shows the variations in the product yields when the RDF samples where pyrolysed at 

heating rates of 5, 20, 90 and 350 °C min-1 to a final temperature of 800 °C and held at this 

temperature for 20 min. The results suggest a definite trend of the product yields, with 

increasing heating rate at the process conditions defined by the reactor design. However, it is 

clear that no clear distinction could be made between the yields of products at 5 °C min-1  and 



20 °C min-1 heating rates, indicating that much larger differences in heating rates is often 

required to significantly affect product yields. Gas yield increased from 14.4 to 46.9 wt % 

while oil yield decreased from 55 to 23 wt% with increasing heating rate. The solids residue 

showed a continuous decreasing trend in yield with increasing heating rate from 5 to 350 °C 

min-1, probably as result of the thermal degradation of higher molecular weight hydrocarbons 

within the residue [17]. Marcilla et al [18] reported similar product yields for the slow and 

fast pyrolysis of HDPE in a fluidized bed. The higher gas yields and lower oil yields noted at 

the highest investigated heating rate compared to the lower heating rates yields, was as a 

result of the rapid secondary thermal cracking of the primary pyrolysis vapour. High heating 

rates and longer residence times combined with high temperatures have been reported to 

increase gas production from pyrolysis of waste [1, 19]. Due to the rapid heating rate, the 

pyrolysis vapours from the primary thermal decomposition of the RDF were released into the 

high temperature atmosphere, which when combined with the residence time estimated to be  

up to 9 sec in this reactor, initiated the secondary cracking of the vapours to yield lighter 

molecular weight hydrocarbons and more gases. Garcia et al. [9, 19] have investigated the 

effects of residence time on the pyrolysis of MSW and their work indicated that volatile 

residence times above 1 sec favours secondary pyrolytic cracking reactions which results in 

higher gas yields. 

3.2.2 Gas composition 

The effects of the different heating rates on the composition of the pyrolysis gas, in this 

present study, are also shown in Table 2. This shows an increase (on a mass basis) across the 

detected compositional fractions that make up the gas products, with increasing heating rate. 

The highest gas compositional mass yields were produced at the highest heating rate, 

suggesting the promotion of secondary thermal cracking. The degradation of polymers which 

occurs during pyrolysis has been explained to be as a result of free radical degradation via 



different mechanisms: random scission, side group scission, monomer reversion and a 

combination of any [20]. For example during the pyrolysis of higher alkanes, the carbon-

carbon bonds randomly cleave along the chain to produce smaller alkyl radicals [21]. The 

degradation mechanism or mechanisms which will be applicable during the pyrolysis of 

polymers are dictated by factors such as, the reaction conditions, the strengths of the chemical 

bond within the polymer and the stability of the resultant product molecule. Often the 

weakest chemical bonds are first cleaved but equally important is the fact that a bond is likely 

cleaved if such cleavage would produce stable products. However, depending on the reaction 

conditions, including heating rates, the sequence of likelihood of bond cleavage may be 

altered. The dTG in Fig. 2a shows that different reactions take place during the pyrolysis of 

RDF, with the main steps being drying and then the splitting of molecules. Essentially, during 

the pyrolysis of RDF at a heating rate of 350 °C min-1, the reactions indicated by the first 

three peaks in Fig. 2a must have happened very quickly and in no definite order depending on 

the heat flux across the individual particles of RDF. Williams et al. [14] reported a merging 

of the degradation peaks for wood pyrolysis at higher heating rates. The occurrence of the 

three degradation peaks for the pyrolysis of RDF at almost the same time as a result of rapid 

heating, would introduce a different set of interactions for the pyrolysis products compared to 

pyrolysis at slow heating rates. At rapid heating rates, the initial products of the different 

degradation reactions during RDF pyrolysis were concurrently released into the hot reactor 

atmosphere where further thermal degradation and other reactions took place. Reactions such 

as auto-thermal gasification [22], the Boudouard reaction (Eqn.6.), methane dry reforming 

reactions (Eqn.7.) [23], recombination and disproportionation reactions [21] have been 

proposed for pyrolysis products. 

 C(s) + CO2 ļ 2CO                Q = -173.8 KJ mol-1 (Boudouard reaction)………………………... (3) 

 CH4 + CO2 ļ 2CO + 2H2      Q = -247.3 KJ mol-1 (Methane dry reforming)………...………….. (4) 



  

CHaOb + (2 - b)H2O ĺ (0.5a + 2 - b)H2 + CO2    (Auto thermal biomass gasification)………………  (5) 

 

2RCH2-CH2
Ɣ ĺ RCH=CH2 + RCH2CH3   (Disproportionation)…………………………………… (6) 

2RCH2-CH2
Ɣ ĺ RCH2CH2 - CH2CH2R    (Recombination) ……………………………………… (7) 

The complex combination of reactions and interactions during the rapid heating rate pyrolysis 

of RDF at high temperature, coupled with the secondary thermal cracking of the primary 

pyrolysis vapours, could result in a different gas composition compared to that attained for 

pyrolysis at lower heating rates as suggested by Table 2. The CO2 content in the gas 

increased with the heating rate, and may be as a result of the promoted decomposition of 

carboxylic groups [24]. In addition, the yield of CO increased with increasing heating rate, 

and can be attributed mainly to the promoted secondary reactions [25, 26]. As can be clearly 

seen in the Table 2, the yield of CO was consistently lower than that of CO2 at heating rates 

up to 90 °C/min, however at the heating rate of 350 °C/min the yield of CO became much 

higher than the yield of CO2. Clearly, this suggested a significant change in the pyrolysis 

reactions. The trend in the yields of CO and CO2 with increasing heating rate suggests the 

likely occurrence of Boudouard reaction at the heating rate of 350 °C/min.  Although, dry-

reforming [18] of hydrocarbons have been suggested to contribute to CO yields, in this study, 

the yields of methane and C2-C4 hydrocarbons increased consistently with increased heating 

rate. This would indicate a much less contribution to CO formation from dry-reforming.  

Table 2 also shows calorific values of the produced gases of between 12.5 and 24.8 MJ m-3, 

with an increasing trend with respect to heating rate. This could be mostly due to more gases, 

especially CO, methane and C2-C4 hydrocarbon gases, being produced as a result of higher 

conversion of the volatiles to gases as well as solid-gas reactions at the elevated heating rates 

via secondary reactions.  

3.2.3 Composition of liquid products 



The liquid products from the pyrolysis of MSW is often very complex in nature [10, 27-29] 

and contains a mixture of oxygenated and non-oxygenated hydrocarbons. In order to 

investigate the effects of the heating rate on the pyrolysis liquid, the liquids from the 

pyrolysis of RDF at the different heating rates were analysed by GC/MS/MS. Since the yields 

of products from pyrolysis at 5 °C min-1 and 20 °C min-1 heating rates were similar, detailed 

analysis of the tar from the 20 °C min-1 heating rate is not presented in this present study.  

Figs. 3 and 4 show the chromatograms of the oil/tar products obtained from the pyrolysis of 

the RDF at 800 °C, using heating rates of 5 °C min-1 and 350 °C min-1, respectively.  The 

figures, especially for the run at 5 °C min-1 show that the analytical protocol adopted in this 

study to separate the aliphatics from the aromatic/oxygenates compounds was largely 

successful. This enabled the separate analysis of these fractions with minimal co-elutions and 

mis-identification of the compounds.  

The results of the GC/MS/MS analysis are presented in Figures 3 and 4, which shows 

compounds detected from the liquids obtained from the pyrolysis of the RDF at heating rates 

of 5 and 350 °C min-1 respectively. The relative abundances of these compounds in the 

pyrolysis liquid are also shown. The chromatograms in Figures 3 and 4 show that compared 

to the lower heating rate pyrolysis, more aromatic compounds were detected and at higher 

concentrations in the oil obtained from the test at 350 °C min-1.  

The yields of organic compounds in the oil/tar samples at 5 °C min-1, 90 °C min-1 and 350 °C 

min-1 heating rates are presented in Figure 5. Results show that the oil/tars contained much 

olefins than paraffins, resulting from the thermal cracking process of the plastics.  There was 

a continuous increase in the yields of aromatic hydrocarbons and phenolic compounds with 

increasing heating rates.  Figure 5 shows that in the liquid from pyrolysis at 5 °C min-1, more 

alkanes, alkenes and oxygenates were detected compared to the pyrolysis at the highest 

heating rate. Miskolczi et al. [5] also detected the presence of alkanes and alkenes from RDF 



pyrolysis at 550 °C. Phan et al. [27] detected increases in the presence of aromatics in the oil 

from waste pyrolysis at 700 °C. While Ates et al. [30] also reported an increase in the yield of 

single and multi-ringed aromatic groups with increasing temperature up to 800 °C from the 

pyrolysis of corncob. The predominance of aromatic hydrocarbons in the oil from pyrolysis at 

the highest heating as shown in Fig. 5 suggests that rapid heating rate pyrolysis caused an 

intensification of the high temperature effects, resulting in the formation of more aromatic 

compounds. The aromatic compounds are produced from reactions which involve initially the 

conversion of alkanes to alkenes, then the conversion of alkenes to monocyclic aromatic 

compounds via Diels-Alder cyclization reactions [31, 32], and finally the conversion of 

monocyclic compounds to polycyclic compounds. These reactions have been reported to be 

favoured by high temperature, long residence times and high heating rates. This would 

explain the predominance of aromatic compounds in the liquid from pyrolysis at 350 °C min-

1 compared to the predominance of mostly alkanes and alkenes in the liquid from pyrolysis at 

5 °C min-1. 

3.2.4 Characteristics of solid residues 

Table 2 shows the effects of the different heating rates on the solid residues from the 

pyrolysis of RDF at 800 °C. During pyrolysis as the heating rate was increased from (5 to 

350 °C/min), the solids yield showed a decreasing trend. This reduction suggests that higher 

heating rate influences the solids yields [14] by encouraging the complete degradation and 

release of any trapped volatiles within the solid residue structure. The GCV of the solid 

product from the lower heating rate pyrolysis is higher at 18.45 MJ Kg-1, compared with a 

CV of 16.37 MJ Kg-1 for the higher heating rate as shown in Table 2. This difference could 

be as a result of lower ash content per mass basis [27] and residual volatile matter within the 

structure of the pyrolysis solid produced from the lower heating rate process. This difference 

could also be as a result of the Boudouard reaction which is expected to become significant 



during higher heating rate pyrolysis. Table 2 also shows the BET surface area for the solid 

products and indicates that the solids from the lower heating rate pyrolysis, has a higher 

surface area (170 m2g-1) than that for the solids from pyrolysis at 350 °C min-1 (84 m2g-1). 

This suggests that during the rapid heating rate pyrolysis, the thermal shock impacted on the 

RDF sample caused the volatiles to be violently released from the RDF structure, thereby 

destroying the internal pore structure [33] and reducing the porosity of the solid product, 

compared to the slow pyrolysis where the volatiles gradually exit the structure of the RDF. 

3.3  Effects of final pyrolysis temperature  

The effect of the different final pyrolysis temperatures investigated on the product yields 

from RDF pyrolysis is shown in Table 3. These tests were carried out at rapid heating rates, 

to the final temperatures of 700, 800 and 900 °C. A careful look at the tabulated results 

reveals a trend in the product yields with increasing temperature. Essentially the oil and solid 

yields decreased while the gas yield increased with increasing temperature. Similar trends in 

product yields with increasing pyrolysis temperature have been reported by other researchers 

as well [15, 34-38]. At 800 °C the gas yield increased to 46.9 wt% from 43.6 wt% at 700 °C 

as result of cracking of larger molecules in the oil products (Table 3) to increase the yields of 

CH4 and C2-C4 in the gas products at this temperature. However, increasing the temperature 

to 900 C, led to a decrease in the yields of the hydrocarbon gases possibly due to other 

secondary gas-phase reactions including cracking reactions and CO2 drying reforming. At 

900 °C, the gas yield increased to 52.3 wt%, solids yield reduced to 21 wt%, while the tar 

yield remained apparently unchanged at 23 wt%. It appears that the increased gas yield at 900 

°C was therefore mostly due to further degradation of the solids at such high temperatures. 

The further degradation of the solids fractions of MSW at such temperatures have been linked 

to the degradation of inorganics especially CaCO3 contained in MSW, into CaO and CO2 [9, 

19]. This may also be responsible for some of the increase in CO2 recorded in the gas 



composition from pyrolysis at 900 °C, and subsequently for the reduction in the CV of the 

produced gas since CO2 has no calorific value. The reduction in the gas CV could also be as a 

result of reduced amount of hydrocarbons, especially C2 – C4 gases at this temperature, 

indicating possible thermal cracking of these gases at the higher temperature of 900 °C.  The 

CV of the gas product at 800 °C was the highest at 24.8 MJ m-3, indicating that this might be 

a good temperature for optimum gas production from RDF rapid pyrolysis at the conditions 

stipulated by the reactor in this study. 

 

4.0  Conclusion 

Pyrolysis of RDF as a representative of MSW has been carried out in a horizontal tubular 

reactor where different process parameters were varied, such as the; heating rate and final 

pyrolysis temperature of the sample, in order to investigate their effects on the product yields 

and compositions. TGA analysis of RDF, cellulose and mixed waste plastics indicated 

volatile degradation at two temperature zones similar to the degradation temperatures of 

cellulosic and plastic content. Hence the biomass (cellulosic) and plastic contents of RDF 

could be roughly estimated by the analysis of volatiles degradation in its TGA and dTG 

thermograms. Increasing the heating rate and final temperature resulted in an increased gas 

yield, reduced liquid yield and reduced solids yield at the conditions investigated.  The 

calorific value of the product gas was also found to increase with increasing heating rate. 

FTIR and GC/MS/MS analysis showed that the liquid from rapid pyrolysis was found to 

contain mostly aromatic compounds which could be formed from the conversion of alkanes 

to alkenes and then to monocyclic aromatics via Dies-Alder reactions and finally to 

polycyclic aromatics. On the other hand the liquid from slow pyrolysis was found to contain 

mostly alkanes, alkenes and oxygenates. The solids from slow pyrolysis gave a slightly 

higher CV than that from rapid pyrolysis. Rapid pyrolysis of RDF at 800 °C with a long 



residence time was the optimum process condition for gas production as it produced the gas 

yield with highest calorific value of 24.8 MJ m-3. Such conditions are easily achievable using 

a fluidized bed reactor with small and closely uniform RDF feed sizes, due to high heat 

transfer rates and good mixing properties of this reactor as well as better heat transfer 

properties of smaller sized particles. 
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