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Summary

This paper presents the results of an investigation into a possible alternative to Monte Carlo methods
for solving the transported probability density function (PDF) equation for scalars (compositions). The
method uses a finite-volume approach combined with adaptive mesh refinement (AMR) in a
multidimensional compositional space. Comparisons are made between the new method and Monte
Carlo solutions for analytical test cases involving the reaction of two or three chemical species. These
tests demonstrate the potential of the new method in terms of both accuracy and run time.
Additional test cases involving various models for molecular mixing were also conducted with similar
conclusions.

Keywords: transported PDF; adaptive mesh refinement; finite-volume method; Eulerian Monte Carlo;
molecular mixing

1. Introduction

Turbulent fluid flow is pervasive and there is no doubt about its importance in engineering systems.
However, the reliable prediction of turbulent flows in practical situations using engineering models
remains an elusive goal. Direct numerical simulation is possible, but only well below the high
Reynolds numbers that arise in most applications. It is possible to use large eddy simulation (LES)
at such Reynolds numbers, but computer run times restrict its use for practical engineering systems.
Reynolds-averaged Navier-Stokes (RANS) techniques will therefore remain the principal method for
simulating the effects of turbulence in engineering applications, despite the fact that techniques such
as LES do offer benefits when time accurate results are required [1]. In RANS approaches, the
Reynolds decomposition is used to derive equations for the mean values of the flow variables from
the Navier-Stokes equations. Since these equations contain terms that involve the unknown
fluctuating parts of the variables, they have to be supplemented by some sort of closure model.

In current RANS approaches this most frequently means the adoption of eddy viscosity or second-
moment turbulence closures to model the unknown terms. However, despite their success in
predicting many practical flows, these models are still dependent on the use of experimental data
and generally require modifications for different types of flow. Nevertheless, these methods are still
the most useful ones available for modelling turbulent flow.

The unknown terms in the equations for the mean values involve averages of various moments of the
fluctuating variables, with most current RANS models using only the first two moments. Since it is
generally assumed that the fluctuating part of the flow variables is described by a probability density
function (PDF), it makes sense to try to determine the unknown terms from this PDF. This has
the advantage that convection is represented exactly without modelling assumptions and the
statistical information contained in the PDF provides a more full description of a turbulent flow than
is available from a few moments. In addition, for chemically reacting flows, the terms for chemical
source production in composition space appearing in the PDF equation are closed and known.

This still requires some modelling, e.g. in the derivation of the governing equation for the PDF. Pope
[2] has derived various forms of this equation for the velocity-scalar or joint scalar PDF and he also
discusses the methods for their solution. In practical calculations of turbulent reactive flows, a large
number of scalars are considered, but the complete joint PDF is often not used. Instead, only
marginal PDF’s of between two and three scalars are considered. For the latter form, and for
small numbers of variables, the solution can be obtained using finite-volume techniques [3, 4], but



the computational cost becomes prohibitive as the number of variables increases; Pope [2]
estimated that the cost increases exponentially with the number of variables. In contrast, it is
claimed [2] that for Monte Carlo methods, in which the PDF is simulated using an ensemble of
stochastic particles, the computational cost only increases linearly with the number of variables. It is
for this reason that all current PDF transport equation solution methods are based upon Monte Carlo
techniques. Janicka et al. [4] modelled the PDF equation using a finite-volume technique and were
able to confirm Pope’s estimates of the computational cost. However, Sabel’nikov and Soulard [5]
carried out a detailed review of all current Monte Carlo methods used in practical turbulent flow
models and also compared these with the finite-volume methods. They found that the
computational cost increases exponentially with the number of species for both Monte Carlo and
finite-volume methods if one insists on preserving the same level of accuracy as the number of
species increases.

Monte Carlo techniques are in some sense naturally adaptive, since the particles are concentrated in
those parts of compositional space in which the PDF differs significantly from zero. This is not true
of finite-volume methods on a uniform grid, but this limitation can be overcome by the use of AMR
in which the grid can be locally refined based upon some error tolerance. This can certainly ensure
that the computational effort is concentrated, where the PDF differs significantly from zero, but it is
much more flexible than Monte Carlo. In particular, it will use a fine grid even in regions where the
PDF is small if the error estimator says that this is necessary.

In the last two decades there has been a tremendous increase in the use of AMR, with the focus
being mainly on hyperbolic systems such as compressible flow [6-8]. This is simply because such
flows involve thin regions such as shocks and slip lines that require much higher resolution than the
bulk of the flow. These methods have also been implemented on parallel machines using message
passing (e.g. [9-13]).

All these applications concern the use of AMR in physical space, but the same ideas can be used
for the PDF transport equation in both physical and compositional space. The advantage of this is
that the resolution is concentrated in those areas of both physical and compositional space where it
is needed. As we shall see, the method is particularly efficient when the PDF is close to a delta-
function. In this paper we consider the use of a finite-volume method combined with such an AMR
technique as an alternative to the use of Monte Carlo. Since our purpose is to compare both the
accuracy and efficiency of the two methods, we confine ourselves to simple but generic problems, for
which we can either obtain an analytic solution or use sufficient resolution to ensure numerical
convergence.

2. Numerical Method

2.1. Model PDF equation

In order to demonstrate the effectiveness of the proposed method, we consider a simple joint scalar
PDF equation that represents a reacting system with no spatial dependence. Despite its simplicity,
this equation captures the essential features of the full equation as described in [2, 14].

Consider a reacting system of N species with concentrations  ( = 1 ... N) that satisfy the reaction
equations

where S is the rate of the chemical reaction ȫ for specie  of a particular concentration . A model

PDF equation that governs the evolution of the probability P(1 ... 2; t) of a particular set of  at
time t is then

The boundary condition is the obvious one that the flux of P vanishes on the boundaries.



2.2. Upwind finite-volume method

Since the ȫ are known, Equation (2) is simply a multi-dimensional linear advection equation for P,
and can be solved using an upwind finite-volume method. If the PDF were guaranteed to be
smooth, then one could use a high-order advection scheme, but, as we shall see, it can often be
close to a delta-function. We will therefore use a scheme that has been developed for compressible
flow and can therefore handle such situations.

 space is discretized into Cartesian cells with a uniform mesh spacing, . Let  = N
be the

volume of such a cell and

be the volume-averaged value of P in the ith cell at time t = tn, where d = d1 …. dN.

Then, integrating Equation (2) over the ith cell and from tn to tn+1 gives

where the subscripts l and r denote values at the left and right cell faces. Equation (4) is exact, and
is the starting point for all finite-volume schemes. A first-order upwind approximation is obtained by

setting the flux at a cell face perpendicular to the  direction to

where P
n
l and P

n
r are the values in the cells on the left and right of the cell face. Here,ȫ is evaluated

at the centre of the cell face.

Second-order accuracy can be obtained by using the first-order scheme to obtain an intermediate
solution, P i

n+1/2
, at the half-time tn+1 /2 = (tn +tn+1)/2, and then computing an average gradient in a cell

from

where a(a, b) is an a non-linear averaging function and the subscripts l, r denote the values in the

neighbouring cells on the left and right in the  direction. It is essential to use a non-linear averaging
function here because Godunov’s theorem [15] tells us that a scheme that is second order
everywhere will generate oscillations where the solution changes rapidly. This applies in this case
if the PDF approaches a delta-function, but if it is smooth, then one can use a simple average.

The gradients given by Equation (6) are then used to obtain a better approximation to P at a cell

face. For example, for a face perpendicular to the  direction, the values of Pl and Pr to be used in
Equation (5) are given by

where i and j are the cells on the left and right of the face. The final solution at t=tn+1 is then



obtained from Equation (4) using these values of Pl and Pr. This is essentially the same scheme
as that described in [16] for compressible flow. Although it is not as accurate as some schemes for
linear advection, it is robust and simple to implement.

2.3. Adaptive mesh refinement

As already noted, if high resolution is only required in a small part of sample space, then it is
possible to improve the efficiency of the above method by using AMR. In order to do this we set

up a hierarchy of N grids G0 ...GN−1 such that if the mesh spacing is  on G0, then it is /2n
on

Gn, where 0n<N−1. Grids G0 and G1 cover the whole computational domain, but the finer grids
need only exist in regions which require high resolution. The grid hierarchy is used to generate an
estimate of the relative error by comparing the solutions on grids with different mesh spacings and
the grid refines if this error exceeds a tolerance Cr and derefines if it is less than Cd. Unlike some

AMR codes, such as FLASH [11], refinement also occurs in time so that if the timestep on G0 is t,
then it is t/2n

on Gn.

Unlike most AMR codes (e.g. [6-12, 17, 18]) where refinement is organized into patches, we refine on
a cell by cell basis in the same way as e.g. [13, 19]. This gives a more efficient grid at the expense of
some increase in the cost of integration. Figure 1 shows how the grid refines around a region that
requires high resolution.

The integration algorithm is recursive and is described by the following pseudo-code for the

integration of grid Gn for a number of timesteps t/2n-1
until tn = tn−1.

procedure integrate(n){ Integrate Gn

step(n) Advance Gn by one timestep t/2n-1

if(n<N−1){ Finer grids exist
while (tn<tn−1){

integrate(n+1) Integrate Gn+1 to Gn time

tn = tn + t/2n
Increment Gn time by t/2L

} end of while loop
regrid(n) Compare solutions on Gn and

Gn−1ĺ decide Gn+1 refinement
merge(n) Project Gn+1 solution onto Gn

} end of if block
return
} end of procedure integrate(n)

Integrate(0) then integrates all grids through one G0 grid timestep, t. This process is shown
schematically in Figure 2 for four grid levels. From the figure it can be seen that a coarse grid
solution at the advanced time is available whenever a fine grid is integrated. This coarse grid
solution provides a space-time interpolant that is used to impose the boundary conditions on the
fine grid at a coarse-fine grid boundary.

The projection of the fine grid solution onto the coarse grid (the merge operation) simply involves
replacing the coarse grid solution in a cell by the average of the solutions in the fine grid cells that it
contains i.e.

Here (Pi
n+1

)
coarse

is the coarse cell solution of the PDF in coarse cell i at time tn and (Pk
n+1

)
fine

is the
fine cell solution in fine cell k at the same time.

The merge operation maintains conservation, but we also need to correct the flux at an interface
between refined and unrefined coarse grid cells. This is because the quantities on the coarse grid are
updated with a flux calculated on the coarse grid, which is different from the fine grid flux. This can be
done by simply keeping track of the total flux through the coarse grid interface during the fine grid
integration and using the difference between this and the coarse grid flux to correct the coarse grid
solution in the unrefined cell. The net effect of this is that the algorithm is strictly conservative.



Figure 1. Grid refinement at a region requiring high resolution (represented by thick black curve).

Figure 2. Integration of a four level grid.

2.4. Simple model for molecular mixing

Equation (2) only contains reaction terms, which has the advantage that it is easy to solve
analytically. However, it lacks a crucial physical effect: molecular mixing as described in [2, 14]. There
are a number of models for this, which we will explore further in Section 6. For the moment we
replace (2) by

The third term of this equation is the linear mean square estimation closure (LMSE), which
assumes that the turbulence is isotropic, homogeneous with constant density and that the initial

PDF is normal. Here CD,  and k are the ratio of the scalar to mechanical turbulent time scales,
the viscous dissipation rate of turbulence kinetic energy and the turbulence kinetic energy per unit

mass (see [14] for details). Here we set CD/2k = 0.5 for two species and 0.35 for three species.

The LMSE term also describes advection, so it can be implemented by simply modifying the

advection speed appropriately. For this we need , which involves calculating the ensemble

average in composition space for the  component. This is simple enough to do, except that in an
AMR calculation one has to ensure that the current value is used in the fine grid timesteps.



3. Monte Carlo Method

3.1. Simple reactive modeling

In order to compare AMR with Monte Carlo, we use a method of the same type as that described in
[14, 20]. This is by no means the only choice, but it is typical of methods in widespread use. The
PDF is now represented by an ensemble of stochastic particles and the value of the PDF at any
point is obtained from the number of particles in a sample cell at that point, i.e.

where NP is the total number of particles, nP is the number of particles in a sample cell centred at

(1, … N) and  is the volume of the sample cell. The motion of these particles is determined by
the reaction equations (1). This is equivalent to an Eulerian Monte Carlo scheme, as described in
Möbus et al. [20].

Such a method is, of course, easier to implement than that described in Section 2 and it does not
suffer from numerical diffusion. However, the accuracy depends both upon the number of particles
and the size of the sample cell: for a given number of particles, the sample cell cannot be made so
small that it only contains a few particles because this leads to unacceptable noise in the solution.
As Sabel’nikov and Soulard [5] point out, this means that if one needs np particles per cell for a
good solution, then in N dimensions the total number of particles must be NP = (NC)

N
np if the

number of cells in each direction is NC. This means that the computational cost of the Monte Carlo
method also increases exponentially with increasing number of species N.

It is evident that the choice of particle number and sample cell size is crucial for the performance of
Monte Carlo methods. In order to show the method in its best light, we performed a number of
experiments to determine the sample cell size that gave the best agreement with our initial PDF.
Figures 3-6 show the results for the two species case discussed in Section 5.1.

3.2. Molecular mixing

In the Monte Carlo method, the LMSE model is equivalent to moving the particles towards the
mean in composition space at a speed proportional to their distance from the mean. In this case

the mean concentration  for specie  is given by

where  (i) is the coordinate of the ith particle. Given this, the motion of the particles is determined by



Figure 3. Monte Carlo with 2 species: P versus a at b = 0.1 for time = 0.0 with 200
2

sample cells
(— = theory, Ƒ = 3.2× 10

6
particles, • =3 19,080 particles, ż = 31,343 particles).

Figure 4. Monte Carlo with 2 species: P versus b at a = 0.9 for time = 0.0 with 200
2

sample cells
(— = theory, Ƒ = 3.2 × 10

6
particles, • = 319,080 particles, ż = 31,343 particles).

Figure 5. Monte Carlo with 2 species: P versus a at b = 0.1 for time = 0.0 with 400
2

particle sample
cells ( — = theory, Ƒ = 1.2 × 10

7
particles, • = 1.2 × 10

6
particles, ż = 123,240 particles).

Figure 6. Monte Carlo with 2 species: P versus b at a = 0.9 for time = 0.0 with 400
2

particle sample cells
(— = theory, Ƒ = 1.2 × 10

7
particles, • = 1.2 × 10

6
particles, ż = 123,240 particles).



4. Test Cases

We start by considering two simple test cases for which it is possible to obtain an analytic solution to
Equation (2).

4.1. Two species test case

This involves two chemical species that are represented by 1 = a and 2 = b, where the reaction is a
ĺ b. For the reaction rates we choose a simple isothermal autocatalytic form so that Equations (1)
become

These imply that

Equation (2) then becomes

This can readily be solved by the method of characteristics, giving

along the characteristics given by

Equation (16) can be integrated to give

where (a0, b0) is the point on the characteristic at t = 0 which goes to (a, b) at time t. For a given
(a, b), (a0, b0) can be found in terms of (a, b) by integrating the characteristic equations (17) using
Equation (14). The result is

Equations (18) and (19) determine P at time t from the initial data. The initial data was a Gaussian
centred at a=0.9, b=0.1 with a standard derivation of 0.025.

4.2. Three species test case

We now consider three chemical species represented by 1 = a, 2 = b and 3 = c, where the two
reactions are aĺ b and a ĺ c. The reaction equations (1) are now

These imply that



Equation (20 becomes

As in the previous case, this equation can readily be solved by the method of characteristics, giving

along the characteristics given by

Again, we can integrate (23) to get

where (a0, b0, c0) is the point on the characteristic at t=0 that goes to (a, b, c) at t. (a0,
b0, c0) can be found in terms of (a, b, c) by integrating the characteristic Equations (24) using
(21) to get

As before, Equations (25) and (26) determine P at time t from the initial data. For this case the
initial conditions were a Gaussian centred on a = 0.8, b = 0.1, c = 0.1 with standard derivation of
0.025.



5. Results and Discussion

5.1. Monte Carlo method

As we have already pointed out in Section 3.1, it was necessary to perform some tests in order to
ascertain how many particles were needed for an accurate representation of the initial Gaussian.
This is, of course, not a problem for AMR.

Figures 3-6 show some results for the initial Gaussian for two species for different numbers of
particles with 200 × 200 and 400 × 400 particle sample cells. It is clear that the Monte Carlo method
can produce an accurate representation of the initial Gaussian, given a sufficient number of
particles.

When molecular mixing is included, the end point of the evolution in both cases is a delta- function
at the equilibrium state (a = 0, b = 1 for two species and a = 0, b = c = 0.5 for three species). Both the
methods approximate this rather well and the AMR in particular becomes very fast as the region
in which P differs significantly from zero shrinks. There is therefore little point in making
comparisons at late times, instead we consider an intermediate time at which the solution is
neither a Gaussian nor close to a delta-function. This is, of course, exactly the stage where one
needs to model the PDF accurately.

Figure 7 shows the results of a two species test at t = 2.2 in a plane at b = 0.5. The equivalent result
for three species is given in Figure 8 in a plane at b = c = 0.34. It can be seen that for the two
species case, roughly 1.2 × 10

7
particles with 400 × 400 sample cells are required to obtain good

agreement with the analytical theory. For three species, even with 5.0 × 10
8

particles and 400 × 400
× 400 sample cells, the agreement is not so good: there is a distinct displacement from the theoretical
curve. This is not surprising since the number of particles per sample cell is significantly smaller than
for two species.

5.2. AMR method

The same initial conditions were used for the AMR test and the effect of varying the resolution by
changing the number of grid levels was explored. From Figure 9, we can see that, for the two
species case, a good solution can be obtained with six levels and a reasonable one with five levels,
but that there is significant numerical diffusion with four levels. For the three species, Figure 10
shows similar results except that the agreement is not so good. The solution for six levels is of
about the same quality as the Monte Carlo with 5 × 10

8
particles. Note that, as for the Monte Carlo, the

error at high resolution is a displacement from the theoretical curve, not simple diffusion as one would
expect for uniform advection. This is because the non-linearity of the reactions distorts the original
Gaussian.

5.3. Molecular mixing tests with Monte Carlo and AMR methods

Unfortunately, there is no simple analytic solution once we include the LMSE model for molecular
mixing discussed in Section 2.4. The only way to assess the two methods is therefore to examine
the rate of convergence. We can see from Figures 11 and 12 that, for two species, the Monte
Carlo with 1.2 × 10

7
particles and 400 × 400 sample cells gave a converged result with AMR with six

levels of refinement. For three species, shown in Figures 13 and 14, 5.0 × 10
8

particles and 400 ×
400 × 400 sample cells for Monte Carlo give a similar result to that of AMR with six levels of
refinement.

The molecular mixing effect for the two and three species cases required different values of the

constant, CD/2k. This was necessary to achieve the same level of mixing for the two cases.

5.4. Run times and memory requirements

The run times that are given in Tables I and II show that, for two species, AMR is roughly a factor 24
times faster than Monte Carlo with molecular mixing and a factor 48 without for comparable accuracy.
For three species this advantage is considerably reduced: AMR is a factor 2 faster than Monte Carlo



with molecular mixing and 1.1 without.

The advantages of AMR over a uniform grid can be seen by comparing the run times for two species
with different numbers of grid levels. For a uniform grid this should increase by a factor of 8 when
the grid is refined by a factor of 2, but for the two species AMR calculation it increases by a factor of
about 2. The same is true of the memory requirements: for a uniform grid this should increase by
a factor of 4 when the grid is refined by a factor of 2, but it only increases by about 1.3. The gains
for the three species case are similar. However, AMR is not without costs: the number of cell
updates per CPU second decreases as the number of levels is increased, but it never becomes
smaller than that on a uniform grid by more than a factor of 2.

Monte Carlo is evidently not competitive with AMR for two species, although it does better with
three. However, for three species the memory requirements for Monte Carlo are beginning to become
prohibitive. In fact it is evident that this makes it difficult to obtain accurate results with Monte Carlo
for more than a few species, whereas AMR does not suffer nearly so seriously from this limitation.

Figure 7. Monte Carlo with 2 species: P versus a at b = 0.5 for time = 2.2 (— =theory, Ƒ =1.2 × 10
7

particles with
400

2
particle sample cells, • = 3.2 × 10

6
particles with 200

2
particle sample cells, ż = 123,240 particles with 400

2

particle sample cells).

Figure 8. Monte Carlo with 3 species: P versus a at b = c = 0.34 for time = 2.2 ( — =theory,
Ƒ = 5.0 × 10

8
particles with 400

3
particle sample cells, • = 1.2 × 10

7
particles with 400

3
particle sample

cells, ż = 3.2 × 10
7

particles with 200
3

particle sample cells).



Figure 9. AMR with 2 species: P versus a at b = 0.5 for time = 2.2 (—=theory,
Ƒ = 6 levels, • = 5 levels, ż = 4 levels).

Figure 10. AMR with 3 species: P versus a at b = c = 0.34 for time=2.2 ( — =theory,
Ƒ = 6 levels, • = 5 levels, ż = 4 levels).

Figure 11. Monte Carlo and AMR with two species and molecular mixing: P versus a at b = 0.5 for
time = 2.2 (— = AMR with six levels, Ƒ = 1.2 × 10

7
particles with 400

2
particle sample cells, • = 3.2 × 10

6

particles with 200
2

particle sample cells, ż = 123,240 particles with 400
2

particle sample cells).



Figure 12. AMR and Monte Carlo with two species and molecular mixing: P versus a at b = 0.5 for
time = 2.2 (— = Monte Carlo with 1.2 × 10

7
particles with 400

2
particle sample cells, Ƒ = AMR with 6

levels, • = AMR with 5 levels, ż = AMR with 4 levels).

Figure 13. Monte Carlo and AMR with three species and molecular mixing: P versus a at b = c = 0.34 for
time = 2.2 (— =AMR with six levels, Ƒ = 5.0 × 10

8
particles with 400

3
particle sample cells, • = 3.2 × 10

7

particles with 200
3

particle sample cells, ż = 1.2 × 10
7

particles with 400
3

particle sample cells).

Figure 14. AMR and Monte Carlo with three species and molecular mixing: P versus a at b = c = 0.34
for time = 2.2 (— = Monte Carlo with 5.0 × 10

8
particles with 400

3
particle sample cells, Ƒ = AMR with

6 levels, • = AMR with 5 levels, ż = AMR with 4 levels).



Table I. Run times for two species performed on a 3.06 GHz dual intel xenon processor workstation
(Timesteps: AMR=0.032, Monte Carlo(200

2
)=0.004, Monte Carlo(400

2
)=0.002).

Type of scheme Field resolution CPU (s) Memory (GB)

AMR (6 levels + molecular mixing) 25
2

coarse cells 40 0.042

AMR (6 levels) 25
2

coarse cells 28 0.042

AMR (5 levels + molecular mixing) 25
2

coarse cells 20.5 0.03

AMR( 5 levels) 25
2

coarse cells 18 0.03

AMR (4 levels + molecular mixing) 25
2

coarse cells 10 0.027

AMR (4 levels) 25
2

coarse cells 7 0.027

Monte Carlo + molecular mixing 400
2

samples

1.2 × 10
7

particles 1660 0.78

Monte Carlo 400
2

samples

1.2 × 10
7

particles 1335 0.78

Monte Carlo + molecular mixing 200
2

samples

3.2 × 10
6

particles 211 0.21

Monte Carlo 200
2

samples

3.2 × 10
6

particles 170 0.21

Table II. Run times for three species performed on an AMD cluster opteron 848 at 2 GHz
(Timesteps: AMR = 0.032, Monte Carlo(200

3
)=0.004, Monte Carlo(400

3
)=0.002).

Type of scheme Field resolution CPU (s) Memory (GB)

AMR (6 levels + molecular mixing) 25
3

coarse cells 30008 3.21

AMR (6 levels) 25
3

coarse cells 28056 3.23

AMR (5 levels + molecular mixing) 25
3

coarse cells 3243 0.64

AMR (5 levels) 25
3

coarse cells 4356 0.8

AMR (4 levels + molecular mixing) 25
3

coarse cells 676 0.267

AMR (4 levels) 25
3

coarse cells 786 0.3

Monte Carlo + molecular mixing 400
3

samples

5.0 × 10
8

particles 57816 30.3

Monte Carlo 400
3

samples

5.0 × 10
8

particles 30600 30.3

Monte Carlo + molecular mixing 200
3

samples

3.2 ×10
7

particles 1867 2.6

Monte Carlo 200
3

samples

3.2 × 10
7

particles 908 2.6

6. Tests with Different Molecular Mixing Models

So far we have only considered the LMSE model for molecular mixing, but as we have already
pointed out in Section 2.4, there are other possibilities: the coalescent/dispersal model or Curl
model [21]; the Langevin model or Fokker-Planck equation [2]. In order to keep things simple, we consider
the evolution of two delta-functions, approximated by narrow Gaussians, in one dimension with no
reactions. The initial conditions are

where 1 = 0.1, 2 = 0.9,  = 0.008.

6.1. LMSE model

For the LMSE model, Equation (9) simply becomes



The time evolution in this case is very simple: each Gaussian moves towards the mean  = 0.5
with a speed proportional to its distance from the mean. Figure 15 shows that this is exactly what
happens. The narrow Gaussians spread out somewhat due to numerical diffusion while they are

moving, but the end result is a very good approximation to a delta-function at  = 0.5. This is
in stark contrast to the results obtained by Kosaly [22] for this problem with Monte Carlo using

2  10
4

particles. Kosaly’s results are rather surprising since it ought to be possible to do this
particular case almost exactly with Monte Carlo by simply placing a particle at the initial positions of
the delta-functions.

Figure 15. Probability density functions versus concentration at different time evolution
stages for linear mean square estimation closure model (— = Initial PDF distribution,

• = stage 1, ż = stage 2, Ƒ - - - =stage 3).

6.2. Curl model

In a simple version of the Curl or coalescence/dispersal model, the equation for P becomes

where CQ is the ratio of the decay time scale of velocity fluctuations to the decay time scale of scalar
fluctuations. From Pope [2] CQ is usually 2.0. One has to be slightly careful of how one approximates
(29): P is not conserved if the two terms on the RHS are treated separately. However, conservation
is guaranteed if one approximates the integrals in the equivalent equation

Figure 16 shows the evolution for this case, which clearly indicates the unphysical nature of this
model: it recursively produces a series of Gaussians at the mid-points between the existing delta-
functions. The solution does eventually evolve into a delta-function at the mean value, but as
Kosaly points out [22], it would never be formally smooth if the initial condition contains delta-
functions. Although it is possible to add a kernel to the integrals that removes this problem [3, 23], this
model has no obvious advantages. It is also very expensive for both AMR and Monte Carlo since it
involves an integro-differential equation.

Nevertheless, AMR can cope very well with this, because for much of the evolution P is only non-
zero in a small part of the domain. Monte Carlo should also do quite well on this problem, although a



large number of particles would be needed to get a good approximation to the heights of the delta-
functions. Despite this, Kosaly’s results for this problem are rather poor.

Figure 16. Probability density functions versus concentration at different times for the Curl molecular
mixing model (— = Initial PDF distribution, • = first stage, ż = second stage 2, Ƒ - - - = final stage).

6.3. Langevin model

The most natural model for molecular mixing is the Langevin model, which adds diffusion to the
LMSE model to produce a Fokker-Planck equation. The equation for P is then

where 2 is the variance at time t. In order to ensure that the variance decays in the correct
manner, we must have [2]

Figure 17 shows that the initial Gaussians are immediately spread by the diffusion, but the decay

in the variance eventually ensures that P evolves to a delta-function at the mean value of . In
contrast to the other models, P is smooth during most of the evolution, but AMR can still give
significant gains because it is still only significant in a small part of the domain. Note that although
Pope regards this model as satisfactory in all respects, he claims that it is unsuitable for
compositions since the implementation of diffusion in Monte Carlo can lead to P being non-zero for
unphysical compositions. This is not a problem for finite-volume since the boundary conditions ensure
that there is no flux of P outside the range of physically realisable compositions.

There is one difficulty with the Langevin model, which is that the diffusive term places a restriction
on the stable timestep for an explicit scheme that depends on the square of the mesh spacing. On a
uniform grid, this leads to a significant loss of efficiency if high resolution is required at some stage of
the calculation. The usual solution to this is to use an implicit scheme for the diffusive term, but this
is often not necessary with an AMR scheme. If the solution is close to a set of delta-functions with a
large variance, a fine mesh is needed, which induces a small timestep. However, the large diffusion
rapidly smooths the solution, so allowing the mesh to derefine and the timestep to increase. When
the final delta-function is formed, the diffusive term is small and places no restriction on the
timestep. Note that this difficulty does not arise with the LMSE or Curl models since for these the
stable timestep is also that required for time accuracy.



Figure 17. Probability density functions versus concentration for the Langevin molecular mixing with
different stages of diffusion (• = stage 1, ż = stage 2, Ƒ = stage 3, × — = stage 4).

7. Conclusions

The purpose of this paper was to show that finite-volume methods combined with AMR provide an
attractive alternative to Monte Carlo for solving the transported PDF equation. We have deliberately
considered rather simple cases in order to compare our numerical solutions either with analytic ones
or with fully converged numerical solutions. Despite the simplicity of these problems, they include
generic features that are relevant to real applications: non-linear reactions; molecular mixing. We
have not considered cases with space dependence, although not only is our AMR code capable
of this, but the refinement in space would give it a further advantage over Monte Carlo. This is
because we simply could not carry out Monte Carlo calculations with space dependence that gave
a reasonable level of accuracy. In fact our results show that the memory requirements for the type
of Monte Carlo method used are such that it is incapable of producing accurate solutions for the
PDF in all but the simplest of situations. This conclusion is borne out by the very few tests of
Monte Carlo against known solutions that have appeared in the literature (e.g. [22]).

It would seem that our results lead to a rather grim conclusion: both AMR and Monte Carlo need far
higher resolution to produce accurate solutions to the PDF equation than one could possibly
achieve in any realistic case. AMR can do much better than Monte Carlo in a calculation that
includes the flow field, even though it could not possibly cope with more than a few active species.
The only hope is that a few species is sufficient or that good results can be obtained even with a
poor solution to the PDF equation.
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