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SUMMARY

We investigate the thermal and chemical buoyancy forces that drive convection in

Earth’s liquid outer core and derive a radial buoyancy profile that can be used in

geodynamo models. We assume the core is well-mixed, adiabatic and cools as a re-

sult of mantle convection. The buoyancy profile is developed for a Boussinesq fluid

and incorporates secular cooling, latent heat release at the inner core boundary,

radiogenic heating, the effect of the adiabat, and compositional buoyancy due to

inner core freezing. Surprisingly, these complex effects can be modelled accurately

by a simple combination of bottom heating and near-uniform heat sinks, which is

achieved using a cotemperature formulation that converts compositional effects into

effective thermal effects. The relative importance of internal and bottom heating

is then defined by just two parameters, the cooling rate at the core-mantle bound-

ary (CMB) and the uniform rate of internal radiogenic heat production, both of

which can be obtained from core evolution calculations. We vary these parame-

ters in geodynamo models and compare basic features of the generated fields with

the geomagnetic field; in this manner we link core evolution models, geodynamo

simulations and geomagnetic observations.
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We consider three end-member scenarios for core evolution: 1) rapid cooling and a

young inner core; 2) moderate cooling and neutral stability at the CMB; 3) slow

cooling and enough radiogenic heating to allow the inner core to be 3.5 Gyr old. We

find that compositional buoyancy dominates thermal buoyancy everywhere except

near the CMB, even with large amounts of radiogenic heating, and buoyancy forces

are far larger at depth than higher up. Reducing the cooling rate and increasing

radiogenic heating reduces the drop in the superadiabatic gradient between the inner

and outer boundaries: for rapid cooling the drop is by a factor 50; for slow cooling

it is a factor of 5. We demonstrate the effects of these different buoyancy profiles in

numerical simulations as a function of the Rayleigh number. At low Rayleigh number

the internal velocity and magnetic fields vary between the core evolution scenarios,

but these differences do not affect the surface field. Significant differences in the

surface field emerge when the Rayleigh number is sufficiently large. For rapid cooling

we find dipolar magnetic fields in the time-average that reverse and are dominated

by large-scale features at high latitudes. Moderate cooling results in magnetic fields

that are always stable and dominantly dipolar. Slow cooling produces multipolar

magnetic fields that reverse very frequently. This preliminary study suggests that

the generated fields are sufficiently different that geodynamo simulations together

with geomagnetic observations could be used to discriminate between different core

evolution scenarios.

1 INTRODUCTION

The Earth’s magnetic field is generated by dynamo action in the liquid iron core. The dy-

namo is driven by a combination of thermal and compositional (thermochemical) convection,

which in turn draws its power from the Earth’s continuing slow cooling. The detailed nature

of the geodynamo and, in all probability, of the observed geomagnetic field depends on the

buoyancy profile driving the convection, the radial variation of the buoyancy force entering

the Navier-Stokes equation. Numerical models of convection-driven dynamos have shown that

dynamo action can be achieved with a variety of simple buoyancy profiles, including purely

internal heating (Grote et al., 1998; Willis et al., 2007; Hori et al., 2010), purely bottom
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heating (Christensen et al., 1999, 2001; Heimpel et al., 2005), combined internal and bottom

heating (Busse et al., 2003) and internal cooling (Olson, 2007; Driscoll & Olson, 2009). Ther-

mochemical convection has also been modelled, either by combining thermal and chemical

buoyancy sources into a single buoyancy profile (Aubert et al., 2009; Driscoll & Olson, 2009;

Olson et al., 2010) or by separately solving two diffusion equations (Glatzmaier & Roberts,

1996; Manglik et al., 2010).

Relatively little work has been done to directly compare the effects of different buoyancy

profiles on the outputs of numerical dynamo models. For pure thermal or chemical buoyancy

Kutzner & Christensen (2000) and Ogden et al. (2006) compared dynamos driven by bottom

heating, internal heating, and internal cooling, Sreenivasan & Gubbins (2008) studied the

effect of stratification on core-mantle interaction using combinations of internal and bottom

heating and Rotvig (2009) and Kutzner & Christensen (2002) investigated how different heat-

ing modes affect polarity reversal characteristics. Even less is known about the comparative

effects of different buoyancy sources in thermochemically driven dynamos, primarily because

most current models describe the thermochemical buoyancy profile by dimensionless forcing

parameters representing the buoyancy flux at the outer boundary and an internal source/sink

term, thereby obviating the need to calculate individual contributions to the buoyancy profile

(e.g. Aubert et al., 2009; Olson et al., 2010). This is surprising, partly because the buoyancy

profile is one of the easier quantities to change and study within a geodynamo simulation,

and partly because different buoyancy profiles come at essentially equal computational ex-

pense. While we cannot yet reach the high Rayleigh numbers likely to hold in the core, we

can easily explore the effects of changing the type of heating and cooling. Furthermore, as

we highlight in Section 4 of this paper, key outputs of the simulations (the very “character”

of the dynamo model) are sensitive to the buoyancy profile. Considering the vast parameter

space that geodynamo models must span, the production of a universal buoyancy profile is

clearly important; this is the object of this paper. To achieve this goal we develop a set of

equations that

(i) Express individual thermal and compositional contributions to the overall buoyancy

profile;

(ii) Allow quantitative comparisons between thermal and compositional effects and between

internal and basal effects;

(iii) Can be implemented in geodynamo calculations.

We seek to use the results of core evolution models as inputs into these equations and, ulti-

mately, into geodynamo simulations. By comparing the dynamo behaviour for various buoy-
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ancy profiles we aim to distinguish between different radial buoyancy distributions and to

interpret the results in the context of core evolution models.

Realistic buoyancy profiles are readily derivable from the many studies of core evolution,

which use the equations of energy and entropy to model the slow evolution of Earth’s outer

core. Averaging these equations over some timescale that is long compared to characteris-

tic timescales associated with the dynamo process but short compared to the evolutionary

timescale averages out fluctuations associated with the convection, leaving equations that de-

scribe changes in the reference state of the core (Gubbins et al., 1979; Braginsky & Roberts,

1995; Jones, 2007). To define the reference state we suppose the core to cool as a result of

mantle convection, which fixes the heat-flux from the outer core and imposes a cooling rate

dTo/dt on the core-mantle boundary (CMB). We also suppose the core to be of near-uniform

composition and close to the adiabatic temperature, as would be the case if the whole core

were vigorously convecting: the temperature of the reference state is determined by the adia-

batic gradient for the liquid iron mixture of the core and the solidus temperature at the inner

core boundary (ICB). Cooling on the adiabat leads to freezing at the ICB, as originally envis-

aged by Jacobs (1953); this freezing liberates latent heat due to the phase change (Verhoogen,

1961) and releases a light component of the liquid, probably oxygen (Alfè et al., 1999b), that

does not form part of the solid lattice (Braginsky, 1963). This light component is assumed

to be mixed throughout the outer core by the convection: none passes across the CMB into

the mantle. Additionally, we allow for the possibility of heating within the core due to the

presence of radiogenic elements such as potassium (e.g. Nimmo et al., 2004).

The following mathematical description of the reference state is taken from Gubbins et al.

(2004), where further details may be found. Symbols are defined in Table 1. The quantity

T−1
a (r, t)∂Ta(r, t)/∂t, where Ta(r, t) is the adiabatic temperature, is independent of radius to

a very good approximation [it neglects changes in g, γ, and φ in (11) caused by the cooling]

and may therefore be expressed in terms of the cooling rate at the CMB:

∂Ta(r, t)

∂t
=

Ta (r, t)

To

dTo

dt
. (1)

Cooling releases heat at the rate ρ̄Cp∂T/∂t; since T here is close to the adiabatic temperature

we may relate it simply to the surface cooling rate

qs = ρ̄Cp
Ta(ro, t)

To

dTo

dt
. (2)

The inner core radius increases at a rate

dri
dt

=
1

τr

Ti

To

dTo

dt
, (3)
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where τr is the difference between the melting and adiabatic gradients at the ICB and, like

the cooling rate, is negative (Table 1). Latent heat released at the ICB is therefore simply

q
(S)
L =

ρiL

τr

Ti

To

dTo

dt
(4)

(note that this is a heat per unit area, not per unit volume). Light elements are released at

the ICB at a rate ρicodri/dt kgm
−2s−1. This mass is redistributed uniformly throughout the

outer core, leading to a slow uniform increase of concentration given by

sc = ρ̄
dc

dt
= ρ̄

4πr2i ρic0
Moc

dri
dt

= ρ̄
4πr2i ρic0
τrMoc

Ti

To

dTo

dt
. (5)

Radiogenic heating, qr, is constant because the radiogenic isotopes can be assumed to be well-

mixed by the convection. Other terms are neglected; these include the heat of reaction, which

is equivalent to small changes in the latent heat.

Now consider typical numerical geodynamo simulations. These involve solving for depar-

tures from a well-mixed hydrostatic reference state, which is assumed to be time-independent

over the timescales associated with the convection. In the Boussinesq approximation all com-

pressibility effects are ignored except for buoyancy forces and the adiabatic temperature of

the reference state⋆. This approximation is self-consistent provided we also omit stress heating

(Spiegel & Veronis, 1960; Mihaljan, 1962; Hewitt et al., 1975); in the context of a geodynamo

simulation this requires omission of the ohmic and viscous heating from the temperature equa-

tion, and neglecting in the mass transport equation the heat arising from the gravitational

energy change that accompanies release and redistribution of light material as the inner core

freezes (Anufriev et al., 2005). The Boussinesq equations are formed by subtracting the adia-

batic temperature and hydrostatic pressure of the reference state, which creates an equivalent

volumetric heat sink in the heat equation: this is the heat lost to convection by conduction

down the adiabat. A similar procedure is needed for the mass diffusion equation because some

light material is carried upwards by barodiffusion, the tendency of light material to migrate

down the pressure gradient. This flux must be subtracted from the mass diffusion equation,

yielding a Boussinesq equation with a volumetric mass sink. The diffused light material is lost

to convection.

The equations for the temperature, T , and light element fraction, c, are

ρ̄Cp
DT

Dt
− k∇2T = q, (6)

⋆ Some authors reserve the term “Boussinesq” for a more restricted approximation with no adiabat. We use the extended

form. A similar approach works for the anelastic approximation, which has the advantage of including the stress heating

in the solution.
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ρ̄
Dc

Dt
+∇ · i = 0, (7)

where i is the mass flux of light material and q is any heat source per unit volume that may be

present. In the reference state D/Dt = 0 and T = Ta, the adiabatic temperature. Subtracting

Ta introduces a volumetric heat sink

qa = −k∇2Ta (8)

into the Boussinesq temperature equation. Fick’s law for the mass flux gives

i = −ρ̄D∇c+ αcαDg, (9)

where thermodiffusion has been neglected. The first term on the right hand side represents the

usual molecular diffusion of light material, the second barodiffusion down the steep hydrostatic

pressure gradient, −ρ̄g (Gubbins et al., 2004). The reference state is well-mixed and therefore

∇c = 0; subtracting the barodiffusive flux therefore gives rise to a volumetric mass sink of the

form

sb = αcαD∇ · g. (10)

The buoyancy profile of the reference state is determined by the sources and sinks described

above. The sources of buoyancy are the D/Dt terms in (6) and (7), which represent the

secular change of the reference state with time and give rise to specific heat and mass sink

contributions to the Boussinesq equations as given by (2) and (5), together with contributions

from the latent heat given by (4) and any radiogenic heating. The sinks of buoyancy are

due to the adiabat and the barodiffusion as defined in equations (8) and (10). The dynamo

calculation solves for departures from the reference state.

The Boussinesq equations require boundary conditions as well as volumetric heat or mass

sources, which are discussed in detail by Braginsky & Roberts (1995) and Anufriev et al.

(2005). At the CMB we shall assume a fixed temperature gradient dT/dr, and zero mass

flux, i = 0. The latter condition reduces to a fixed concentration gradient dc/dr at the CMB

because dc/dr|r=ro must balance the barodiffusion gradient there (as can be seen by setting

i = 0 in (9)); physically it corresponds to a higher concentration of light elements on the mantle

side of the CMB than the core side. At the ICB the temperature and composition are linked

because the compositional flux is determined by the rate of melting, which in turn depends

on the convective heat-flux. There is no simple way to accommodate this boundary condition

short of solving the dynamo problem with two diffusion equations, one for temperature and

one for composition, as done by Glatzmaier & Roberts (1996) and Manglik et al. (2010). In
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this initial study we wish to avoid the complication of two diffusion equations and consider

constant temperature and concentration on the lower boundary.

It is often convenient to subtract out the temperature and composition of a basic state of

rest that satisfies the diffusion equations and boundary conditions. These conduction solutions

can be chosen, if required, to remove the volumetric sources completely from the Boussinesq

equations and make the boundary conditions homogeneous. Although this is not implemented

in our code, we use it here to provide a convenient way to compare different heat and compo-

sitional driving sources for the convection. Plotting the various contributions to these basic

conduction state temperatures and compositions as functions of radius allows quantitative

comparison of each source of buoyancy.

The paper is organised as follows. In Section 2 we derive expressions for the individual con-

tributions to the buoyancy profile described above using equations from core energetics studies

(e.g. Gubbins et al., 1979; Braginsky & Roberts, 1995; Buffett et al., 1996; Labrosse et al.,

1997; Gubbins et al., 2004; Nimmo, 2007). We combine the buoyancy effects of composition

and temperature into a single cotemperature by converting compositional effects into equiv-

alent heat sources/sinks, which allows us to compare the strength of the two contributions

and to discuss the results of geodynamo simulations in the context of purely thermal con-

vection. The resulting cotemperature profiles depend on parameters that are estimated from

seismology and/or mineral physics with two exceptions: the rate of radiogenic heat production

and the cooling rate at the CMB, both of which can be obtained from core energetics stud-

ies. Different values of these two parameters correspond to different thermochemical histories

for the core, which we refer to as core evolution scenarios. This two-parameter formulation

allows us to directly use outputs from core energetics studies to evaluate individual terms

in the buoyancy profile. In Section 3 we produce buoyancy profiles for 3 end-member core

evolution scenarios evaluated at the present day and make quantitative comparisons between

the shapes and amplitudes of each of the sources of buoyancy. We derive the nondimensional

input parameters needed by a set of purely thermally-driven convection dynamo equations

that reflects all the sources of buoyancy and justify a necessary modification to bring the

Rayleigh numbers into the range of numerically tractable problems. In Section 4 we conduct

an initial parameter exploration for geodynamo simulations corresponding to the three core

evolution scenarios, discussing the generated magnetic and velocity fields and implications for

the geodynamo and core evolution. Concluding remarks are made in Section 5.
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2 BUOYANCY PROFILES FOR THE EARTH’S CORE

The adiabatic gradient satisfies the equation

Ta(r) = To exp

(
∫ ro

r

gγ

φ
dr

)

, (11)

where γ is the Grüneissen constant, g the acceleration due to gravity, and φ the seismic param-

eter. We approximate g with g0r, where g0 is a constant, as in many geodynamo calculations.

We also take γ to be constant, as shown by first principles calculations (Alfè et al., 1999a),

and φ to be constant, a common but weaker approximation. Doing the integral and expanding

the exponential while retaining only the first two terms gives a quadratic expression for the

adiabatic gradient [see also Labrosse et al. (1997)]: Ta(r) = A−Br2. The constants are most

conveniently expressed in terms of the temperatures at the ICB and CMB to give a good

approximation to the full expression for the adiabat:

Ta(r) = Ti −
(Ti − To)
(

r2o − r2i
)

(

r2 − r2i

)

=
1

(

r2o − r2i
) [(Tir

2
o − Tor

2
i )− (Ti − To)r

2]. (12)

This quadratic approximation differs by less than 8 K from the full calculation using PREM

parameters. It has the advantage of producing a uniform equivalent heat sink because ∇2(A−
Br2) = −6B. Physically, qa may be regarded as the heat conducted away from the fluid at a

particular location; it does not need to be transported by the convection. Geometrically, this

term causes the amount of heat conducted down the adiabat to increase with radial distance

from the geocentre; less of the input heating is available to drive convection in the upper

layers. This adiabatic effective heat sink, called the heat-flux deficit by Anufriev et al. (2005),

is significant, comparable with other heat source terms.

The barodiffusive flux varies as g ≈ g0r and therefore increases with radius if αc and

αD can be taken as constants; the gradient steepens towards the CMB like the adiabat. The

equivalent mass sink is uniform: sb = 3αcαDg0.

Temperature and concentration are combined into a cotemperature

Tco = T +
αc

αT
c (13)

so that the buoyancy force becomes ρ̄αTTco, the same form as for thermal convection. Cotem-

perature is very similar to the codensity (Braginsky & Roberts, 1995) that has been widely

used in geodynamo models (e.g. Aubert et al., 2009; Olson et al., 2010), but converts com-

positional effects into equivalent thermal effects; this allows us to compare quantitatively the

separate contributions of temperature and compositional sources of buoyancy by multiplying c

by the ratio of expansion coefficients. To complete the cotemperature transformation we need
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to combine the two diffusion equations (6) and (7) into one. Multiplying (7) by Cp(αc/αT )

and using Fick’s law (9) for the mass flux gives

ρ̄Cp
D

Dt

(

αc

αT
c

)

− ρ̄CpD∇2
(

αc

αT
c

)

− Cp
αc

αT
sb = 0. (14)

Adding this to the thermal diffusion equation (6) gives a diffusion equation for the cotemper-

ature provided the diffusivities are the same, i.e. D = k/ρ̄Cp = κ

DTco

Dt
− κ∇2Tco =

q

ρ̄Cp
+

sb
ρ

αc

αT
. (15)

This equation allows us to perform geodynamo simulations in exactly the same way as we

would for pure thermal convection. It also shows us how to compare the buoyancy effects

of volumetric sources of composition (s) and heat (q)—multiply the former by Cpαc/αT .

Boundary conditions on T and c must also be the same, which we have arranged, so (15) is

subject to fixed cotemperature on the bottom and fixed gradient (flux) at the top. The molec-

ular diffusivities κ and D are not the same; they differ by 2 orders of magnitude. Equalising

them removes doubly-diffusive effects, which we regard as an unnecessary complication at

this stage. Furthermore, numerical calculations invariably replace molecular diffusivities with

much larger, closely similar, turbulent values: our equalisation of diffusivities is not therefore

too severe an additional restriction. Of course, molecular diffusivities are relevant when cal-

culating heat-flux down the adiabat and barodiffusive mass flux; turbulent diffusivities only

apply to the departures from the reference and basic states. Molecular diffusivities are also

necessary if any part of the core is stably stratified (Manglik et al., 2010), but we do not

consider this situation.

We remove a basic state of rest from (15) and transfer the D/Dt terms associated with the

slow evolution of the reference state to the right-hand side (Kono & Roberts, 2001). Equation

(15) can then be written in the form

−κ∇2Tco = q = qs + qc + qr + qa + qb, (16)

where the volumetric heat sources and sinks are:

qa = −k∇2Ta = −6k
(Ti − To)
(

r2o − r2i
) , (17)

qr = constant, (18)

qc = −ρ̄Cp
αc

αT

4πr2i ρic0
τrMoc

Ti

To

dTo

dt
, (19)

qs = − ρ̄Cp
(

r2o − r2i
) [(Tir

2
o − Tor

2
i )− (Ti − To)r

2]
1

To

dTo

dt
, (20)

qL = 0, (21)

qb = −3
α2
c

αT
CpαDg0. (22)
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The total heat flows are

Qa = −8πr3ok
(Ti − To)
(

r2o − r2i
) , (23)

Qr = qrVoc, (24)

Qc = −ρ̄Cp
αc

αT

4πr2i ρic0
τrMoc

Ti

To

dTo

dt
Voc, (25)

Qs = −ρ̄Cp
4πr2o

(

r2o − r2i
)

[

1

3
(Tir

2
o − Tor

2
i )ro −

1

5
(Ti − To)r

3
o

]

1

To

dTo

dt
, (26)

QL =
4πr2i
τr

ρiL
Ti

To

dTo

dt
, (27)

Qb = −3
α2
c

αT
CpαDg0Voc. (28)

Local heat per unit volume is denoted q (measured in Wm−3), compositional sources by s

(measured in m−3) and total heat by Q. Subscripts are s,L,c,a,r for specific heat, latent heat,

composition, adiabat and radioactivity. Superscript S denotes flux per unit area.

Radioactivity gives a simple uniform heat source qr provided by the specific core evolution

scenario. The adiabatic heat sink, qa in (8), is also uniform thanks to our linear approximation

to the adiabatic gradient; it depends only on core properties. The equivalent heat source for

the compositional sink, qc, is obtained by comparing terms on the right hand side of (13) and

substituting the mass sink from (5) to give (19). It depends on the cooling rate at the CMB,

dTo/dt. Specific heat is not uniform because it is proportional to the adiabatic temperature

Ta, which varies quadratically (equation (12)): qs decreases with radius. It is therefore more

efficient at driving convection than uniform heating because more heat is released at depth

where the temperature is higher, thus contributing more to the entropy balance. The quadratic

part in (20) is only a small fraction of the constant part (4%) at the ICB but rises to 40%

at the CMB. The latent heat has no volumetric heating; it is determined by the boundary

conditions. It is the most efficient form of heating in that all of the heat is released at the

hottest temperature in the system and removed at the coldest temperature, thus contributing

more entropy than any other form of heating. Specific and latent heats depend also on the

core evolution scenario through the CMB cooling rate. The barodiffusive equivalent heat-flux,

qb, is obtained from sb by multiplying by Cpαc/αT , as required to bring (7) into line with (6).

Comparing q’s tells us where the heat sources and sinks are but not how strongly the

convection is driven at a particular radius because this also depends on the boundary condi-

tions. The superadiabatic temperature gradient of the basic state is a better measure of the

relative convective driving at different depths. It is readily calculated by solving the conduc-

tion equation with the appropriate boundary conditions. Each basic state temperature profile
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must satisfy the upper fixed gradient condition on the CMB. The lower temperature bound-

ary condition is redundant: it only serves to determine the temperature. The upper boundary

condition is

−
∮

κ∇Tco · dS = Qs +Qr +QL +Qa +Qb. (29)

For each Q the corresponding temperature gradient is T ′(ro) = Q/4πr2ok, where prime denotes

d/dr. When the heat source is distributed throughout the inner core as well as the outer core,

as is the case with specific and radiogenic heat, the constant of integration is determined by

regularity at the origin and the upper boundary condition is satisfied automatically.

The uniform heat sources, qr, qc and qb, have linear temperature gradients. The adiabatic

gradient is obtained simply by differentiating (12). Specific heat is a little more complicated

because the source is quadratic and the temperature gradient involves an r3 term in addition

to the usual r from the uniform part of the heating; it rises from 2% of the linear term at

the ICB to 17% at the CMB. Latent heat gives a temperature gradient proportional to r−2.

All these quantities provide input to the Boussinesq equations, which uses turbulent thermal

rather than molecular diffusivity; they must therefore be expressed in terms of the turbulent

diffusivity or thermal conductivity kT = ρ̄CPκT. The resulting temperature gradients are:

T ′
a = −2

k

kT

(Ti − To)
(

r2o − r2i
)r, (30)

T ′
r =

qr
3kT

r, (31)

T ′
c = − 1

3κT

αc

αT

4πr2i ρic0
τrMoc

Ti

To

dTo

dt

(

r − r3o
r2

)

, (32)

T ′
s = − 1

κT
(

r2o − r2i
)

[

1

3
(Tir

2
o − Tor

2
i )r −

1

5
(Ti − To)r

3
]

1

To

dTo

dt
, (33)

T ′
L =

ρiL

τrkT

Ti

To

dTo

dt

r2i
r2

, (34)

T ′
b = −α2

cαDg0
αT ρ̄κT

r. (35)

3 INPUT PARAMETERS FOR THE GEODYNAMO CALCULATIONS:

NUMERICAL VALUES

We use three scenarios for core evolution taken from Gubbins et al. (2004) and summarised in

Table 2. All have ICB density jump 0.59 Mgm−3 and Cases 1, 2 and 3 in this paper correspond

to Models (i), (ii), and (v) in Table 5 of Gubbins et al. (2004). Case 1 has a rapid cooling rate,

high CMB heat flow and a young inner core. Case 2 has a lower cooling rate and a total CMB

heat flow equal to the adiabatic heat-flux: the top of the core is thermally neutrally buoyant.



12 C. J. Davies & D. Gubbins

dTo/dt CMB cooling rate KGyr−1

h radiogenic heating by mass Wkg−1

Q total heat-flux W

q volumetric heat source Wm−3

T temperature K

s volumetric mass source kgm−3s−1

β coefficient of conduction temperature profile

c concentration of light material

i mass flux kgm−2s−1

ri inner core radius 1.221× 106 m

ro outer core radius 3.485× 106 m

Voc volume of outer core 1.70× 1020 m3

Moc mass of outer core 1.85× 1024 kg

ρ̄ mean outer core density 10.9 Mgm−3

ρi ICB density 12.2 Mgm−3

g acceleration due to gravity 10 ms−2

g0 ≈ g(r)/r 3.25×10−6 s−2

To outer core temperature 4040 K

Ti inner core temperature 5500 K

k thermal conductivity 50 Wm−1K−1

CP specific heat at constant pressure 840 Jkg−1K−1

L latent heat of outer core liquid 0.75× 106 Jkg−1

αT coefficient of thermal expansion 1.35× 10−5 K−1

αc compositional expansion coefficient 1.10

αD coefficient 0.70× 10−12 kgm−3s

τr difference between melting and adiabatic gradients −1.66× 10−4 Km−1

c0 mean outer core concentration 0.0252

κ thermal diffusivity 5.46× 10−6 m2 s−1

D mass diffusivity 10−8 m2 s−1

η magnetic diffusivity 1.6 m2 s−1

ν outer core viscosity 10−6 m2 s−1

d shell thickness ro − ri 2260 km

Ω rotation rate 7.272× 10−5 s−1

µ0 permeability of free space 4π × 10−7 Hm−1

u fluid velocity m s−1

B magnetic field T

Table 1. Mathematical quantities and, where relevant, their numerical values used in the calculations.

Generic sub- and superscripts used in the text are also listed below.
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Subscripts Superscripts

s secular cooling b bottom heating

L latent heat i internal heating

a adiabat s non-uniform part of secular cooling

b barodiffusion S source per unit area

r radiogenic heating ′ d/dr

c composition

co cotemperature

T turbulent quantity

Table 1. continued.

Case 3 has the same total heat-flux as Case 2 but with enough additional radiogenic heating

to make the age of the inner core close to that of the Earth, 3.5 Ga. The cooling rate is much

reduced over that of Case 2. These choices represent a broad spread of scenarios discussed

in the literature, ranging from high to low total heat flow, inner core ages, and radiogenic

heating.

The resulting volumetric equivalent and total heat-fluxes are given in Table 2; they depend

on the core evolution scenario through dTo/dt and h. All heat sources and sinks are uniform

except for qs, which has been averaged over the core to give a single value for comparison with

the other values. Cases 1 and 2 have net heat sinks while Case 3 has only bottom heating—the

radiogenic heat almost exactly cancels the adiabatic, convective, and other heat sinks. The

Q’s are shown for comparison with the latent heat QL, which has zero volumetric heat source.

The compositional terms dominate in the rapidly cooling evolutions and the barodiffusive

contribution is negligible.

These equivalent heat sources should not be confused with the power estimates normally

made for core energetics calculations. While the radiogenic, specific, and latent heats are the

same the adiabatic heat has the opposite sign because it is subtracted from the heat sources

entering the Boussinesq equations. Furthermore the compositional and barodiffusive terms

are the result of transforming compositional into thermal buoyancy and have nothing to do

with the gravitational energy released.

Figure 1 shows the contributions to the radial variation of T ′
co for Cases 1, 2 and 3. Spe-

cific and radiogenic heating increase linearly with radius while the composition and latent

heat terms decrease as r−2 because light elements and latent heat are released at the ICB.

Temperature effects are weaker than compositional effects, in agreement with core energetics

calculations. The adiabatic gradient also increases linearly with radius and so the superadi-
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Case 1 Case 2 Case 3

h pWkg−1 0 0 4

dTo/dt KGyr−1 123 69 12

qr nWm−3 0 0 44

qa nWm−3 -41.1 -41.1 -41.1

qc nWm−3 -74.2 -41.6 -7.2

q̄s nWm−3 36.1 20.3 3.5

qb nWm−3 -0.5 -0.5 -0.5

qtotal nWm−3 -65.5 -54.9 0.1

QL TW 5.5 3.1 0.5

Qr TW 0 0 7.4

Qa TW -6.9 -6.9 -6.9

Qc TW -12.6 -7.1 -1.2

Qs TW 5.0 2.8 0.4

Qb TW 0.1 0.1 0.1

Table 2. Numerical values for volumetric and total heat sources for the 3 scenarios of core evolution

considered here. The radiogenic heating, h, and rate of drop of temperature at the CMB, dTo/dt,

define the evolution. Other parameters are given in Table 1. Adiabatic and barodiffusive heating do

not depend on core evolution and are the same in each Case. All q’s are independent of r except qs,

which has been averaged over the core to give a single number.

abatic gradient reduces near the CMB for all Cases. The small barodiffusive term is similar

but too small to be plotted. In all Cases the gradients are much larger at depth in the core

than near the CMB.

Composition clearly dominates in all Cases, even when substantial radiogenic heating is

incorporated. For Case 1 the buoyancy profile is dominated by sources near the ICB with the

cotemperature gradient decreasing by a factor of 50 between the ICB and CMB. For Case

2 composition and heat terms contribute in roughly equal amounts. The buoyancy profile is

again dominated by sources near the ICB with the cotemperature gradient decreasing by a

factor of 20 between the ICB and CMB. In Case 3 the radiogenic heat is greater than any

other heat source and the buoyancy profile is much flatter. The cotemperature gradient still

decreases by a factor of 5 between the ICB and CMB but starts to flatten out near the middle

of the core due to the radiogenic contribution. In all Cases convection is driven most vigorously

at the bottom of the core and is barely superadiabatic at the top.

To compare the relative amplitudes of bottom and internal buoyancy sources we write the

basic state temperature gradients [(30)–(34)] in the general form
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Figure 1. Variation of the applied conduction cotemperature radial gradient for the various sources

and sinks of cotemperature: T ′
a (red), T ′

c (blue), T ′
s + T ′

L (green), T ′
s + T ′

L + T ′
c (thick black) and T ′

r

(thin black). Top: Case 1; middle: Case 2; bottom: Case 3. T ′
a has been plotted positive for clarity, but

it should be remembered that it is a sink while all other plotted terms are sources.
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T ′(r) =
β(b)

r2
+ β(i)r + β(s)r3, (36)

(e.g. Kono & Roberts, 2001) where the constants β determine the amount of bottom heating,

internal heating, and non-uniform part of the specific heating. These are simply derived from

the corresponding temperature gradients in equations (30)–(34), replacing r with the length

scale d. The results are given in Table 3. Compositional buoyancy dominates thermal buoyancy

in each Case and bottom heating is greater than internal heating. Case 3 happens to have no

net internal heating, which is presumably a coincidence because the core evolution scenario

was not constructed with this in mind.

From now on we neglect barodiffusion; it is too small to have any effect away from bound-

aries. We nondimensionalise the dynamo equations with τ = d2/κ for time and B =
√
µ0ρκΩ

for magnetic field. We normalise the reference state profiles (31)–(34) by the adiabat gra-

dient, 2dκ(Ti − To)/κT(ro + ri) from (30) (as in (36)) and scale the total temperature by

T = Ωκ/αT g0d
2. In this way we can define one Rayleigh number in terms of the adiabat and

relate other forms of buoyancy to it.

The resulting nondimensional equations of momentum, induction, and heat are

Pr−1E

[

∂u

∂t
+ (u · ∇)u

]

+ 2Ω̂× u = −∇P + Tr + (∇×B)×B+ E∇2u, (37)

∂B

∂t
= ∇× (u×B) +

Pr

Pm
∇2B, (38)

∂T

∂t
+ (u · ∇)T = ∇2T − ERa

q

qa
, (39)

to be solved with the usual solenoidal conditions ∇·u = ∇·B = 0. The dimensionless groups

are

Pr =
νT
κT

; Pm =
νT
η
; E =

νT
Ωd2

; ERa =
2αTκg0d

3 (Ti − To)

Ωκ2T (ro + ri)
.

Ra has the form of a conventional Rayleigh number:

Ra = 2
αTκg0d

5 (Ti − To)

κ2TνT (ro + ri)
. (40)

At first sight this choice of Ra seems strange because it is based on the temperature scale

(Ti − To), which has nothing to do with the Boussinesq equations: it actually measures the

extent to which the adiabat reduces convection by the heat deficit. However, unlike q/qa,

it depends only on core properties and not on the model parameters dTo/dt and h and so

does not vary between core evolution scenarios. Furthermore, realistic values of Ra are not

achievable in numerical geodynamo simulations whereas realistic ratios of q/qa are.

Putting in numerical values from Table 1 gives Ra = 2.16× 1012. This may seem high but

it is not for rotation as rapid as the Earth’s. The critical Rayleigh number for rapidly rotating
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Case 1 Case 2 Case 3

dTo/dt = 123 K/Gyr dTo/dt = 69 K/Gyr dTo/dt = 12 K/Gyr

h = 0 h = 0 h = 4 pW/kg

β(b) β(i) β(s) β(b) β(i) β(s) β(b) β(i) β(s)

a 0 -1 0 0 -1 0 0 -1 0

r 0 0 0 0 0 0 0 1.06 0

c 6.59 -1.90 0 3.70 -1.10 0 0.64 -0.18 0

s 0 1.23 -0.09 0 0.69 -0.05 0 0.12 -0.01

L 2.74 0 0 1.54 0 0 0.27 0 0

Total 9.33 -1.67 -0.09 5.24 -1.4 -0.05 0.91 0.00 -0.01

Table 3. Numerical values for the dimensionless constants appearing in the equation for the conduction

temperature (36), β
(i)
a etc, normalised by the adiabatic value. Note that the r3 term in the specific

heat, β
(s)
s , is small enough to be neglected, leaving a combination of bottom and uniform internal

heating. Case 3, which has a large amount of radiogenic heating, happens to have virtually no net

internal heating. Compositional contributions (subscript c) dominate thermal contributions.

convection scales as Rac = O(E−4/3) and for magnetoconvection as O(E−1) (Chandrasekhar,

1961). For nonmagnetic convection the constant depends on the Prandtl number but is of

order unity for moderate Pr (Zhang, 1992); for magnetoconvection Rac depends critically on

the applied magnetic field and the results are harder to apply to a dynamo where the field

is self-generated. For turbulent diffusivities E = 10−9 giving Rac = O(1012) for nonmagnetic

convection and O(109) for magnetoconvection. Therefore, if turbulent diffusivities are relevant

to the Earth, then the geodynamo is operating at a Rayleigh number that is near to critical

for nonmagnetic convection or a thousand times critical for magnetoconvection, as found by

Gubbins (2001) using a similar argument and, independently, by Jones (2000), whose estimate

is based on the speed of fluid motions inferred at the top of the core. It would be wrong to

use the Earth’s value for Ra (2.16× 1012) in a geodynamo simulation with radically different

Ekman number (E = 10−4 rather than E = 10−9). The best option is to keep the Rayleigh

number about the same in relation to the critical Rayleigh number for the value of E used.

In this study we have kept Ra rather low but above critical and use ERa, sometimes called

the modified Rayleigh number, as a convenient measure. We draw no conclusions from the

absolute values used for Ra, only for the relative mix of bottom and internal heating.
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4 GEODYNAMO MODELS

We have conducted a preliminary study to demonstrate the effects of different buoyancy

profiles by varying ERa and fixing the nondimensional numbers E = 10−4 and Pr = Pm = 1,

which allowed many runs to be performed for each Case. For all models no-slip velocity

boundary conditions are applied at both boundaries. The inner boundary is held at a fixed

temperature and concentration and is electrically conducting, while at the outer boundary

the heat-flux is fixed, the mass flux is zero and the magnetic field is matched to an external

potential field. Models at lower values of ERa were run with 60 radial points and spherical

harmonic coefficients up to degree and order 48; runs at the higher ERa were run with 150

radial points and spherical harmonic coefficients up to degree and order 128. No azimuthal

symmetry was assumed and all runs exhibited a decay in the magnetic l-spectrum of at least

two orders of magnitude between wavenumbers with highest and lowest energy.

A detailed description of the code implementation is given in Willis et al. (2007); it repro-

duces the dynamo benchmark (Christensen et al., 2001). The buoyancy profile is implemented

by specifying the total outer boundary heat-flux using equations (23)–(28) in equation (29)

and the total internal source/sink using equations (17)–(22) in equation (16). The Cases differ

by the values of the total internal source/sink and also the outer boundary condition, which

depends on the total heat source. It is important to note that it is not possible to transform a

buoyancy profile obtained from one core evolution scenario into an equivalent profile obtained

from a different evolution scenario simply by changing the value of ERa; models from different

Cases can be scaled to make the internal sources/sinks of equal magnitude, but the the outer

boundary heat-flux will not be the same (the converse is also true).

Global time-averaged properties of the solutions are given in Table 4. In Cases 1 and 3 the

models exhibit the familiar transitions as a function of ERa, from stable dipolar dynamos at

low ERa, through reversing dipolar dynamos to reversing multipolar dynamos at high ERa

(Christensen & Aubert, 2006; Olson & Christensen, 2006). Conversely, models for Case 2 are

always non-reversing and dipolar, which is probably because the transition between reversing

and non-reversing dynamos for this heating mode occurs at higher Rayleigh numbers than we

have considered. As ERa increases there is a general decrease in the toroidal and symmetric

components of the kinetic energy, a decrease in toroidal magnetic energy and an increase in

the symmetric component of the magnetic energy. For all dynamos the Elsasser number Λ, the

ratio of Lorentz and Coriolis forces, is O(1) as it is thought to be in the Earth (e.g. Zhang &

Schubert, 2000). For detailed analysis we choose three models from each Case corresponding

to low ERa(= 10), intermediate ERa(= 50) and high ERa(= 200); time-averaged energy
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Case ERa T KET /KE KES/KE MET /ME MES/ME Λ Field

1-1 10 10 72.3 79.4 58.6 31.9 2.6 N D

1-2 20 5 68.3 77.3 55.9 37.0 2.7 N D

1-3 50 2 66.4 79.5 54.7 42.4 3.7 N D

1-4 100 1 65.3 77.0 54.1 44.6 3.7 Y D

1-5 200 1 65.1 76.2 58.1 45.4 4.2 Y M

2-1 10 No dynamo

2-2 20 5 81.1 93.9 64.9 20.7 0.79 N D

2-3 50 2 75.9 84.3 60.2 28.4 1.5 N D

2-4 100 1 69.9 81.3 58.6 34.4 1.6 N D

2-5 200 1 67.4 80.3 57.9 42.4 1.4 N D

3-1 10 10 78.7 92.6 61.8 18.4 1.3 N D

3-2 20 5 73.1 81.9 57.0 30.2 2.8 N D

3-3 50 2 70.2 78.4 56.9 33.1 3.0 N D

3-4 100 1 68.9 77.9 54.6 35.7 3.0 Y D

3-5 200 1 65.4 70.1 57.9 50.6 1.2 Y M

Table 4. Geodynamo models described in the text. The second column gives the time T in units of

the magnetic diffusion time d2/η ≈ 100, 000yrs over which the results have been averaged; it excludes

a short transient period at the start of each model. The dimensionless kinetic (KE) and magnetic

(ME) energies are given by KE = 1/2
∫

u2dV and ME = Pr/(2E)
∫

B2dV respectively. Subscripts

T and S denote respectively the energy in the toroidal and equatorially symmetric parts of the fields.

The Elsasser number, Λ = [2E(ME)]/Pr. In the final column, reversing dynamos are denoted by ‘Y’

and non-reversing dynamos by ‘N’; dipolar dynamos are denoted by ‘D’ and multipolar dynamos are

denoted by ‘M’. Numbers in columns 4–7 are percentages.

spectra for these 8 models are shown in Figure 2. In the rest of this section we refer only to

thermal convection with the understanding that compositional effects are included through

our use of a cotemperature.

Projections of the solutions for ERa = 10 are shown in Figure 3 averaged over 10 magnetic

diffusion times, or approximately 1 Myr in our scaling. The minima of ur in the equatorial

plane are similar for both Cases (∼ −2), but the maxima are much greater in Case 1 due to

the much larger radial cotemperature gradient near the inner boundary (IB) for this Case.

In both Cases there are high amplitude regions of ur adjacent to the IB; away from the IB

Case 1 exhibits localised ‘patches’ of high amplitude ur, while in Case 3 there is a layer of

cells near the mid-radius of the shell comprising positive and negative ur is roughly equal

proportions. This layer in Case 3 resembles the periodic array of convection cells that are
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Figure 2. Time-averaged magnetic energy (top) and kinetic energy (bottom) spectra as a function of

spherical harmonic degree l (left) and order m (right) up to degree and order 15.

established at the onset of instability in spherical rotating convection with purely internal

heating (e.g. Busse, 1970). With purely bottom heating a periodic array of cells is established

adjacent to the IB (e.g. Dormy et al., 2004) at the onset of convective instability, but it is not

present in model C1-1 although this model is driven predominantly from below. The kinetic

m-spectra in Figure 2 reflect these differences: for C3-1 there is a peak at m = 4, which is a

resonance of the most unstable wavenumber (m = 8) for purely internal heating at E = 10−4,

while for C1-1 the spectrum is relatively flat at low wavenumbers. Equatorial sections of uφ

display smaller-scale structures and higher peak amplitudes for Case 1 than Case 3, which

may reflect the higher ratio of KET /KE for model C1-1 than C3-1 in Table 4.

Meridional projections in Figure 3 show that the flow patterns are strongly columnar and

equatorially symmetric as suggested by the ratio KES/KE in Table 4. In Case 1 there is

vigorous convection inside the tangent cylinder with a strong upwelling plume near the polar

axis as seen in previous models (e.g. Olson et al., 1999; Sreenivasan & Jones, 2006); this is not

seen in Case 3, which may reflect the weaker buoyancy force at the IB. Meridional sections of

the magnetic field show that Br aligns with fluid downwellings in equatorial regions and fluid

upwellings in polar regions (Olson et al., 1999); interestingly, the stronger columnar flows in
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Figure 3. From top to bottom: ur and uφ in the equatorial plane, ur and Br in the meridional plane

for models C1-1 (left) and C3-1 (right). Meridional sections are taken at φ = π, where φ = 0 is at the

right-hand edge of the equatorial projections.

model C1-1 do not result in stronger Br compared to model C3-1 although the columns of Br

do penetrate closer to the outer boundary in the former Case. The equatorially antisymmetric

nature of Br in both models is reflected in the values of MES/ME in Table 4.

Despite differences in the internal structure of the magnetic and velocity fields for models

C1-1 and C3-1 the generated magnetic fields at the outer boundary (OB) are very similar:
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they are stable and axially dipolar in the time-average (magnetic energy spectra peak at l = 1

and m = 0 in Figure 2). Averaging the models over 10 magnetic diffusion times has removed

any longitudinal structure and left only the field component with the longest time-constant,

the axial dipole. Longitudinal variations are also absent in the flow patterns near the OB in

both Cases, which may explain why the different flow structures that persist deep inside the

shell are not seen at the surface.

Projections of the solutions for ERa = 50 are shown in Figure 3 averaged over 2 magnetic

diffusion times. Equatorial flow patterns are more complex than at lower ERa as can be

appreciated from the flatter kinetic energy spectra in Figure 2 for the Cx-3 models than

the Cx-1 models. For Case 1 the equatorial pattern of ur is dominated by two patches of

high velocity (as was the case for ERa = 10), the amplitude of which is much greater than

the maximum velocity in either Case 2 or 3. In Case 2 ur is negative near the OB where

the superadiabatic heat-flux is very small and mixing is achieved mainly by the compositional

sink. In Case 3 the pattern of ur is very different to model C3-1 in Figure 3; the simple pattern

identified at ERa = 10 has been replaced with small-scale flow structures than span the shell

in the equatorial plane, which likely results from the dominance of uniform internal heating

in the buoyancy profile. The pattern of uφ for model C1-3 is dominated by small-scales as for

ERa = 10; by comparison the equatorial projections of uφ for Cases 2 and 3 are large-scale.

Patterns of u and B in meridional planes are similar to those at ERa = 10 and are omitted

in favour of plots of Br in the equatorial plane. For model C1-3 negative Br is mostly confined

to narrow structures emanating from the IB, while Br is positive throughout the rest of the

shell. Positive Br dominates in Case 2 save for one large negative patch near the mid-radius of

the shell. In Case 3 there are essentially two concentric rings of Br, one negative deep inside

the shell and one positive at larger radii. As with the ERa = 10 models, differences in the

internal structure of the flow and field are much greater than differences observable at the OB.

Projections of Br at the OB in Figure 4 show that both models C1-3 and C3-3 have weak flux

near the poles and reversed flux in equatorial regions; neither of these features are present for

model C2-3. Differences between Cases 1 and 3 are observed just outside the tangent cylinder:

in model C1-3 there is a large patch of magnetic flux in each hemisphere, while in model C3-3

there are several smaller patches of flux that are smeared out due to the averaging. These

variations may reflect differences in the internal magnetic field configuration near the IB or

may be due to to the choice of averaging time; this has not been investigated, but it should

be noted that 2 diffusion times is much longer than the 10kyr time period spanned by current

global time-dependent geomagnetic field models (Korte & Constable, 2006).



A buoyancy profile for the Earth’s core 23

Figure 4. From top to bottom: ur, uφ and Br in the equatorial plane, Br at the OB truncated at

harmonic degree 12 for models C1-3 (left), C2-3 (middle) and C3-3 (right). Meridional sections are

taken at φ = π. Models are averaged for 2 diffusion times.

Figure 5 shows Br at the OB for models with ERa = 200. There is a significant increase

in the spatial complexity of the fields compared to lower ERa models, reflected in the flatter

magnetic energy spectra (Figure 2), which is partly because the models are driven harder and

partly because of the shorter averaging time. There are significant differences between the

surface fields for the different Cases. For Case 1 the unfiltered field contains reversed flux near

the equator and a strong dipole component of reversed polarity; filtering the field to degree

12 reveals two or three patches of magnetic flux in each hemisphere located at high latitudes

that are reminiscent of those identified in historical (Jackson et al., 2000) and paleomagnetic

(Korte et al., 2009) geomagnetic field models. For Case 2 the axial dipole is pronounced,

reflecting the weaker radial buoyancy force near the OB; the filtered and unfiltered fields are

very similar, indicating that most of the energy is contained in large scales (Figure 2). The
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Figure 5. Br at the OB unfiltered (top) and truncated at spherical harmonic degree 12 (bottom) for

models C1-5 (left), C2-5 (middle) and C3-5 (right).

field for Case 3 is non-axisymmetric and nondipolar; the unfiltered and filtered fields look very

different, indicating that significant energy is contained in small scales (Figure 2). In Cases 1

and 3 the surface field strength has decreased compare to the ERa = 50 solutions (Figure 4),

while for Case 2 the field strength has increased; however, the total magnetic energy for Cases

1 and 2 has increased while for Case 3 it has decreased (see Figure 2). This result agrees with

the scaling of Olson & Christensen (2006) and may reflect the high degree of internal heating

in Case 3.

Time-averaged properties of solutions with ERa = 200 are shown in Figure 6. Equatorial

sections of ur display similar characteristics to those with ERa = 50: Cases 1 and 2 are

dominated by localised patches of high velocity at depth where the buoyancy force is strongest,

while the flow pattern for Case 3 consists of small-scales that span the equatorial plane, which

likely reflects the high degree of internal heating. Convection is most vigorous for Case 1 as in

previous Cases, but unlike the models with ERa = 50 Case 3 has the weakest radial motions

when viewed in the equatorial plane. Meridional sections show strong quasi-columnar motion

outside the tangent cylinder for all Cases, indicating that rotational effects remain significant

even at high ERa; the high values of KET /KE and KES/KE in Table 4 support this.

Finally we consider the time-dependence of the axial dipole harmonic g01 for solutions

with ERa = 200 (Figure 7). Model 1-5 reverses occasionally; in stable polarity intervals the

dipole coefficient is much greater than in any other Case. Model 2-5 is a stable, non-reversing

dynamo with a small value of g01 compared to the other runs; this coefficient still dominates

all others. Model 3-5 reverses very regularly and its spatial structure is always dominated by

higher multipoles.
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Figure 6. Time-averaged radial velocity in the equatorial (top) and meridional (bottom) planes, for

Case 1c (left), Case 2d (middle), and Case 3d (right). Meridional sections are taken at π/2. Models

are averaged over one magnetic diffusion time.

5 SUMMARY AND CONCLUSIONS

We have derived a radial buoyancy profile for Earth’s core and shown that, to a good ap-

proximation, it corresponds to a combination of bottom heating and uniform heat sinks. The

profile combines compositional and thermal buoyancy into a single cotemperature formulation,
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Figure 7. Time-series of the spherical harmonic coefficient g01 (the axial dipole coefficient) for models

1-5, 2-5 and 3-5. The timespan is the final 25,000 years of each run.
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allowing comparison of the different buoyancy effects, and can be easily generalised for the

case where thermal and compositional diffusivities differ and two diffusion equations are used.

The relative importance of the different buoyancy sources depends on quantities determined

from seismology and mineral physics with two exceptions: the cooling rate at the core mantle

boundary and the local rate of radiogenic heat production. These parameters are constrained

using core energetics calculations; varying them results in a suite of quite distinct buoyancy

profiles corresponding to different scenarios for core evolution.

The 3 different Cases of core evolution we have analysed in detail span a good range of the

scenarios that have been explored in the literature, from rapid cooling and a young inner core,

through moderate cooling and neutral stability at the CMB to very slow cooling and sufficient

radiogenic heating to provide a primordial inner core. We find that compositional buoyancy

is stronger than thermal buoyancy except near the CMB, where compositional convection

ceases altogether. The cotemperature gradient is always greatest at the bottom of the outer

core because light material and latent heat are released there. In general, bottom heating is

always greater than internal heating even if substantial radiogenic heating is present.

We carried out numerical geodynamo simulations for the 3 different core evolution sce-

narios. The Rayleigh number is defined based on the temperature gradient across the core,

which is independent of the core evolution model, and had to be scaled down with the Ekman

number in order to retain the magnetogeostrophic balance that pertains in the Earth’s core.

The 3 core evolution scenarios define the balance of internal and bottom heating. Solutions

from the geodynamo simulations are quite different in the 3 Cases; while firm conclusions

cannot be drawn from the number of runs we have performed, our results suggest that it may

be possible to discriminate between the various core evolution scenarios by exploring their

effect on the generated fields. At low Rayleigh number the principle differences are in the flow

patterns: significant bottom heating causes patches of high velocity, while dominant internal

heating leads to small-scale flow structures with much lower velocity. Significant differences

emerge at higher Rayleigh numbers. For rapid cooling the dynamo reverses and the time-

averaged field is dominated by large-scale features at high latitudes that are reminiscent of

the present geomagnetic field, while for moderate cooling the dynamo is stable and always

dominated by the axial dipole. Dominant internal heating produces non-dipolar surface fields

with very frequently reversals suggesting this combination of heating is not acceptable for a

geodynamo model.

Like the study of Kutzner & Christensen (2000) we find that the internal patterns of the

velocity and magnetic fields differ between the various Cases at all Rayleigh numbers we con-
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sider. Unlike their study, however, we find that these differences are not observed in the surface

field at low Rayleigh numbers, which are stable and dipolar. This feature of our models could

result from our prescription of a fixed heat-flux outer boundary condition, which promotes

large-scale temperature anomalies near the outer boundary (Aubert et al., 2009; Sakuraba &

Roberts, 2009), while Kutzner & Christensen (2000) used a fixed temperature outer boundary

condition. At high Rayleigh number we observe different behaviour of reversing dynamos be-

tween different core evolution models in agreement with the results of Kutzner & Christensen

(2002). Finally, we note that the equations derived in Section 2 provide a consistent means

for defining reference states at any point in the past. This represents an alternative method

to the scaling analysis undertaken by Aubert et al. (2009) for investigating the paleofield in

dynamo models. In particular, prior to inner core formation our equations consistently reduce

to a reference state consisting of purely thermal buoyancy.

Our results indicate that geodynamo models are sufficiently sensitive to buoyancy profile to

provide valid tests of suitability of core evolution models. Further work is therefore warranted

to explore the dependency of the generated magnetic fields on the many parameters that we

have not yet varied.
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