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A General Framework for the Analysis and Design
of Tubular Linear Permanent Magnet Machines

Jiabin Wang,Member, IEEE, Geraint W. Jewell, and David Howe

Abstract— A general framework for the analysis and design machine performance to be established analytically, it suffers
of a class of tubular linear permanent magnet machines is from problems associated with model inaccuracy, particularly
described. The open-circuit and armature reaction magnetic e flux leakage is significant and the flux paths are complex.
field distributions are established analytically in terms of a With the availability of powerful software tools, numerical
magnetic vector potential and cylindrical coordinate formulation, i ’ S EEE ] !
and the results are validated extensively by comparison with analysis of the field distribution and evaluation of performance
finite element analyses. The analytical field solutions allow the [7]-[8] has also become common practice. However, while nu-
prediction of the thrust force, the winding emf, and the self- merical techniques, such as finite element analysis, provide an
and mutual-winding inductances in closed forms. These facilitate accurate means of determining the field distribution, with due

the characterization of tubular machine topologies and provide a t of saturati tc.. th in ti . d
basis for comparative studies, design optimization, and machine account of saturation etc., they remain time-consuming an

dynamic modeling. Some practical issues, such as the effects ofd0 not provide as much insight as analytical solutions into the
slotting and fringing, have also been accounted for and validated influence of the design parameters on the machine behavior.

by measurements. To overcome the aforementioned problems, a two-dimensional
Index Terms—Electromagnetic analysis, electromagnetic fields, (2-D) analytical solution for the magnetic field distribution was
linear motors, magnetic fields, permanent magnet machines, established in the rectangular coordinate system for a single-
permanent magnets. sided, flat linear permanent magnet motor, using the magnetic
charge image technique [9]. Analytical treatments based on the
magnetic vector potential were also adopted in [10] and [11] to

) ) ) . predict the 2-D flux distribution in such machines. However,
L INEAR electromagnetic machines, which can providg,ytical solutions for the field in tubular linear permanent

thrust force directly to a payload or generate power fromy,gnet machines, which would be extremely useful for their
applied thrusts, are being employed increasingly in applicgasign and performance optimization, have not been available
tions ranging from transportation, manufacturing, and offigg literature, to date.
automation to material processing, health care, and generatiog,ig paper attempts to provide a unified framework for the
systems. Particular examples include stirling cycle cryogeniGaysis and design of the class of tubular linear permanent
coolers and generators [1], [2] and artificial heart deViC‘?ﬁagnet machines which embraces the topologies shown in
[3]. 'Such direct linear electro-mechanical energy conversi%_ 1. For this purpose, the magnetic field distribution is
devices offer numerous advantages over their rotary-to-lineliapjished using an analytical technique formulated in the
counterparts, notably the absence of mechanical gears @pfhqrical coordinate system, and the results are verified
transmission systems, which results in a higher dynamig finite element analyses. The analytical solutions allow
performance and improved reliability. Among various linghe pregiction of the thrust force, the back emf, and the
ear machine configurations, tubular machines with permangfi,ding inductances in closed forms. In turn, these facilitate
magnet excitation have a number of distinctive features [4},c characterization of the machines and provide a basis
such as a high force density and excellent servo Charaaeris%?*comparative studies, design optimization, system dynamic

which make them an attractive candidate for applications {jqeling and simulations, and servo-control development.
which dynamic performance and reliability are crucial [2], [3].

In order to facilitate the design optimization and accurate I
dynamic modeling of linear permanent magnet machines, a
variety of techniques have been employed to predict the mag- o o )
netic field distribution [5], the most common approach being AS highlighted in Fig. 1, there are numerous variants of
to use a lumped equivalent circuit [1], [6]. However, while thi€Pular linear permanent magnet machines. Fig. 1(a) and (b)

allows the relationship between critical design parameters asftPWs internal and external magnet topologies with radially
magnetized magnets, respectively, both of which could be

. . . . either moving magnet or moving armature [1], [12]. Fig. 1(c)
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Fig. 2. Cylindrical coordinate system.
VI 7777774
() the = direction. However, fringing effects associated
with the finite length of the armature will be considered
LELLLT2Z, in Section Il
2) The armature is slotless, and the permeability of the iron
5 Z 7% % 2 4 % is infinite. However, slotting effects, if present, can be
—/—>/$ —B < #>;<~!— 7 taken into account by introducing a Carter coefficient
2 7777707 [15], as will be shown in Section III.
Consequently, the magnetic field analysis is confined to two
L 27277777772 regions, viz., the airspace/winding region in which the perme-

() ability is 9, and the permanent magnet region in which the
permeability isjiop,.. Therefore

LA

B_ {MOH, in the airspace/winding (1)

N NN NI NN o H + oM, in the magnets

LNENINNINN NN N

wherey,. is the relative recoil permeability of the magnets and
M is the remanent magnetization. For a permanent magnet
having a linear demagnetization characteristic,is constant
777777777772 . .

| and the magnetizatiod is related to the remanend®,.,,

() by M = B,em/1o. It is convenient to formulate the field
Fig. 1. Typical tubular linear permanent magnet machine topologies: (gjstribution in terms of a magnetic vector potentialdefined
radial magnetization, internal magnet topology [1], (b) radial magnetization B=VxA dth lindrical di h .
external magnet topology [12], (c) axial magnetization, internal magn@i_s =V XA, an _t epyln rlca.coor. Inate system shown in
topology [13], and (d) Halbach magnetization, internal magnet topology [15Fig. 2. The governing field equations, in terms of the Coulomb
gauge,V x A = 0, are

be longer than the other dependent on the required stroke. [VZA; =0, in the airspace/winding 2
Generally, the preferred topology depends on the application. {V2AH = —uoV x M, in the magnets 2)
Slotted iron-cored topologies usually have a higher force

density, but may also produce an undesirable destabilizif§ice the field is axially symmetrigy. only has the component
tooth ripple cogging force and have the highest eddy currefie; Which is independent . This leads to (3) shown at the
losses in the magnets and the iron, especially when operatft@ftom of the next page. In the cylindrical coordinate system,
at high speed. Slotless armature topologies, on the otfig® magnetizatioM is given by

hand, eliminate the. tooth ripple cogging effect, and th.ergby M = M,e, + M.e. 4)
improve the dynamic performance and servo characteristic at

the expense of a reduction in specific force capability, althougfhere A7, and 7. denote the components M in the » and

the cogging force associated with the finite length of the iron- gjrections, respectively. The flux density components are
cored armature may still be significant if it is not designegeduced froma4, by

accordingly [13].

In order to establish analytical solutions for the magnetic B. = 13(“40); B, = _8A9.
field distribution in the foregoing machine topologies, the T Or Oz
following assumptions are made: The form of the solutions to (3) depends on the machine

1) The axial length of the machines is infinite so that thiopology, each of which will be considered separately as
field distribution is axially-symmetric and periodic infollows.
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Fig. 3. Field regions of radially magnetized machine topologies: (a) internal magnet topology, (b) external magnet topology, and (c) magnetization distribution.

A. Radial Magnetization Machine Topologies whereg,, is the ratio of magnet pole-length,, to pole-pitch

Fig. 3(a) and (b) shows simplified models of the internd» @Nd7n = (20 — 1)7/7,.
and external radially magnetized machine topologies, in whichCombining (3)-(5) yields (6) (shownﬂat the bottom of the
M. = 0 and M, have the distribution shown in Fig. 3(c),"€Xt page) wher&, = - Ben, sin(2n—1)F a,. The boundary

which may be expanded into a Fourier series of the form conditions to be satisfied by the solution to (6) are:

ad sin(2n — 1)Z« Bilo—r =0 Brl_n =0
My= Y ABrew/po)—p—2 2L ) L:lr=r., = 0;  Bir:|=r,

— COS Mp 2 (7
n=l2,.. (2n = Ljm Bi.lr=r,, = Bu:lr=r,.; Hrilr=r, = Hiu:|r=r,,
g ({1a0 g (10 : : o
o <;az (rAm)) + > <;$(7>Aw)> =0 in the airspace/winding
g {1a0 g (10 :
o <;8z (r Am)) +5, <;5(7>Am)> = —uoV x M in the magnets. (3)
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where wherep = «/7,. The governing field equations, in terms of
Ag, then become (10) as shown at the bottom of the page.
R,=R;,—(9+h,) and R.=R,—(9+hy,+h,)  The flux density distributions, which satisfy the boundary
for internal magnet machinesconditions of (7), are now given by

R, =R.—h, and R,=R, —(g+ hy+ hmn) B, (r, 2) = —[a, BL.(pr) + b, BK1 (pr)] cos(pz)
for external magnet machines Br.(r, 2) = [at, BIo(pr) — b, BKo(pr)]sin(pz) (1)

¢ being the airgap length},, the winding thickness for a Bun(r,2) = —{{Fap(pr) + aup] BL(pr)

slotless armature, anfd,, the radial thickness of the magnets. + [ Fpp(pr) + bup] BK1(pr) } cos(pz)
Solving (6) subject to the boundary conditions of (7) yields (8)  Bi.(r, z) = {[Fap(pr) + amy|Blo(pr)
and (9) shown at the bottom of the page, for the component + [Fp(pr)bup| BKo(pr)} sin(pz) (12)

flux density distributions, wher&1I,(e), BI;(e) are modified

Bessel functions of the first kind;BKo(e), BK;(e) are where Fa,(e), Fi,(®), aip, by, amp, and by, are given in
modified Bessel functions of the second kind, of order zereAppendix B. As can be seen, the flux density components are
and one, respectively; anfly,(e), Fg,(e), a, b, am, sinusoidally distributed with respect to

and by, are defined in Appendix A. It is well known that anr-6 polarized, air-cored Halbach
cylinder, which has been proposed for use in rotary machines,
B. Halbach Cylinder Machine Topology has a self-shielding property [14]. It will be shown, however,

By analogy with rotary machines [14], the radially ma net_hat this is not the case for anz polarized cylinder which
y 9y y y mag might be employed in linear machines. The governing mag-

t'ZEd. magnets in Fig. 3 COUlq be r_eplaced by-a p.olanze.d netic field equations for the-z polarized, air-cored Halbach
multipole Halbach magnets in which the magnetizafidnis . - .
cylinder shown in Fig. 4, are given by (13) as shown at

given by the bottom of the next page. The corresponding flux density

M = My cos(pz)e, — Mo sin(pz)e. distributions which satisfy the interface conditions

for internal magnet machines Bi.|lr=r. = Buzlr=r,; Hi:lr=r, = Hiz|r=r.

M = M cos(pz)e, + Mysin(pz)e. Br.|r=r,, = Bit:lr=r..; Hi:lr=r,, = Hi:|r=r,,
for external magnet machines (14)
g (19 g (108 . . -
- A rA =
8z<r 8;:(7 )) +35, < 87( g)) 0 in the airspace/winding
g (10 a (10 .
o <7 o (7A119)> 8_<_8_ (rAre) ) Z P, sinm,z in the magnets (6)
Bu(r,z) == Y [amBIi(mar) + by, BKi(m,r)] cos(m,, 2)
n=1,2,..
Br.(r,z) = Z [ar, BIo(mpr) — b, BKo(my,r)]sin(m, z) (8)
n=1,2,.
B (r,2) = — Z {[Fan(mpr) + amn | BI (my,7)

o

2

+ [ F,;,, (m,, ) + brin | BK1 (mpr)]} cos(m, z)

DBrr.(r, ) {Ean(mar) + arm | Blo(mn,r)

n=1,2,.

[FBn(mn ) = bitn | BKo(mnr) } sin(m, 2) 9)

a[l1ad a (19 . . o
f—7(7‘Are)) o <7—5(7’Aw)> =0 in the airspace/winding

_l’_
1 1 .
J <— J (7’Ang)) + ag <—§( Ang)) = pBiem sinpz  in the magnets (10)
- T\ 7
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Fig. 4. Field regions of air-cored Halbach cylinder machine topology.
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Fig. 5. Field regions of axially magnetized machine topology: (a) field regions and (b) magnetization distribution.

are field due to the Halbach cylinder has components in all three
, regions, implying that the cylinder does not exhibit a self-
Bun(r, z) = —ay, BK:(pr) cos(pz) shielding flux pattern.

Br.(r, z) = —ay, BKo(pr) sin(pz) (15)

, C. Axial Magnetization Machine Topology
Buy(r,z) = =4 [=Fap(pr) + aty, | BL (pr)

Fig. 5(a) shows the field regions of an axially magnetized
machine topology, in which the magnets are disposed with

. / .
+ [Fop(pr) + biyy | B, (p7)} cos(pz) alternating polarity in the: direction and separated by infin-

itely permeable iron pole pieces. The magnetization vector is,
Br(r,z) = {[—FAP(W) + arr,) Blo(pr) therefore, given by
_ [FBp(pT) + b/Hp] BK()(])T)} Sin(pz) (16) M=»M.e.. (18)
LN . The distribution of A, is shown in Fig. 5(b), and may be
B, (r, —ajq, BI . X
tate (7 #) = —amm, BL (pr) cos(pz) expressed as the Fourier series
B (r,2) = aIHpBIO(m )sin(p2) a7) .

sin(2n — 1) oy,

wherea,,, afy,, by, andajy,, are given in Appendix C. Since M= > 4(Brem/10) cosmpz. (19)

2n —1
these coefficients are not zero, it follows that the magnetic n=12,.. (@n —1)m
a/[1 149 : :
5 <; (rAr e ) <7_8_ (rAr e ) =0 in region | and 11l
a[1 19
5\ "5, (7 Are) 8— 7_8_(7 Ame) ) = pBremsinpz  in the magnet (13)
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TABLE |
PARAMETERS OF SLOTLESS TUBULAR LINEAR PERMANENT MAGNET MACHINES

Machine topology
Parameters | Radial magnetisation, | Axial magnetisation, | Air-cored Halbach cylinder
internal magnet internal magnet internal magnet
Ry/R,, 2.0 2.0 2.0"
R/R 0.47 / 0.47
Tl Tp 1.0 0.65 1.0
=
\\ -
=

(@) (b) (c)

Fig. 6. Flux distributions of different internal magnet machine topologies: (a) radially magnetized, (b) axially magnetized, and (c) air-cored Halbach cylinder.

This leads to the governing field equations, in termsigf of = , )
the form shown at the bottom of the next page in (20). Trg (7 Z {an;BL(gjr)} sin(g;2)
boundary conditions to be satisfied by the solution to (20) are i= l’i
Bi.lr=r, =0; DB, |1—0 =0 Bu.(r,2) ; {a/TTjBIO(qJT)} cos(g;2) + Bo (23)
j=1,
Bty imr, 2 = 0 Bul7, j2<a<esa =0 where ¢; = 2mj/7y, andaf,, b, af,, by, and By are
By, |_Tm/2<4<m/2 = By |_T Toca < /2 defined in Appendix D.
Hy|"3 5 Tocacrn 2 = HHZI_M/QSZSM/Q D. Comparison with Finite Element Calculations
‘R /2 The main design parameters of three different topologies of
/ 277 B, dr = / 27 Ry, By, dz. (21) slotless tubular linear machines, for which analytical field so-
0 m/? lutions have been obtained, are given in Table I. The magnets
Solving (20) subject to the boundary conditions of (21) yieldfe sintered NdFeB, wittBe,, = 1.2 (T) and p, = 1.05.
oo The analytical field distributions have been validated by finite
By, (r,z) = [a},, BI,(m,7) + b, BK1(m,7)]sin(m, z) €lement calculations of the radial and axial variations of flux
n=1,2,- density in both the magnets and airgap/winding regions.
Br.(r, 2) The finite element solutions were obtained by applying a

oo periodic boundary condition at the axial boundaries and im-

= Z [af,, BIo(myr) — b}, BKo(m,r)|cos(m,z) posing the natural Neuman boundary condition at the surfaces

n=1,2,- of the stator and armature iron cores. Fig. 6 shows the result-
(22) ing flux distributions for different machine topologies. Fig. 7
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. ) . . Fig. 8. Comparison of flux density components as functions zofat
Fig. 7. Comparison of flux density components as fl.JnCtlonSTObt‘ 7 = (Rm + R.)/2. Radially magnetized, internal magnet machine topology:
z = 7p/4. Radially magnetized, internal magnet machine topology: (e{)a) radial component and (b) axial component.

radial component and (b) axial component.

compares flux density components in the radially magnetizeédpologies. However, the following derivations are undertaken
internal magnet machine topology as functions of radiasa for internal magnet machine topologies. Nevertheless, the
constant axial position, while Fig. 8 compares the flux densifyhalysis can be readily modified to cater for external magnet
components as functions of axial positienat a constant machine topologies.

radius. Similar comparisons are presented in Figs. 9 and 10

for the axially magnetized machine topology. It will be seep. gotless Armature

that, in both cases, the analytical solutions agree extremel .
. - Yt . 9 ¥The thrust force exerted on the armature, resulting from the
well with the finite element results. Figs. 11 and 12 show

comparisons for the air-cored Halbach cylinder machine, gyperaction between the winding current and the permanent

which it will be noted that the flux density inside the bore O?qagnet field, is given by

the cylinder(r < R,.) is not zero, although it has a relatively F. — / (3 x B)dv
small magnitude, as was mentioned earlier. It can also be A

observed that the flux density in the airgap/winding region is

sinusoidally distributed with respect to the axial coordinate Where J denotes the current density vector in the winding
region V. Assuming that each winding coil on the armature

lll. FORCE AND EMF PREDICTION comprises a number of circular turns, and occupies an area
Without loss of generality, the emf and force can bbounded byr; = R,;, r2 = Rs, 21 = 2z — 7,/2, and
calculated for both internal and external magnet machire = » + 7,,/2, as shown in Fig. 12, where, is the coll

(24)

9 (19 9 (10 : : .

P <;8z (r Aw)> + B <;5(7 Aw)> =0 in the airspace/winding

9 (19 d (19 :

5 <;az (r AII&)) + 5 <;5(7 AHg)> =0 in the magnets (20)
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Fig. 9. Comparison of flux density components as functionsroft Fi9- 10. Comparison of flux density components as functions: oét
z = 7p/4. Axially magnetized, internal magnet machine topology: (az :r(ﬁ'ml—i—ﬁ”/r%rﬁm?w”dy rgagn_et:zedr,nmtim'il magnet machine topology:
radial component and (b) axial component. a) radial component and (b) axial component.

axial width, the total thrust force exerted on the coil may bghere K1, is defined as the torque constant of fBe — 1)th

obtained from the following integration: harmonic, and is given by
247w /2 R, K N I
Fw = — 2 JB, oy drdz 27 niVwp e
/Z_Tw/2 /Ri 7wrJ Br.(r, z) dr dz K, = _ﬁ/}z rlata BI1 (my,r)
which may be written as + b1, B Kl(m“)]gh,_ (28)
F,= Z F, cosmpz (25) Kupn = KpnKay is the winding factor of the(2n — 1)th
n=1,2,... harmonic, K, = sin(m,7wp/2) being the winding pitch
where R; is the radius of the armature bore. For the radiallfactor, Ky, the distribution factor, andvy,, the number of
magnetized machine topology,, is given by series turns per phase. For a linear machine employing:an
R, magnetized Halbach cylinder, (27) and (28) can be simplified
F, = 27rﬂ,,JKdn/ rlat, BIi(m,r) + b, BK1(my,r)|dr. as
R;
(26) Fop = [Krpsinp(z — mwp/2)]¢ (29)
Ky = sin(m, 7 /2)/(m,7y/2) is defined as the winding and
distribution factor of thg2n — 1)th harmonic. Therefore, the
total force I, exerted on a phase winding comprising a 27K apNyp s
number of series connected coils, each displaced by a windibgrr = ~ (R, — R;) /R_ rlayp BL(pr) + by BE1(pr)] dr-
pitch 7, and carrying a curren, is obtained as ) (30)

= . 7_VV) . . . . .
Fyp = < Z Ky, sin mn(z - 7‘)>L (27)  For axially magnetized machine topologies, the force exerted
n=1,2,.. on a phase winding can be similarly derived from the integra-
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Fig. 11. Comparison of flux density components as functionsr ot =
z = 7,/4. Air-cored Halbach cylinder, internal magnet machine topology,;
(a) radial component and (b) axial component.

ig. 12. Comparison of flux density components as functionsz ot
= (Rwm + Rs)/2. Air-cored Halbach cylinder, internal magnet machine
topology: (a) radial component and (b) axial component.

tion procedure. Thus The total flux-linkage of a distributed multi-coil phase winding
oo is, therefore, given by
_ _Twe ) |,
Fop = ; Ko cos mn(z ; ) i (31 7/ i . ( TWP) -
n=1,2,- o = npCOSMp | 2 — —=
. . : n=1,2 r 2
where Kr,, is given by o
oK N R and
T dpn VN wp ¢ /
KTn = ——/ T CLInB_ll(mnT) K N. R,
(Bs = Ri) Jr, [ Qnp = . };pn EP / rlat BIy (m,r)
+ by BK, ()] dr (32) ma(Bs — B;) Jr,
+ by, BK 1 (m,7)] dr. (36)

With reference to Fig. 12, the coil flux-linkage for radially , ) i
magnetized machine topologies can be obtained by the fbi€Nce, the induced emf per phase is obtained as

lowing integration: Aoy oo . o
247,/2 R, . Cywp = 5 =1 - Z Kg, smmn(z - )
P I/ / 2mr Arg(r, z) dr dz = Z ®,, sinm, 2 n=12,.. 37
Z—Tuw/2 R; nel.2 i . . i ( 8 )
o 33 wherew is the linear velocity, andg,, is analogously defined
(33) as the back-emf constant of ti{gn — 1)th harmonic and is
where given by
R
U T R, _ _27rdeanp ? . .
@ =~ Kan /R - e BI(mnr)+bin B ()] dr Ken=="0""R) Jo ' [atn B (myr)

(34) + br, BK1(m,r)] dr. (38)
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Fig. 13. Winding distribution.
by e
fringing flux T A '
] ™
: L ) i
-z |

Fig. 14. Slotted armature and fringing effect.

As can be seenKpg, and Kr,, are identical, as in rotary whereby, is the width of the armature slot openings. Therefore,
brushed and brushless permanent magnet machines. Cotiseeffective airgag. and the equivalent armature bore radius
quently, Kg, for Halbach cylinder and axially magnetizedR;. are given, respectively, by

machine topologies is given in (30) and (32), respectively.

ge =g+ (K. —1)g (41)
B. Sotted, Finite Length Armature R — R +ge, for internal magnet topologies (42)
e R,, — g., forinternal magnet topologies.

If the armature is slotted and has a finite length, as shown
in Fig. 14 for a radially magnetized, internal magnet machirighe distribution of the radial component of flux density at the
topology, the effect of the slot openings may be accounted famature boreB,(z) is given by
by introducing a Carter coefficiedt. given by [15]

T Ba(z) r=R;. — BI?‘(ZvRie) (43)
t
Kc = (39) . : : .

Tt — g where By, is the radial flux density calculated using the
wherer, is the armature slot pitchy’ = g + A /s, and the effective airgapg.. Consequently, the force or emf constant
slotting factor~ is given by of the (2n — 1)th harmonic for the different slotted armature

machine topologies is obtained as (44) shown at the bottom of

4] by . { bo bo 2 the page. In all linear machines, there is fringing flux due to
Y= 2 tan <2_g/> —lng/1+ <2_g/> (40)  their finite length, and this is particularly significant in slotted

machines with a small airgap. It results in a net increase in

Ky, = =20 K gy Nup Ric[a1n BI (m,, R;.) for radially magnetized

+ b, BK (mp R )] machine topologies
Krp = =20 KgpNypRicla, BL (pR;) for Halbach cylinder
+ b, BK1 (pRic )] machine topologies

Kry = 27 Kgpn NypRicla;, Bli(m,R;.)  for axially magnetized
+ b, BK1(m,R;.)] machine topologies (44)
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armature winding flux linkage, as is indicated in Fig. 14, in  o¢.15
a similar manner to rotary permanent magnet machines with
overhanging magnets. To account for fringing flux in rotary
machines, an analytical model was developed [16]2-id
rectangular coordinates, for predicting the flux linkage whefis’
the magnets face either a slotted or slotless infinitely permeab
boundary, but neglecting the effect of radial flux focusing. A% : : : : : : :
simpler model was established in [17] which assumed circul 0g----- dreeee T R peneea e oo TR
fringing flux paths, the fringing effect being accounted for by~ : : : : : :

— o measured

0.05}.. , ........ ,, predicted .......

introducing a magnet overhang factby,, given by § -0.05}-----.. N N L %....... TR Y A
1 (1 LN if
kmo:1+61n|:1+z<ll(:_1>:| (45) -0.1 b a ........ . ........
wherel, andl,, are the armature and magnet lengths, respec- : : : : : : :
. . . -0.1 H H H H H i H
tively, andc is given by %0 0005 001 0075 002 002 003 0035 004
4h,, [ A z (m)
c= _< g +u,,i) (46)
T pirla Am hom Fig. 15. Measured and predicted flux-linkage waveform of a phase winding.

where A, and A,,, are the cross-sectional areas of the airgap
and the magnet, respectively. For cylindrical machines, curva-  ¢15
ture and flux focusing effects may be taken into account using
the average cross-sectional areas given by: 01

Ay)Am = (R; + Rp) /(R + Ry). (47)

It was shown in [17] that predictions of fringing flux by
the use of (45) agree well with results obtained from the /
method in [16] as well as from-d finite element calculations.

turns)

Wb

The magnet overhang factor has, therefore, been employed tB;
account for fringing in slotted tubular linear machines. Thus, Ef 0.5
(44) is modified to (48) shown at the bottom of the page.
-0.1
C. Validation 0185005 007 0015 002 0025 005 0035 004
A two-phase tubular linear permanent magnet motor with z (m)

a high specific force capability and dynamic bandwidth Wzﬁg. 16. Comparison of flux-linkage waveform of a phase winding.
recently developed [18]. It employs a radial magnetization,

internal magnet topology, and a slotted armature. Fig. 15

compares the measured and predicted flux linkage of a phas€ig. 16 compares the analytical and finite element calculated
winding having 202 turns, assuming a magnet overhang of tflox linkage of a phase winding of a slotless version of
pole pitches in the prediction. As will be seen, the predictdle motor having 496 turns per phase. Since the effective
flux linkage is essentially sinusoidal, the harmonic distortiomirgap of the slotless motor is considerably larger than for
being less than 0.5%, and agrees well with the measurnbe slotted motor, fringing effects have been neglected in the
waveform. From the motor design parameters, the predictadalytical calculation. However, the finite element calculation
motor torque constant is 22.4 (Nm/A), which again compar@gcounts for saturation and end effects associated with the
favorably with the measured value of 24 (Nm/A), the errdinite armature length. As will be seen, the predicted flux-
between the two being less than 7.0%, and attributable liokage waveforms agree well, the maximum error being less
an axial inhomogeneity in the extruded, radially anistrotropiban 2%, indicating that fringing effects are negligible for this
NdFeB magnets. particular slotless machine.

Krp = —27kmoKapn NupRie[ar, BI1 (m, R;.) for radially magnetised

+ by, BK1 (mp R )] machine topologies
Krp = —2nkmoKap NwpRie[ar, B (pR;.) for Halbach cylinder
+ b1, BK1(pR;.)] machine topologies
Ky = 21k moKapn Nwp Ric[al, BI (m, Ri.) for axially magnetised
+ ¥, BK1(m,Ri.)] machine topologies

(48)
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AJ TW BII’I’(T7 Z) = _n=;m[aﬂanB-ll(mn7))
Jo + bitan B (mnr)] cos(my2)
T2 Bi:(r,2) = Y [amanBlo(mar)
»- n=1,2,---

r >

wpi2 7 — brtan BKo(m,r)] sin(m,z) (55)
where FAa,n(.)a FF)'a,n(.)a Alan, bTana ATTan, and bnan are
given in Appendix E. Equation (55) can be used to determine
the extent, if any, of partial irreversible demagnetization of

the magnets under various operation conditions. Similarly, the
Fig. 17. Current distribution of a phase winding. flux linkage of a phase winding haviny,, pole pairs due to its
own armature reaction field may be obtained by integration,

and is given b
IV. ARMATURE REACTION FIELD AND INDUCTANCE 9 y

Assuming that the armature is slotless with a coil spread = o (56)
T, and a winding pitchr,, as shown in Fig. 12, the current Yuap = _; arn
distribution of a phase winding, as shown in Fig. 17, may be o
expanded into a Fourier series, viz where

Jz)= 3 dysinmgz (49) _ AnN,NKapn [ ,
B = (g — 1) Jp, T )+ 0]
where J,, is given by BIi(my,r) + [—Fpan(mar) + ban| BK1(my,r) } dr (57)
. 4J0 . (271 - 1)7_wp . (27'L — 1)7_w
o = 7(2n — 1) - 27, S 2r, (50) andN. = N,,/2N,, is the number of series turns per phase per

The armature reaction field equations, in terms.of are Pole. The self-inductance of the winding is, therefore, given by
therefore given by (51) shown at the bottom of the page. The

boundary conditions to be satisfied by (51) are Ls = Jorw(};./:u}—ap}?.i)/Nc
Brisli—r, =0 Buelr—r, =0 (52) B N2 = kK apm
Br.|r=r, = Br:|r=r;; Hr:|r=r: = Hiz|r=r, T Nyrw(R, — R)? Z T, (58)
where R; is the inner or outer radius of the armature for r n=t.2,
internal or external magnet topologies, respectively, and igere
given by n
R = {Rm +g¢g, for internal magnet topologi_es (53) by = / - T{ [F;np(mnr) . ai(m] BL(mar)
R,, —g, for external magnet topologies. ;
Solving (51) by satisfying the boundary conditions of (52) + [ Fpan(mnr) + big, ) BK1(myr) } dr - (59)
and assuming.,. = 1.0, for simplicity, yields the following
expressions for the flux density components: and F7,.(8), Fpan(®) s Ylans Olrens aNd by, are
oo calculated, respectively, fromfia,,.(®), Fan(®), alan, Uian,
By (r,z) = — Z {[Faan(mnr) + a1an] BI1 (M, 7) Q1lan, aNdbri,, by substituting/y = 1. The mutual inductance
n=1,2, . M;,; between phasesandj (¢ # j) separated by an axial

+ [ FBan(mn7) + bian]| BK1 (m,,r)} cos(m,, z) distancer;; can be similarly deduced, and is given by

Bia(r,2) = 32 AlFaan(mnr) + atan] Blo(imnr) My =N B 60)
n=1,2,--- NT‘T“’(RS - R7)2 n=1,2,... "

+ [FBan(mnr) — blan| BKo(my, 1)} sin(my,2)
(54) Several observations can be made from the foregoing, viz.

o (10 19 — . . o

o <;az (7Aw)> + o <;E(7Aw)> = — 10 z_: Jnsinm,z in the winding area

9 (10 10 = .
o <;8z (“4”0)) + 5 <;5(7>Am)) =0 in the airgap/magnets
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1) For slotted armatures, the effect of slotting may bey, andary, are solutions of the following linear equations:
accounted for by the use of a Carter coefficient, a cnn c1n cnn can
before. Therefore, the armature reaction field may bF‘?‘((:;:Gn _CICZ) - ((:7(;6_ _c;:)} {aln}
obtained by solving the following equation: (gor o) = (2 + &) | Lom

|:E4n (mnan) San + FBn(mnan)
a(1ad a(1a - R
7 <; az“Af’)) *a <¥$(“4*’)> =0

Gem A4
" |

X . an

in the airgap/magnets (61)

FAn(manl) . _ FBn(mn

Cgn

d

C1 C3
_ . bin = —a1n; b = ——ain. (A.5)
subject to the boundary conditions Con Can
> ) APPENDIX B
B.li=r, =0; H.|l=r.= Y Josinmyz (62) DEFINITION OF F4,(e), Fip,(e), arp, bry, arrp, AND by,

n=1,2,...
Let

Expressions for the winding self- and mutual- ) . ) .

inductances can similarly be deduced from the = Blo(pRs); 2 = BEo(pR,); 3 = Blo(phy)

field solution. ca = BKo(pR:); s = Blo(pRn);  ¢6 = BKo(pEm)
2) The results in this section are applicable to radially- c; = BI1(pR..); c¢s = BKi(pR.,).

magnetized and Halbach cylinder machine topologies. (A.6)

For the axially-magnetized machine topology, although

an analytical solution for the armature reaction field

pr

is possible, the analysis is considerably more complexF,(pr) = Brem/ B, (z)dx .

Further, the self- and mutual-winding inductances will pr, BI1(2)BKo(z) + BK\(2)Blo(z)

be position dependant due to the presence of the iron ] (A7)

pole pieces. Fyn(pr) = B /1” Bl (z)dx '
" " Jor, BL(z)BKo(z) + BK1(z)Blo(z)

(A.8)
V. CONCLUSION
A general framework for the analysis and design of a clagg” @ndar, are solutions of the following linear equations:
of tubular, linear permanent magnet machines has been dev I-)(c_5 _ c_l) _ (c_5 _ c_g) ar
oped. Analytical expressions for the open-circuit and armaturE (c_fﬁJr c_{’j . (c_fGJr c_;‘j } me }
reaction fields have been established for radially, axially, an fs 4 - r B
_ |:-FAp(p-an)_J + FBp(pan) £ =rem

cg ]
Halbach magnetized machine topologies, and expressions for cg e |(A.9)
the force, emf, and self- and mutual-winding inductances have
been derived. The effects of slotting and fringing have alsg,q
been taken into account. The analyses have been validated by o e
finite element calculations and measurements. The analytical by = —ar; b, = —amn, (A.10)
tools should, therefore, be useful for comparative studies, c2 4
design optimization, and dynamic modeling of a variety akhere the positive and negative signs precedsg, /c¢ cor-

FAP(pRm)Z_; —Fp (pRm)

tubular linear permanent magnet machines. respond to internal and external magnet machine topologies,
respectively.
APPENDIX A
DEFINITION OFF4,,(®), F'p, (@), atp, by, G11n, AND brpy, Apf’END/'X C/ ,
DEFINITION OF afp, afy,, bip,, AND afyp,
Let
Cin = BIO(mnRS po G = BKO(mnRS) Cip = BIO(pan); Cop = BKO(pan); C3p — BIl(pan)
c3n = Blo(mnLl);  Can = BEo(mnRy) csp = BK1(R,);  csp = Blo(pR,);  cep = BEKo(pR,)
Csn = Blo(mnBm);  con = BEo(mnfim) ¢rp = BL(pR,); csp = BKi(R,) (A.11)
Crn = i]l (m:l}%n); Csn = g}f({l ((m)nfm) (A1) aly, = [Fap(pPRim) + BremCap/(C1pCap + C2pC3p)] (A.12)
Fa,(myr)= _"/ L 1p = [~ BremCrp/Cspcsp + Copcrp)] (A.13)
an(mar) = = v, BL@)BEo(@) + BE(@)Blo(@) " e
(A.2) “mp = omp + c_’YprIp (A.14)
P, [mnT BI(z)dx c3
Fn nl) = — = |—F: ‘m 1 —£ ‘m I .
)= | BRGE) + BB = Ew R ¢ ] 22+ (R )

(A.3) (A.15)
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APPENDIX D LFgon(mar)
DEFINITION OF ag,,. by, ajr;, AND By 1o /.mm, BIL (v) dz
Let My o r Bli(z)BKo(z) + BK1(z)Blo(x)
M. — 4Bem sin(2n — 1) 5 ay, (A.26)
T (2n—1)
4 Sin(27’L — 1)%0{1, Alan = _[E'—lan (mnRs) + FBan(mnRs)CQn/Cln]
@n = 7T—No (271 — 1) (A.16) /[l = cancan/(Cincan)]
< 25 2n-— 1) TTm < 27 2n-— 1>7r7'm btan = (Con/C4n)tran (A-27)
u=—++ ; v=\|—— Allan = Alan
Tm p 2 Tm Tp 2 bnan = bTan-
(A.17)
Ripn, = iBIO(qum)%Cm“ + Sm”) (A.18) ACKNOWLEDGMENT
- v .
o Cin The authors would like to thank Dr. Z. Q. Zhu and P. J.
Dy, = cspn — 2, Con’ Dy = BIi(q;Rm) (A.19)  Hor for providing the design details and measured flux-linkage
" : : waveform of the slotted linear motor.
Cln S v Sin u
Rrjn = <C7n + Lcagn> < - ) (A.20)
Con v U
Ton T, T 4 REFERENCES
[ +&c cos —mg= B =D o8 5
Tn = | €7n Com 8 My, Ty = & q [1] R. E. Clark, D. S. Smith, P. H. Mellor, and D. Howe, “Design

j
(A.21)

Thenay,,, ayp;, and By are solutions of the followingNe +  [2]
Jr+1) x (Ng + Jg + 1) linear equations:

L 3]
DIna/In - Z RIInjahj - Qn,By = —%Mn
o 1 4]
Ng
> Ryjuaf, — Dujaly; =0 (A22) [l
n=1 [6]

Ng JE R
Z Rryay, — Z Ryjayy; — %Bo =0 -
n=1 j=1

and
[8]
tn = (Cin/C2n)at, (A.23)

where Ng and Jg are the numbers of the harmonic terms[g]
used for the calculation of the flux density in regions | and
Il, respectively. (10]
If, however,r,, = 7, i.e., the thickness of the iron pole-
pieces is zero, themw,; = m,,, By = 0, andat,,, b, afy, are
given by (11]

4B am :
Yo Oy sin(2n —1)% 2]
Tn ™ Tein (can cen ) _ _ B
[ (8 g 22) — (i — D] esn
P o= Gy (A.24) [13]
Con
C C,
i = (14 2250 Y ®
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DEFINITION OF Flaun(®), Fpan(®), @lan, Dran, C11an, AND brrg,  [16]

[17)
Fagn(m,r)
_ podn [T BK;(x)dx
-, /,, r BI(z)BKo(z) + BK,(z)Blo(z) (18]
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