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A General Framework for the Analysis and Design
of Tubular Linear Permanent Magnet Machines

Jiabin Wang,Member, IEEE, Geraint W. Jewell, and David Howe

Abstract— A general framework for the analysis and design
of a class of tubular linear permanent magnet machines is
described. The open-circuit and armature reaction magnetic
field distributions are established analytically in terms of a
magnetic vector potential and cylindrical coordinate formulation,
and the results are validated extensively by comparison with
finite element analyses. The analytical field solutions allow the
prediction of the thrust force, the winding emf, and the self-
and mutual-winding inductances in closed forms. These facilitate
the characterization of tubular machine topologies and provide a
basis for comparative studies, design optimization, and machine
dynamic modeling. Some practical issues, such as the effects of
slotting and fringing, have also been accounted for and validated
by measurements.

Index Terms—Electromagnetic analysis, electromagnetic fields,
linear motors, magnetic fields, permanent magnet machines,
permanent magnets.

I. INTRODUCTION

L INEAR electromagnetic machines, which can provide
thrust force directly to a payload or generate power from

applied thrusts, are being employed increasingly in applica-
tions ranging from transportation, manufacturing, and office
automation to material processing, health care, and generation
systems. Particular examples include stirling cycle cryogenic
coolers and generators [1], [2] and artificial heart devices
[3]. Such direct linear electro-mechanical energy conversion
devices offer numerous advantages over their rotary-to-linear
counterparts, notably the absence of mechanical gears and
transmission systems, which results in a higher dynamic
performance and improved reliability. Among various lin-
ear machine configurations, tubular machines with permanent
magnet excitation have a number of distinctive features [4],
such as a high force density and excellent servo characteristics,
which make them an attractive candidate for applications in
which dynamic performance and reliability are crucial [2], [3].

In order to facilitate the design optimization and accurate
dynamic modeling of linear permanent magnet machines, a
variety of techniques have been employed to predict the mag-
netic field distribution [5], the most common approach being
to use a lumped equivalent circuit [1], [6]. However, while this
allows the relationship between critical design parameters and
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machine performance to be established analytically, it suffers
from problems associated with model inaccuracy, particularly
when flux leakage is significant and the flux paths are complex.
With the availability of powerful software tools, numerical
analysis of the field distribution and evaluation of performance
[7]–[8] has also become common practice. However, while nu-
merical techniques, such as finite element analysis, provide an
accurate means of determining the field distribution, with due
account of saturation etc., they remain time-consuming and
do not provide as much insight as analytical solutions into the
influence of the design parameters on the machine behavior.
To overcome the aforementioned problems, a two-dimensional
(2-D) analytical solution for the magnetic field distribution was
established in the rectangular coordinate system for a single-
sided, flat linear permanent magnet motor, using the magnetic
charge image technique [9]. Analytical treatments based on the
magnetic vector potential were also adopted in [10] and [11] to
predict the 2-D flux distribution in such machines. However,
analytical solutions for the field in tubular linear permanent
magnet machines, which would be extremely useful for their
design and performance optimization, have not been available
in literature, to date.

This paper attempts to provide a unified framework for the
analysis and design of the class of tubular linear permanent
magnet machines which embraces the topologies shown in
Fig. 1. For this purpose, the magnetic field distribution is
established using an analytical technique formulated in the
cylindrical coordinate system, and the results are verified
by finite element analyses. The analytical solutions allow
the prediction of the thrust force, the back emf, and the
winding inductances in closed forms. In turn, these facilitate
the characterization of the machines and provide a basis
for comparative studies, design optimization, system dynamic
modeling and simulations, and servo-control development.

II. FIELD DISTRIBUTION DUE TO

PERMANENT MAGNET SOURCE

As highlighted in Fig. 1, there are numerous variants of
tubular linear permanent magnet machines. Fig. 1(a) and (b)
shows internal and external magnet topologies with radially
magnetized magnets, respectively, both of which could be
either moving magnet or moving armature [1], [12]. Fig. 1(c)
shows a topology with axially magnetized magnets separated
by iron pole pieces [13], while Fig. 1(d) employs a multi-
pole Halbach magnetization [14]. In all these topologies, the
armature could be either air- or iron-cored, in which case it
could be either slotless or slotted, while one member may
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(a)

(b)

(c)

(d)

Fig. 1. Typical tubular linear permanent magnet machine topologies: (a)
radial magnetization, internal magnet topology [1], (b) radial magnetization,
external magnet topology [12], (c) axial magnetization, internal magnet
topology [13], and (d) Halbach magnetization, internal magnet topology [15].

be longer than the other dependent on the required stroke.
Generally, the preferred topology depends on the application.
Slotted iron-cored topologies usually have a higher force
density, but may also produce an undesirable destabilizing
tooth ripple cogging force and have the highest eddy current
losses in the magnets and the iron, especially when operating
at high speed. Slotless armature topologies, on the other
hand, eliminate the tooth ripple cogging effect, and thereby
improve the dynamic performance and servo characteristic at
the expense of a reduction in specific force capability, although
the cogging force associated with the finite length of the iron-
cored armature may still be significant if it is not designed
accordingly [13].

In order to establish analytical solutions for the magnetic
field distribution in the foregoing machine topologies, the
following assumptions are made:

1) The axial length of the machines is infinite so that the
field distribution is axially-symmetric and periodic in

Fig. 2. Cylindrical coordinate system.

the direction. However, fringing effects associated
with the finite length of the armature will be considered
in Section III.

2) The armature is slotless, and the permeability of the iron
is infinite. However, slotting effects, if present, can be
taken into account by introducing a Carter coefficient
[15], as will be shown in Section III.

Consequently, the magnetic field analysis is confined to two
regions, viz., the airspace/winding region in which the perme-
ability is , and the permanent magnet region in which the
permeability is . Therefore

in the airspace/winding
in the magnets

(1)

where is the relative recoil permeability of the magnets and
is the remanent magnetization. For a permanent magnet

having a linear demagnetization characteristic,is constant
and the magnetization is related to the remanence
by . It is convenient to formulate the field
distribution in terms of a magnetic vector potentialdefined
as , and the cylindrical coordinate system shown in
Fig. 2. The governing field equations, in terms of the Coulomb
gauge, , are

in the airspace/winding
in the magnets

(2)

Since the field is axially symmetric, only has the component
, which is independent of. This leads to (3) shown at the

bottom of the next page. In the cylindrical coordinate system,
the magnetization is given by

(4)

where and denote the components of in the and
directions, respectively. The flux density components are

deduced from by

The form of the solutions to (3) depends on the machine
topology, each of which will be considered separately as
follows.
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(a)

(b)

(c)

Fig. 3. Field regions of radially magnetized machine topologies: (a) internal magnet topology, (b) external magnet topology, and (c) magnetization distribution.

A. Radial Magnetization Machine Topologies

Fig. 3(a) and (b) shows simplified models of the internal
and external radially magnetized machine topologies, in which

and have the distribution shown in Fig. 3(c),
which may be expanded into a Fourier series of the form

(5)

where is the ratio of magnet pole-length to pole-pitch
, and .
Combining (3)–(5) yields (6) (shown at the bottom of the

next page) where . The boundary
conditions to be satisfied by the solution to (6) are:

(7)

in the airspace/winding

in the magnets. (3)
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where

and

for internal magnet machines

and

for external magnet machines

being the airgap length, the winding thickness for a
slotless armature, and the radial thickness of the magnets.
Solving (6) subject to the boundary conditions of (7) yields (8)
and (9) shown at the bottom of the page, for the component
flux density distributions, where are modified
Bessel functions of the first kind; are
modified Bessel functions of the second kind, of order zero
and one, respectively; and
and are defined in Appendix A.

B. Halbach Cylinder Machine Topology

By analogy with rotary machines [14], the radially magne-
tized magnets in Fig. 3 could be replaced by a- polarized,
multipole Halbach magnets in which the magnetizationis
given by

for internal magnet machines

for external magnet machines

where . The governing field equations, in terms of
, then become (10) as shown at the bottom of the page.

The flux density distributions, which satisfy the boundary
conditions of (7), are now given by

(11)

(12)

where and are given in
Appendix B. As can be seen, the flux density components are
sinusoidally distributed with respect to.

It is well known that an - polarized, air-cored Halbach
cylinder, which has been proposed for use in rotary machines,
has a self-shielding property [14]. It will be shown, however,
that this is not the case for an- polarized cylinder which
might be employed in linear machines. The governing mag-
netic field equations for the- polarized, air-cored Halbach
cylinder shown in Fig. 4, are given by (13) as shown at
the bottom of the next page. The corresponding flux density
distributions which satisfy the interface conditions

(14)

in the airspace/winding

in the magnets (6)

(8)

(9)

in the airspace/winding

in the magnets (10)
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Fig. 4. Field regions of air-cored Halbach cylinder machine topology.

(a) (b)

Fig. 5. Field regions of axially magnetized machine topology: (a) field regions and (b) magnetization distribution.

are

(15)

(16)

(17)

where and are given in Appendix C. Since
these coefficients are not zero, it follows that the magnetic

field due to the Halbach cylinder has components in all three
regions, implying that the cylinder does not exhibit a self-
shielding flux pattern.

C. Axial Magnetization Machine Topology

Fig. 5(a) shows the field regions of an axially magnetized
machine topology, in which the magnets are disposed with
alternating polarity in the direction and separated by infin-
itely permeable iron pole pieces. The magnetization vector is,
therefore, given by

(18)

The distribution of is shown in Fig. 5(b), and may be
expressed as the Fourier series

(19)

in region I and III

in the magnet (13)
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TABLE I
PARAMETERS OF SLOTLESS TUBULAR LINEAR PERMANENT MAGNET MACHINES

(a) (b) (c)

Fig. 6. Flux distributions of different internal magnet machine topologies: (a) radially magnetized, (b) axially magnetized, and (c) air-cored Halbach cylinder.

This leads to the governing field equations, in terms of, of
the form shown at the bottom of the next page in (20). The
boundary conditions to be satisfied by the solution to (20) are

(21)

Solving (20) subject to the boundary conditions of (21) yields

(22)

(23)

where , and and are
defined in Appendix D.

D. Comparison with Finite Element Calculations
The main design parameters of three different topologies of

slotless tubular linear machines, for which analytical field so-
lutions have been obtained, are given in Table I. The magnets
are sintered NdFeB, with (T) and .
The analytical field distributions have been validated by finite
element calculations of the radial and axial variations of flux
density in both the magnets and airgap/winding regions.

The finite element solutions were obtained by applying a
periodic boundary condition at the axial boundaries and im-
posing the natural Neuman boundary condition at the surfaces
of the stator and armature iron cores. Fig. 6 shows the result-
ing flux distributions for different machine topologies. Fig. 7



1992 IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 3, MAY 1999

(a)

(b)

Fig. 7. Comparison of flux density components as functions ofr at
z = �p=4. Radially magnetized, internal magnet machine topology: (a)
radial component and (b) axial component.

compares flux density components in the radially magnetized,
internal magnet machine topology as functions of radiusat a
constant axial position, while Fig. 8 compares the flux density
components as functions of axial positionat a constant
radius. Similar comparisons are presented in Figs. 9 and 10
for the axially magnetized machine topology. It will be seen
that, in both cases, the analytical solutions agree extremely
well with the finite element results. Figs. 11 and 12 show
comparisons for the air-cored Halbach cylinder machine, for
which it will be noted that the flux density inside the bore of
the cylinder is not zero, although it has a relatively
small magnitude, as was mentioned earlier. It can also be
observed that the flux density in the airgap/winding region is
sinusoidally distributed with respect to the axial coordinate.

III. FORCE AND EMF PREDICTION

Without loss of generality, the emf and force can be
calculated for both internal and external magnet machine

(a)

(b)

Fig. 8. Comparison of flux density components as functions ofz at
r = (Rm+Rs)=2. Radially magnetized, internal magnet machine topology:
(a) radial component and (b) axial component.

topologies. However, the following derivations are undertaken
for internal magnet machine topologies. Nevertheless, the
analysis can be readily modified to cater for external magnet
machine topologies.

A. Slotless Armature

The thrust force exerted on the armature, resulting from the
interaction between the winding current and the permanent
magnet field, is given by

(24)

where denotes the current density vector in the winding
region . Assuming that each winding coil on the armature
comprises a number of circular turns, and occupies an area
bounded by and

, as shown in Fig. 12, where is the coil

in the airspace/winding

in the magnets (20)
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(a)

(b)

Fig. 9. Comparison of flux density components as functions ofr at
z = �p=4. Axially magnetized, internal magnet machine topology: (a)
radial component and (b) axial component.

axial width, the total thrust force exerted on the coil may be
obtained from the following integration:

which may be written as

(25)

where is the radius of the armature bore. For the radially
magnetized machine topology, is given by

(26)

is defined as the winding
distribution factor of the th harmonic. Therefore, the
total force exerted on a phase winding comprising a
number of series connected coils, each displaced by a winding
pitch and carrying a current, is obtained as

(27)

(a)

(b)

Fig. 10. Comparison of flux density components as functions ofz at
r = (Rm +Rs)=2. Axially magnetized, internal magnet machine topology:
(a) radial component and (b) axial component.

where is defined as the torque constant of the th
harmonic, and is given by

(28)

is the winding factor of the th
harmonic, being the winding pitch
factor, the distribution factor, and the number of
series turns per phase. For a linear machine employing an-
magnetized Halbach cylinder, (27) and (28) can be simplified
as

(29)

and

(30)

For axially magnetized machine topologies, the force exerted
on a phase winding can be similarly derived from the integra-
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(a)

(b)

Fig. 11. Comparison of flux density components as functions ofr at
z = �p=4. Air-cored Halbach cylinder, internal magnet machine topology:
(a) radial component and (b) axial component.

tion procedure. Thus

(31)

where is given by

(32)

With reference to Fig. 12, the coil flux-linkage for radially
magnetized machine topologies can be obtained by the fol-
lowing integration:

(33)

where

(34)

(a)

(b)

Fig. 12. Comparison of flux density components as functions ofz at
r = (Rm + Rs)=2. Air-cored Halbach cylinder, internal magnet machine
topology: (a) radial component and (b) axial component.

The total flux-linkage of a distributed multi-coil phase winding
is, therefore, given by

(35)

and

(36)

Hence, the induced emf per phase is obtained as

(37)
where is the linear velocity, and is analogously defined
as the back-emf constant of the th harmonic and is
given by

(38)
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Fig. 13. Winding distribution.

Fig. 14. Slotted armature and fringing effect.

As can be seen, and are identical, as in rotary
brushed and brushless permanent magnet machines. Conse-
quently, for Halbach cylinder and axially magnetized
machine topologies is given in (30) and (32), respectively.

B. Slotted, Finite Length Armature

If the armature is slotted and has a finite length, as shown
in Fig. 14 for a radially magnetized, internal magnet machine
topology, the effect of the slot openings may be accounted for
by introducing a Carter coefficient given by [15]

(39)

where is the armature slot pitch, , and the
slotting factor is given by

(40)

where is the width of the armature slot openings. Therefore,
the effective airgap and the equivalent armature bore radius

are given, respectively, by

(41)

for internal magnet topologies
for internal magnet topologies.

(42)

The distribution of the radial component of flux density at the
armature bore is given by

(43)

where is the radial flux density calculated using the
effective airgap . Consequently, the force or emf constant
of the th harmonic for the different slotted armature
machine topologies is obtained as (44) shown at the bottom of
the page. In all linear machines, there is fringing flux due to
their finite length, and this is particularly significant in slotted
machines with a small airgap. It results in a net increase in

for radially magnetized
machine topologies
for Halbach cylinder
machine topologies
for axially magnetized
machine topologies (44)
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armature winding flux linkage, as is indicated in Fig. 14, in
a similar manner to rotary permanent magnet machines with
overhanging magnets. To account for fringing flux in rotary
machines, an analytical model was developed [16], in-
rectangular coordinates, for predicting the flux linkage when
the magnets face either a slotted or slotless infinitely permeable
boundary, but neglecting the effect of radial flux focusing. A
simpler model was established in [17] which assumed circular
fringing flux paths, the fringing effect being accounted for by
introducing a magnet overhang factor given by

(45)

where and are the armature and magnet lengths, respec-
tively, and is given by

(46)

where and are the cross-sectional areas of the airgap
and the magnet, respectively. For cylindrical machines, curva-
ture and flux focusing effects may be taken into account using
the average cross-sectional areas given by:

(47)

It was shown in [17] that predictions of fringing flux by
the use of (45) agree well with results obtained from the
method in [16] as well as from- finite element calculations.
The magnet overhang factor has, therefore, been employed to
account for fringing in slotted tubular linear machines. Thus,
(44) is modified to (48) shown at the bottom of the page.

C. Validation

A two-phase tubular linear permanent magnet motor with
a high specific force capability and dynamic bandwidth was
recently developed [18]. It employs a radial magnetization,
internal magnet topology, and a slotted armature. Fig. 15
compares the measured and predicted flux linkage of a phase
winding having 202 turns, assuming a magnet overhang of two
pole pitches in the prediction. As will be seen, the predicted
flux linkage is essentially sinusoidal, the harmonic distortion
being less than 0.5%, and agrees well with the measured
waveform. From the motor design parameters, the predicted
motor torque constant is 22.4 (Nm/A), which again compares
favorably with the measured value of 24 (Nm/A), the error
between the two being less than 7.0%, and attributable to
an axial inhomogeneity in the extruded, radially anistrotropic
NdFeB magnets.

Fig. 15. Measured and predicted flux-linkage waveform of a phase winding.

Fig. 16. Comparison of flux-linkage waveform of a phase winding.

Fig. 16 compares the analytical and finite element calculated
flux linkage of a phase winding of a slotless version of
the motor having 496 turns per phase. Since the effective
airgap of the slotless motor is considerably larger than for
the slotted motor, fringing effects have been neglected in the
analytical calculation. However, the finite element calculation
accounts for saturation and end effects associated with the
finite armature length. As will be seen, the predicted flux-
linkage waveforms agree well, the maximum error being less
than 2%, indicating that fringing effects are negligible for this
particular slotless machine.

for radially magnetised
machine topologies
for Halbach cylinder
machine topologies
for axially magnetised
machine topologies

(48)
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Fig. 17. Current distribution of a phase winding.

IV. A RMATURE REACTION FIELD AND INDUCTANCE

Assuming that the armature is slotless with a coil spread
, and a winding pitch , as shown in Fig. 12, the current

distribution of a phase winding, as shown in Fig. 17, may be
expanded into a Fourier series, viz

(49)

where is given by

(50)

The armature reaction field equations, in terms of, are
therefore given by (51) shown at the bottom of the page. The
boundary conditions to be satisfied by (51) are

(52)

where is the inner or outer radius of the armature for
internal or external magnet topologies, respectively, and is
given by

for internal magnet topologies
for external magnet topologies.

(53)

Solving (51) by satisfying the boundary conditions of (52)
and assuming , for simplicity, yields the following
expressions for the flux density components:

(54)

(55)

where and are
given in Appendix E. Equation (55) can be used to determine
the extent, if any, of partial irreversible demagnetization of
the magnets under various operation conditions. Similarly, the
flux linkage of a phase winding having pole pairs due to its
own armature reaction field may be obtained by integration,
and is given by

(56)

where

(57)

and is the number of series turns per phase per
pole. The self-inductance of the winding is, therefore, given by

(58)

where

(59)

and and are
calculated, respectively, from

and by substituting . The mutual inductance
between phases and separated by an axial

distance can be similarly deduced, and is given by

(60)

Several observations can be made from the foregoing, viz.

in the winding area

in the airgap/magnets

(51)
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1) For slotted armatures, the effect of slotting may be
accounted for by the use of a Carter coefficient, as
before. Therefore, the armature reaction field may be
obtained by solving the following equation:

in the airgap/magnets (61)

subject to the boundary conditions

(62)

Expressions for the winding self- and mutual-
inductances can similarly be deduced from the
field solution.

2) The results in this section are applicable to radially-
magnetized and Halbach cylinder machine topologies.
For the axially-magnetized machine topology, although
an analytical solution for the armature reaction field
is possible, the analysis is considerably more complex.
Further, the self- and mutual-winding inductances will
be position dependant due to the presence of the iron
pole pieces.

V. CONCLUSION

A general framework for the analysis and design of a class
of tubular, linear permanent magnet machines has been devel-
oped. Analytical expressions for the open-circuit and armature
reaction fields have been established for radially, axially, and
Halbach magnetized machine topologies, and expressions for
the force, emf, and self- and mutual-winding inductances have
been derived. The effects of slotting and fringing have also
been taken into account. The analyses have been validated by
finite element calculations and measurements. The analytical
tools should, therefore, be useful for comparative studies,
design optimization, and dynamic modeling of a variety of
tubular linear permanent magnet machines.

APPENDIX A
DEFINITION OF AND

Let

(A.1)

(A.2)

(A.3)

and are solutions of the following linear equations:

(A.4)

and

(A.5)

APPENDIX B
DEFINITION OF AND

Let

(A.6)

(A.7)

(A.8)

and are solutions of the following linear equations:

(A.9)

and

(A.10)

where the positive and negative signs preceding cor-
respond to internal and external magnet machine topologies,
respectively.

APPENDIX C
DEFINITION OF AND

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)
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APPENDIX D
DEFINITION OF AND

Let

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

Then and are solutions of the following
linear equations:

(A.22)

and

(A.23)

where and are the numbers of the harmonic terms
used for the calculation of the flux density in regions I and
II, respectively.

If, however, , i.e., the thickness of the iron pole-
pieces is zero, then, , and are
given by

(A.24)

APPENDIX E
DEFINITION OF AND

(A.25)

(A.26)

(A.27)
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