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Abstract 

Details of particle shape, including surface roughness or texture, curvature or sharpness of 

surface features and edges, are known to have an impact on particle packing structure. In 

different computer models, shape is represented using different approaches to varying degrees 

of precision. Thus, it is to be expected that different approaches, or rather their precision of 

shape representation, can affect not only how computationally demanding the simulation 

model is but also how accurate the model prediction can be. This paper examines two 

different approaches to shape representation, and their effects on the accuracy of model 

predictions, in the context of non-spherical particle packing. To this end, two commercially 

available discrete element method (DEM) based software packages, EDEM and DigiDEM, 

are used. The former, referred to here as sphere-composite approach, represents one extreme 

where a shape is typically coarsely represented by clumping together a small number of 

primary spheres. The latter, known as voxel-based approach, represents the other extreme 

where a shape is typically finely represented by a huge number of voxels (3D pixels). Both 

are used to simulate packing of cylinders – the most common shape of catalyst pellets in 

packed column reactors widely used in chemical, oil refinery and process industries. 

Previously reported X-ray CT scan of a packed bed provides the experimental measurements 

for both to compare with, in terms of bulk packing fraction, axial and radial packing fraction 

profiles, and pellet orientation distributions. Eight sphere-composite representations of the 

same cylindrical pellet were tested. Two of them gave results that quantitatively (i.e., within 5% 

margin of error) follow experimental measurements. A range of factors that in theory could 

affect accuracy of the simulation results have been examined in detail, including edge 

roundedness, surface roughness and restitutional behaviour as a function of 

sphere-composite representations. The conclusion therefore is that, for packing at least, 

matching the object's overall shape and dimensions is not enough, only when a high enough 

resolution is applied to corners and edges, could the sphere-composite approach possibly 
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match the experimental data quantitatively. 

 
1.  Introduction  

Particle shape can have a significant influence over packing structure and it plays an important 

role in the behaviour of a multitude of particulate systems (Santamarina 2004). Packing is a 

wide reaching phenomenon that occurs in both nature and in industry. Packing of spheres is 

well studied (Aste & Weaire, 2008), but increasingly non-spherical (i.e., more realistically 

shaped) particles are being packed in numerical simulations. A notable example is randomly 

packed columns used as chemical reactors. Simulations of packing structure, flow and mass 

transfer in packed columns used to be almost exclusively sphere based (Powell, 1980; McGreavy 

et al. 1986; Kubie, 1988), but the focus is being now shifted to real (non-spherical) shapes. This 

has been enabled by two specific technical advances, in addition to increasing computing 

power. One is the commercial availability of software tools that are specifically designed to 

handle and model the behaviour of non-spherical complex shapes. The other is the availability 

of affordable tomographic imaging devices, such as X-ray micro-tomography (XMT) and 

magnetic resonance imaging (MRI) systems. Packed columns can be explored using X-ray 

Tomography (Seidler et al. 2000, Philippe et al. 2003) or Magnetic Resonance Imaging 

(Sharma et al. 2001) to investigate the positions and orientations of particles within it. 

However, it is more convenient to employ validated numerical methods to simulate the particle 

movement due to costs, effort and freedom of selecting particle characteristics such as shape 

and particle size distribution (PSD). 

 

The Distinct Element Method (DEM) first proposed by Cundall and Strack (1979) has become 

a standard numerical simulation methodology for modellers dealing with all kinds of 

particulates. In all software implementations of DEM, the basic procedure is the same: the 

forces acting on each individual particle are evaluated, Newton’s equations of motion are 

solved, typically using the finite difference method (FDM), in a (time) step by step fashion, to 

update each particle’s velocity and position, from which behaviour of the assembly is derived. 

A main difference between different DEM implementations is how particles, or rather their 

shapes, are represented. This difference necessarily leads to algorithmatically different ways of 

collision/overlap detection and to some extent contact force calculation. To represent a 

non-spherical shape, three main generic approaches currently exist: sphere-composite, 

surface-mesh and voxel-based. A brief commentary of their differences is given in Table 1. It 

may be worth pointing out that analytical representation is excluded from the above for not 

being a truly ‘generic’ approach since it is restricted to simple shapes (e.g., ellipsoids) and the 

ones (e.g., spherical harmonics) that can be mathematically morphed from a base shape. 

 

TABLE 1 

 

Further to Table 1, the principal differences between sphere-composite models and voxel-based 

approaches that should be emphasised are:  

(1) Voxel-based models use a large number of voxels (typically 10K-100K per 

object, and 50M or more voxels per simulation); and digitised shapes often 

come directly from CT scans of real objects. For sphere-composite models, 
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because of the obvious speed penalty, the tendency is to use as few spheres as 

possible, hence the common practice of hand-crafting each shape. Level of 

details of the two approaches is clearly very different.  

(2) Primary spheres are allowed to partially overlap with each other, such that a 

sphere-composite object can easily be made to match precisely with the 

dimensions of the real object. Voxel-based digital representation on the other 

hand often cannot have an exact match. Even though the difference is within 

one voxel width along each axis, it can be significant if the digital object is 

small (e.g., one voxel difference for a 10-voxel wide object means up to 10% 

margin of error).  

(3)    Since voxel-based approach is already using a huge number of voxels, a more 

complex shape does not necessarily mean more voxels required, and a simpler shape does not 

necessarily mean fewer voxels required. For example, a solid sphere needs much more voxels 

to construct than a fractal-like agglomerate of the same linear dimension. By contrast, 

sphere-composite approach usually does require more primary spheres to build up a more 

complex shape. In this sense, the more complex the shapes are, the more advantageous the 

voxel-based approach is expected to become.  

(4)    Computationally, voxels do not rotate with the object they represent, they merely 

relocate in the lattice grid. An analogy is the pixels on a computer screen versus the image a 

tumbling object shown on the screen. Because of this, even though the voxel-based approach 

uses a much larger number of building blocks (voxels), simulation runtime is not necessarily 

longer than the sphere-composite approach.  

(5)    A typical sphere-based DEM model has a wider choice of contact force models 

than the voxel-based DEM. This is because regardless of the shapes sphere-composites 

represent, contact force is calculated between pairs of spheres and sphere-sphere contact 

mechanics is the most extensively studied. By contrast, voxel-based DigiDEM calculates 

contact force at object-level, and contact force models between arbitrary shapes are much 

limited. voxel-based DigiDEM deals with contact between arbitrary shapes. In DigiDEM, 

contact force is assumed to be proportional to overlap volume.  

 

The above differences beg a question which to our knowledge remains largely unanswered: 

how do different shape representation approaches compare in a real application? In the 

present paper an attempt is made to compare two of them (sphere-composites and voxel-based 

approaches),for the packing of uniform cylindrical particles in a packed column setup. We do 

not have access to DEM code based on a surface mesh approach; both DEM programs 

(sphere-composite based EDEM and voxel-based DigiDEM) used in this study are 

commercially available. The motivation for choosing cylinders is threefold:  

 it is a generic shape for pellets in most packed column reactors hence its practical 
significance;  

 it captures geometric features (flat surface, curved surface and sharp corners) 
common to most shapes hence applicability of the conclusions drawn from the study 

can be expected to be wider than the specific shape (cylinder) used; and  

 it is simple enough to for shape related characteristics to be calculated analytically 
hence the relative ease for accuracy analysis at single-particle geometry level.  
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The accuracy of simulation results at bed level (i.e., packing structure) is assessed against 

previously published experimental data (Caulkin et al. 2009b) obtained from XMT scans of 

an identical packed column. 

 
2. Materials and methods 

 

The clumped spheres method is a technique for shape representation which is suggested by 

many researchers (Favier et al. 1999) and is utilised by a number of software packages such as 

PFC2D and PFC3D, LIGGGHTS and EDEM. In this study we utilise the EDEM package (from 

DEM Solutions) for the clumped sphere method, while the voxel-based DEM software used 

was DigiDEM (from Structure Vision). Algorithmatic details of both software tools used in this 

work have been amply documented elsewhere (EDEM: Guises et al. 2009; DigiDEM: Xu et al. 

2006, Caulkin et al. 2009b), and will not be laboured here. Setups for XMT experiment and 

voxel-based (DigiDEM) simulation are briefly repeated here, followed by details of 

sphere-cluster (EDEM) setups. Other relevant features of the simulation models will be 

mentioned along with discussion of the results. 

 

2.1 XMT 

For experimental data reported in this work, a Phoenix Nanatom CT scanner was used to 

determine packing structure. Details have been reported elsewhere (Caulkin et al. 2009b), 

only the most pertinent points are repeated here. The pellet shape used in the present study for 

comparison is that of A38 pellets: cylindrical alumina pellets 3.46 mm in height and 3.42 mm 

in diameter with flat ends, packed in a cylindrical tube of 44.5 mm internal diameter. The 

Nanotom is a 160-kV nanofocus CT scanner, equipped with a 5-megapixel (2304 × 2304 

pixels) CCD detector. The scan resolution was 0.024 mm, but reconstruction was done at 1/4 

scale. Thus, reconstructed images had a pixel resolution of 0.096 mm. Because of 

experimental limitations (namely, the height of the real packed columns), the full height of the 

bed could not be fully accommodated by the view area. Therefore XMT-scanned structures 

were applied to axial density profiles only in the central region of the packing, ignoring the 

regions near the base wall and the top of the column. The reason for this is because bulk 

structure is of the most practical interest for packed columns (which, in real applications, can 

be 10 m high but only several inches wide), from which mean bulk density measurements 

were to be calculated, it was considered vital to achieve a span that was expansive enough to 

provide a representative sample for reliable analysis. A total of five repeat packings and 

subsequent scans were undertaken to gain representative results for the given cylindrical 

pellets. 
 

2.2 Voxel-based method 

Details of DigiDEM algorithm and simulation setups have too been reported elsewhere (Xu et 

al. 2006, Caulkin et al. 2009b) and only the most significant aspects are recited here. For the 

sake of simulation runtime, while keeping digitisation errors to a reasonable level (aspects of 

which have been previously reported (Caulkin et al. 2014)) the pellet shape was represented 

digitally by a voxelated cylinder 17 pixels wide and 18 pixels high (resolution = 0.197 

mm/pixel). In other words, each pellet contained 4050 voxels. By volume, the digital version 
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was 0.8% smaller than the mathematically perfect cylinder it was meant to represent. Typical 

runtime on a PC with an Intel Xeon 2.66 GHz CPU was 22 hours to achieve final distribution. 

 

2.3 Clumped-sphere method 

Packing structures of cylindrical particles in a container with diameter of 44.5 mm and height of 

120 mm are simulated to recreate the set-up conditions of the experimental beds. Cylindrical 

particles with diameter of 3.42 mm and a height of 3.46 mm are built by combining clusters of 

spheres. Typical runtime of EDEM simulations was 20 hours for 0.8 s of real time. Eight 

different representations of the same generalised particle shape are considered, shown in 

Figure 1. These representations differ in the total number of element spheres as well as in 

terms of the size of the element spheres. The configurations of the size and number of element 

spheres are summarised in Table 2. Typical time to properly construct these shapes was 3 

hours, and typical EDEM runtime was 20 hours (for 0.8 s of real packing time).  

 

It is important to note that even though different sizes of spheres and different levels of 

overlap are used to construct the representations, all of them produce particles with uniform 

dimensions (height and length). Different representations however do have differing degrees 

of "roundness" for the edges and "roughness" for the top and side surfaces. The effects of 

these criteria upon packing data are investigated more closely in the next section. 

 

FIGURE 1 

TABLE 2 

 

Following simulated pellet packing, whereby particles were randomly placed in the column 

and then allowed to settle, axial density fraction was calculated as thus; the cylindrical 

container was divided into 18 equal sections over the height of container and the volume of 

particles and the number of particles in each section were determined. The total volume of 

representation was calculated by multiplying the number of particles by the corrected volume 

of particles. The corrected volume of a single particle is equal to the real alumina cylinder 

used in laboratory experiments. The packing volume fraction in each section is then the ratio 

of the particle volume of particles in that section to the overall volume of the section. For 

radial density fraction, the bed was divided into seven equally spaced concentric rings. Each 

section had a different volume, depending on the distance from the centre. The values of 

volume for each section are 4.95x10-5 m3, 4.19x10-5 m3, 3.42x10-5 m3, 2.67x10-5 m3, 1.90x10-5 

m3, 1.14x10-5 m3 and 3.81x10-6 m3. The corrected volume of particles and the volume packing 

fraction is evaluated in the same manner as for the axial density fraction. If a particle 

overlapped the boundary section, then the position of the particle was determined by the 

location of the particle centre. More accurate calculation was made to define the error caused 

by this effect. Orientation of each particle at different time steps is exportable. The orientation 

of each particle is determined from nine values which are expressed in tensor. The nine values 

(xx, xy, xz, yx, yy, yz, zx, zy, zz) represent a 3*3 matrix which is the rotation from the particle 

co-ordinate system to the global co-ordinate system. Assuming that z-local is the vertical axis 

of a cylinder, the last value zz is used to calculate the angle between a pellet and the vertical 

axis (Angle = 180*acos(zz)/PI). 
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3. Results and Discussion 

3.1 Clumped sphere method – comparison of the effects of resolution 
 

Figures 2 and 3 show the trends of radial and axial packing fraction respectively of the packed 

beds investigated using the clumped sphere method for the eight cylinder representations. 

 

FIGURE 2 

FIGURE 3 

 

  

As indicated in Figures 2 and 3, the trend of radial and axial volume packing fraction is the 

same for all the eight different representations. For radial packing density, solid packing 

fraction at the container wall is reduced compared to the rest of the bed, as denoted by the 

rapid increase in packing fraction between 0 and 1 particle diameters. This is attributable to 

wall effects. Damped cyclic variation of packing fraction in the radial direction is a common 

occurrence in beds packed with mono-sized particles as one moves from the bed wall to its 

centre. This phenomenon typically extends a couple of particle diameters into the bed before 

it becomes negligible. It is therefore an important factor in beds with low tube-to-particle 

diameter ratios. Beyond two particle diameters from the wall (Figure 2), the volume fraction 

for respective cylinder representations is found to be largely stable, suggesting packing is 

relatively uniform within the bulk of the bed. In terms of axial volume packing fraction, the 

packing density is also stable within the bulk of the bed. End effects, which can be defined as 

the trend whereby the mean packing fraction increases with increasing bed length extend for a 

maximum of two particle diameters into the packing from the base of the container. Beyond 

this, they are observed to have all but dissipated, with only small, natural fluctuations caused 

by particle-particle boundary contacts. The values of both radial and axial volume packing 

fractions differ significantly between the different pellet representations, with those pellets 

constructed using smaller sphere radii producing lower overall packing fractions. The results 

were expected to be the same or very similar in all numerical experiments, because the eight 

cylindrical representations were designed to have essentially the same external physical 

dimensions. The results indicate that the radii of the element spheres which are used to build 

individual particles and ways the element spheres are clustered affect the packing within the 

column to a notable degree. To investigate this in more detail, "roundness" (i.e., curvature and 

sharpness of the edges) and "roughness" of the shape representations, not of the real particles 

they represent, and particle dynamics are evaluated for each of the 8 cases. 

 

3.2 Roundness 

From the 8 cases reported (Figure 1), the trend in radial and axial packing fractions (Figures 2 

& 3) indicate that when larger primary spheres are used to cluster-build a cylinder pellet, 

higher packing densities are the outcome. A possible explanation for this is that it is roundness 

that influences packing structure. Kodam et al. (2009) and Höhner et al. (2011) defined 

particle roundness as Ds/Di (Figure 4) which is the ratio of the diameter of sphere that fits the 
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sharpest corner to that of the diameter of largest sphere which can be inscribed in the particle. 

It is intended as a measure of curvature and how sharp the edges of the ends of the cylinders 

are for each of the 8 sphere-composite representations, and how this relates to bulk packing 

fraction. The maximum diameter of sphere which could be inscribed in each particle 

composite is 3.42 mm. The values of roundness and volume packing fraction are listed in 

Table 3. 

 

FIGURE 4 

TABLE 3 

FIGURE 5 

 

It can be drawn from the values reported in Figure 6 that the volume packing fraction 

generally follows roundness. As roundness increases, the bulk packing fraction values 

asymptote out to a higher than expected value. This is to be expected, since rounded corners 

allow objects to come closer than otherwise. Analogous phenomenon have also been reported 

in several other works (Shimobe 1995; Dyskin, Estrin et al. 2001; Jia and Williams 2001) 

where sharp corners can prevent particle rotation and mobility, thus decreasing packing 

volume fraction. A subsequent group of simulations are reported to confirm the result pattern. 

The shapes of selected representations were marginally altered by adding a layer of 0.342 mm 

radius spheres at both ends of the original representations while maintaining the same overall 

diameter and height as the eight representations originally reported (Figure 1). The respective 

modified cylinder composites have uniform roundness, however, the roughness is different 

between each representation. A marked decrease in radial packing fraction occurred (Figure 6) 

for the modified particles from those of the respective original cylinder representations. For 

instance, mean radial packing fraction of the original representation with spheres of radius 

0.74 mm was 0.685. For the modified particle based on this representation with edge of 0.34 

mm spheres, the mean radial volume packing fraction is 0.596. Another occurrence is that the 

two modified representations (built using spheres with radii 0.47 mm and 0.74 mm) together 

with the original representation (0.34 mm, n=120 from Table 2, built using spheres with 0.34 

mm radius) have comparable radial packing fractions. These three representations have the 

same roundness (Ds/Di = 0.2) but differing roughness. From these numerical experiments the 

roundness of representations appears to be a determining factor that affects the packing 

structure. 

   

FIGURE 6 

 

3.3 Roughness 

The method by which the component spheres are clustered when building a composite 

cylinder influences particle roughness. This section aims to identify the extent to which 

roughness affects the packing structure of the bed. In the cases reported (Figure 1) particles 

with radii of 0.84 mm, 0.8 mm and 0.74 mm were built using the same process of clustering 

(same number and layout of spheres). The primary difference (with the exception of different 

sphere sizes) is the degree of overlap between neighbouring spheres. Overlap was adjusted to 

ensure equal height and diameter (3.46mm and 3.42mm respectively) between each of the 8 
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examples of composite cylinders. From Figures 2 and 3, the radial packing densities and axial 

packing densities were comparable in these three cases (0.84mm, 0.8mm and 0.74mm). 

 

FIGURE 7 

TABLE 4 

 

Quantification of roughness representation is indicated in Figure 7. Roughness is calculated as 

the distance between the two concentric circles (one of which circumscribes the 

representation and the second aligns the contacts of the outer layer of spheres). For the three 

examples mentioned (0.84mm, 0.8mm and 0.74mm) roundness (Table 3) and roughness 

(Table 4) do not change greatly and so neither do the radial and axial packing fraction results. 

However, in the comparing process, the factor of angularity was not excluded. 

 

FIGURE 8 

 

For particles with the same size of component spheres (representations 4 & 5 (0.47 mm) and 

representations 7 & 8 (0.34 mm)) which were clustered using different methods, the respective 

mean radial packing fractions differ only slightly despite the relatively large differences in 

roughness. The two composite particles built with spheres of radius 0.34 mm had the lowest 

overall packing densities of the 8 representations. According to the radial packing density and 

axial packing fractions (Figures 2 & 3), the packing structures for this example are analogous. 

The method used to cluster particles and the number of spheres used as ‘building blocks’ 
determines the roughness of particles, which has a secondary and relatively minor influence on 

packing structure when compared to roundness. In both the sphere-composite method and the 

voxel-based model friction is dealt with in a standard DEM way. No clear trend between 

roughness and mean bulk packing fraction was found in Figure 8, although the increased 

friction that results from higher roughness will make it more challenging for particles to move 

against one another and to rotate. Additionally, bulk packing fractions will generally be 

decreased as particles with higher degrees of roughness will create small, un-fillable voids 

between objects that are otherwise in close physical contact. Future studies should investigate 

particle representations with larger discrepancies in roughness to study the effect on the 

movement of particles in the clumped sphere method. Additionally, the effects of other criteria 

upon packing structure, such as different particle masses should be considered. 

 

3.4 Dynamics 
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In numerical experiments packing structure is the result of individual particle movement, how 

they interact and how they eventually come to rest in contact with each other and the container. 

Each of the 8 sphere-composite particle representations was tested under the same conditions to 

investigate how such structures behave when they make contact with the flat bottom of the 

container. In the tests reported (Table 5), an individual particle was introduced in the centre of 

the cylindrical container at a fixed height above the base. The same position was used for each 

of the subsequent tests using different pellet representations. Two groups of tests were 

undertaken for each sphere-composite representation, one with an initial particle orientation 

angle of 2o (i.e. near upright) and the other at an initial angle of 45o. 

  

TABLE 5 

 

In all of the tests reported, particles made contact with the bottom of the container between 

0.11s to 0.12s after introduction. For the particles with an initial angle of approximately 2o 

(pellet in an upright position) the rebounding heights ranged from 0.00166 to 0.00465 (mean 

= 0.00271, stdev = 0.00096). The maximum rebound height (from the representation built 

using 0.74 mm radii spheres) is approximately three times that of the minimum rebound 

height (0.84 mm radii spheres). In the second group of tests, where the initial orientation 

angle was approximately 45o the rebound height ranged from 0.00068 to 0.00719 

(representations 0.8 mm and 0.57 mm respectively) Mean value of 45 o data = 0.00315; stdev 

= 0.00187. The orientations of the particles after making contact with the container base vary 

widely between the different cylinder representations, even for particles within the same 

‘initial angle’ group. This effect was significantly more pronounced for the 45 o tests, which 

when analysed in the clumped sphere method, was observed that the representations behave 

significantly differently (between different representations and compared to those where the 

particle was initially vertical) as they contact with the bottom of the container. Some of the 

representations move up and down vertically after they contact with the bottom while others 

rotate and rebound on a tangent, even making contact with the wall of the container in some 

cases. These differences are caused by the uneven edge of the representations when they 

collide at an acute angle. The edges of each representation are not consistent between 

different cases, with the extent of differences determined by the size of component spheres 

and the method of clustering. Even for an individual representation, if different areas such as 

the crown of a sphere, or the space between the two spheres strike the bottom, the movement 

of the composite particle will vary from case-to-case. This could prove to be a significant 

problem in terms of obtaining reproducible packing structures from particles that are meant to 

be axially symmetric. 

 

However, there does not appear to be clear correlation between accuracy of packing fraction 

and rebounding height and angle change. In other words, as far as packing fraction is 

concerned, differences in restitutional behavior of sphere-composites does not matter as much 

as initially feared.  

 

3.5 Comparison of Clumped-Sphere Method (representation #7 & #8) with XMT 

Data  
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Figure 9 

 

Figure 9 shows poured axial density profiles of the two cylindrical representations created 

using the smallest composite spheres (r=0.34mm; #7 and #8). The distance from the container 

base is scaled by the pellets’ mean diameter. The CT data show only the middle, bulk section 
hence the profile drops at both ends. Results of clumped-sphere representations with low 

degrees of roundness (those built using 0.34mm radii spheres at the corner) agree the most 

closely with CT experimental data once end effects have dissipated (i.e., in the bulk of the 

bed). For packing structures created using these clumped spheres, mean bulk density was 

0.582 (0.34mm, n=79) and 0.586 (0.34mm, n=120), which is respectively 1.5% and 0.9% 

lower than measured CT data, and 0.9% and 1.6% respectively higher than the voxel-based 

simulation results. The other cases of clumped sphere representations (those created using 

larger spheres) differ greatly from experimental values and also from representations #7 and 

#8, as observed in Figure 2. 

 

Figure 10 displays radial density distribution for the same two cylindrical representations as 

previously reported for axial density distribution. Comparison between the two 

representations highlights that there is no significant difference between the predicted values 

of representation #7 and #8. The oscillation of the measured CT radial density profile is also 

presented. Close to the container wall, the radial density distribution varies in an oscillatory 

manner, with the amplitude of density oscillations becoming progressively damped with 

increasing distance from the container wall. This occurs due to the packing structure 

becoming more random as the ordering influence of the container wall dissipates. Assessing 

the measured profile against the predicted values, the sphere-composite model fails to predict 

the oscillatory behaviour, with the predicted profiles generally flat, bisecting the peaks and 

troughs of the measured result. 

Figure 10 

 

3.6 Comparison of Voxel-Based Simulations and XMT Data 

Figures 11 & 12 compare the voxel-based simulated local packing results with CT measured 

data. The radial density distributions of the poured beds (Figure 11) show that the voxel-based 

simulation qualitatively predicts the mean profile of the CT scanned bed. The maximum 

radial density value for both packing model and the CT bed occurs at approximately 1-1.5 

particle diameters, and the minimum radial density, excluding the value at the wall, occurs at 

approximately 2-2.5 particle diameters into the packing matrix. However, the voxel-based 

model under-predicts the CT measured profile, particularly in the near-wall region. Further 

into the bulk of the packing the difference between the two profiles reduces, although it 

always under-predicts the measured profile. 

 
Fig 11 

Fig 12 

 

Axial density distribution profiles of voxel-based and CT-measured profiles are presented in 
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Figure 12. As with the sphere-composite comparison (Fig. 9), the DEM-predicted axial profile 

underestimates that of the CT-measured data. For the packed column considered in this work, 

several factors can contribute to the discrepancies between measured and predicted results 

and also between both prediction models. Both CT-scanned and voxel-based simulated 

structures contain digitization errors. For the sake of speed, simulations were performed at a 

lower resolution than for the CT scans (0.096 mm/voxel for CT scanned beds vs 0.197 

mm/voxel for voxel-based method). Although performed at a lower resolution than the 

experimental CT measurements, the simulations were undertaken at a fine enough resolution 

to capture shape detail, ensuring that digital particle volume error was <1%. A volume 

conservation procedure is also employed to ensure that these errors do not accumulate, but it 

does not guarantee that pixel-level morphology is preserved at the same time. In the 

voxel-based method, pellets are input in digitized form and rotated digitally, although the 

voxels never change alignment (i.e., they do not rotate with the objects that they represent). 

The effects of a second type of error are more difficult to quantify in a random packing; in 

voxel-based simulations, because contact forces are calculated at the pixel-level, an extra 

pixel here and a missing pixel there on a particle surface can make a difference in the 

calculated net force/torque. Such errors are inherent in the digital approach, no matter how 

high the resolution is. Further investigation and algorithmatic improvement are needed as 

such errors are not present in CT-scanned structures.  

 

3.7 Discussion 

Averaged comparisons of scanned and simulated packed beds consisting of axially symmetric 

cylinders are reported. Multiple beds were scanned (4) and at least as many simulations were 

performed using both the voxel-based method and the sphere-composite method. Although 

discretized, the solutions represent a continuous and, in between collisions, smooth movement. 

During each time step, the direction and extent of particle movement and rotation are 

determined by particle interaction forces. Following initial setup, subsequent movements of 

each particle (which way to move and rotate at each time step and by how much) are 

governed by Newton’s equations of motion that take into account gravity, friction and contact 
forces. Friction and contact forces arise at points of contact. These forces are calculated and 

prevent excessive overlaps between particles while they are under the influence of gravity. 

Thus, geometrical constraints determine how many and how balanced the contact forces are. 

Given the differences between algorithms and the random nature of the simulations, we do 

not expect an exact match in packing results, but what we see is a broad agreement between 

the two (where correct ‘resolution’ is selected), with the differences in axial packing density 

and bulk packing fractions largely attributable to the way geometric objects are represented in 

the respective simulation models.  

 

The pouring of particles was simulated by introducing a small number of pellets each time 

from random points within a circular area above the container (which also had a circular cross 

section). This approach was in line with how pellets were introduced in the packing 

experiments, with pellets poured into the container a handful at a time, with no tapping, 

vibration, or shaking of the bed. Pellets were packed up to the top of the container and the bed 

was scanned using the Phoenix Nanotom. 
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TABLE 6 

 

The bulk packing densities (excluding end effects) of the voxel-based, the CT-scanned bed 

and the eight cylinder representations formed using the sphere-composite method are 

compared in Table 6. The two simulation models selected have much in common: particle 

movements (deterministic trajectories in continuous space); process scenario (granular flow); 

sense of time and effects of impact and inertia. The mean bulk densities were obtained by 

averaging the axial density profiles in the middle section of the packed columns (i.e., in terms 

of vertical height). Standard deviations (stdev in Table 6) were also calculated from the axial 

density profiles. They are a measure of density variations within the packed beds, not between 

the beds. In other words, these stdev values are an indicator of how uniform the bed structures 

are in the middle (i.e., bulk) section in each case. Based on the XMT data, the mean bulk 

density was estimated to be 0.591. In terms of voxel-based simulations, which were carried 

out at one-half the scale of the scan resolution, bulk density was calculated as 0.577, 2.37% 

lower than the mean determined for the experimental beds. For the clumped-sphere method 

results, whereby 8 different particle representations were investigated, there is a difference of 

20% between the highest and the lowest predicted bulk density values. When all eight 

representations are compared with CT data, the range of difference is between -1.5% and 

18.1%. However, the two cylinder representations formed using r=0.34mm (the smallest 

composite spheres used to build cylindrical particles) demonstrate a significant improvement 

over the other 6 representations. The values for #7 and #8 still under-predict bulk packing 

fraction, but the values are closer to CT measured data than those of the voxel-based method. 

The level of density fluctuation within the CT-scanned beds is approximately one-half of that 

of the voxel-based simulated values (0.006 versus 0.014 respectively). The increased 

fluctuation in the voxel-based simulated beds is attributed to the fact that these simulations 

were performed at one-half the scale for the sake of speed. Lower resolution usually results in 

higher digitization errors, which can be further amplified during simulation by particle 

rotation. The amount of fluctuation within the packed beds created using the clumped sphere 

method is marginally higher than that of the mean voxel-based results, with values ranging 

between 0.019 and 0.026. 

 

In addition to bulk and local (axial and radial) packing fractions, it was decided that the axial 

orientation distribution of the pellets would be an appropriate metric for our purposes rather 

than other structural metrics, such as two-point correlation functions (Torquato, 2001). This is 

particularly the case for the clumped sphere method pellet representations, some of which 

contain internal pore spaces, as two-point correlation function statistics lump together 

contributions from both intra- and inter-pellet pore structures. Figure 14 compares vertical 

pellet orientation distributions for poured packed beds as calculated from clumped sphere 

method, voxel-based method and CT structures using the modified Markov chain Monte 

Carlo (MCMC) procedure (Gilks et al. 1996). Here, angle refers to the acute angle between a 

particle’s polar axis and the packed column’s vertical axis.  

 

Fig 13 
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The plots shown in figure 13 provide particle orientation distribution for the bed as a whole. 

The CT beds exhibit a high proportion of pellets oriented toward the midrange angle groups, 

in the form of an inverted V shape. In the clumped-sphere method experiments, the 

orientation distribution of only a single cylinder representation is reported. The reason for this 

is that mean variation in frequency vs angle range was just 1.66% (stdev = 0.608) across all 8 

clumped-sphere representations, with no obvious trend for different pellet representations. 

The orientation distribution of the sphere-composite representation exhibits a largely uniform 

trend, with frequency values increasing monotonically with angle. Compared to the XMT data, 

there are an excessive proportion of pellets in the 80-90° group. For the voxel-based method, 

a slight improvement is seen in the quantitative prediction of particle orientation over that of 

clumped-sphere method results, when compared against XMT data, although notable 

discrepancies still exist in the minimum and maximum angle groups.  

 

There are two plausible reasons for the differences between predictions and measured data in 

terms of the frequency of particles residing in the high angle groups. One is wall effects. The 

presence of horizontal (bottom) and vertical (side) walls may encourage axially symmetrical 

particles to adopt either vertical or horizontal orientations as these two orientations are more 

stable against the wall (Zhang et al. 2006). However, the presence of a solid wall did not 

cause a high frequency of pellets in the 80-90o range for XMT results, suggesting wall effects 

may not be the sole cause. The other reason possibly has to do with particle representation; 

specifically, for the voxel-based method - digitization errors, as discussed in Section 3.6. For 

the clumped-sphere method, the pellets were created from sphere-composites and all have 

non-smooth, undulating surfaces compared to the real pellets, with different representations 

having varying levels of fidelity. With the presence of a retaining structure such as a wall, 

pellet orientation is more stable when in a near-vertical orientation. When combined with 

close contacts between other pellets, this makes rearrangement once ordered against the wall 

less likely, leading to an increase in the highest angle group.  

 

 

 

4. Conclusions 

Beds of cylindrical alumina pellets were packed, tomographically scanned and the results 

compared with simulation values obtained using two commercial versions of DEM code: one 

that uses sphere- composites to represent particle shape, the other voxel-based. The comparison 

was performed in terms of bulk packing density, axial and radial density profiles and pellet 

orientations.  

 

The clumped-sphere model is dependent on creating complex multi-element model particles 

from adequate numbers of spherical elements, while the voxel-based version builds particles at 

the voxel level. In practice, a voxel is at least an order of magnitude smaller than the primary 

spheres. A range of sphere-composite representations of a cylinder are compared, which the 

interested reader can use to obtain guidelines. Of the eight sphere-composite representations 

reported, representation #7 and #8, those which use the smallest sphere radii (0.34mm) 
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qualitatively follow the experimentally-measured trend most closely. 

 

A range of factors that in theory could affect accuracy of the simulation results have been 

examined in detail, including edge roundedness, surface roughness and restitutional behaviour 

as a function of sphere-composite representations. Edge roundedness appears to have a more 

significant effect on the packing structure than others. Results of representations with low 

degrees of roundness agree most closely with the laboratory experiments in terms of axial and 

radial packing densities. In terms of orientation distribution, there was no significant 

difference between the two approaches to shape representation, although voxel-based 

representation gives closer match with experimental data. If particle shape requirements were 

to become more geometrically complicated than the small, flat-ended cylinders, then using 

the clumped sphere method would be expected to require smaller, higher numbers of primary 

spheres to attain the accuracy of particle shape. In the voxel-based method, simulation time is 

largely determined by the number of voxels used to build the particles, as opposed to the 

number of particles. As such highly-complex particles pose little, if any additional simulation 

cost. In this sense, the voxel-based method is more computationally efficient for packing of 

complex shapes. 

 

Since particle shape influence packing structure, it follows that how precise the shape is 

represented, especially at the corners and edges, can significantly affect the accuracy of the 

simulation results. Due to the obvious computational penalty, it is a common practice, and 

indeed the desire of sphere-composite users, to use as few element spheres as possible to 

represent a given shape, without bothering to investigate or realising the impact of their 

choices. The case studies reported here serve to illustrate just how much influence there can 

be. The conclusion therefore is that, for packing at least, matching the object's overall shape 

and dimensions is not enough, only when a high enough resolution is used for corners and 

edges, could the sphere-composite approach possibly match the experimental data 

quantitatively.  
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Table 1 
 Sphere-composite Voxel based Surface mesh 

Basic idea A sphere is represented 

analytically by its centre and 

radius as (x,y,z,a); everything 

else by clamping spheres 

together 

A shape is treated as 3D 

image, rather than geometry, 

as a coherent collection of 

voxels 

The surface of a shape is 

wrapped by a triangular mesh 

Motivations Sphere is the easiest to deal 

with when detecting 

collisions and overlaps. Also 

memory efficient 

Easy collision/overlap 

detection. Same format used 

for output from image based 

particle or structure 

characterisation equipment, 

thus no conversion required. 

Method of choice for 

computer graphics 

(photorealistic shading), and 

finite element type analysis 

Precision Low, especially for sharp 

corners and flat surfaces. 

Easy to incorporate surface 

roughness if required, but 

costly 

High, but staircases always 

exist for diagonal surfaces or 

edges 

High, retains sharp corners 

and flat surfaces well.  

Difficult to incorporate 

surface roughness 

Collision/overlap detection Easy but time consuming Easy and fast Difficult and time consuming 

Rotation Direct transformation and 

fast. Building blocks 

(spheres) change orientation 

with the object 

Direct transformation often 

creates small holes in solid 

surfaces. Indirect rotation is 

slow. Building blocks 

(voxels) do not change their 

orientations - they merely 

shift their locations 

Direct transformation and 

fast. Building blocks 

(triangles) change orientation 

with the object 

Contact force models Several and specific to 

spheres 

Currently only one (for the 

model used here): contact 

force is proportional to 

overlap volume. 

Few 

Ease of shape construction Manually, through trial and 

error, to balance precision 

and computational cost 

Automatic or directly from 

3D imaging devices 

Can be automatic 

 
 

Table 2 

Representation > 1 2 3 4 5 6 7 8 

Radius of each element 

sphere (mm) 
0.84 0.80 0.74 0.47 0.47 0.57 0.34 0.34 

Total number of element 

spheres 
27 27 27 125 85 35 120 79 

Total number of particles 

in packed column 
3943 3929 3913 3586 3726 4023 3342 3351 
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Table 3 

Roundness 
Mean Volume 

Packing Fraction 

Sphere radius 

(mm), No. of 

element spheres 

0.20 0.582 0.34mm, n=79 

0.20 0.586 0.34mm, n=120 

0.28 0.623 0.47mm, n=85 

0.28 0.652 0.47mm, n=125 

0.33 0.698 0.57mm, n=85 

0.43 0.685 0.74mm, n=27 

0.47 0.682 0.80mm, n=27 

0.49 0.686 0.84mm, n=27 

 

 

 

 

Table 4 

Surface roughness 
Volume packing 

fraction 

Sphere radius 

(mm), No. of 

element spheres 

0.11 0.652 0.47mm, n=125 

0.17 0.586 0.34mm, n=120 

0.27 0.686 0.84mm, n=27 

0.28 0.582 0.34mm, n=79 

0.29 0.698 0.57mm, n=35 

0.30 0.682 0.80mm, n=27 

0.35 0.685 0.74mm, n=27 

0.57 0.623 0.47mm, n=85 

 

 

Table 5 
 

Initial particle 

angle (when 

dropped) ĺ 

2o (upright) 45o 

Sphere-composit

e representationĻ 

Angle (deg) at contact 

point with base 

(0.11s) / and rebound 

angle (0.1s later) 

Rebound 

height 

Angle (deg) at contact 

point with base 

(0.11s) / and rebound 

angle (0.1s later) 

Rebound 

height 

0.8mm,  

n=27 
5.78 / 104.74 0.00184 45.22 / 45.49 0.00068 
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0.84mm,  

n=27 
5.23 / 97.04 0.00166 45.50 / 56.11 0.00281 

0.74mm,  

n=27 
4.63 / 84.94 0.00465 40.90 / 72.29 0.00390 

0.57mm,  

n=35 
5.82 / 102.65 0.00324 46.56 / 72.81 0.00719 

0.47mm, n=125 7.60 / 129.52 0.00256 45.65 / 49.40 0.00269 

0.47mm,  

n=85 
7.23 / 139.80 0.00203 46.04 / 57.21 0.00310 

0.34mm, n=120 8.20 / 130.36 0.00284 45.72 / 50.80 0.00236 

0.34mm,  

n=79 
8.15 / 129.54 0.00283 45.80 / 51.64 0.00247 

 
 

Table 6 

Case 
Mean bulk density 

(stdev) 
% difference from CT 

#1 (0.84mm, n=27) 0.686 (0.021) 16.07% 

#2 (0.8 mm, n=27) 0.682 (0.020) 15.40% 

#3 (0.74mm, n=27) 0.685 (0.020) 15.91% 

#4 (0.47mm, n=125) 0.652 (0.021) 10.32% 

#5 (0.47mm, n=85) 0.623 (0.016) 5.41% 

#6 (0.57mm, n=35) 0.698 (0.022) 18.10% 

#7 (0.34mm, n=120) 0.586 (0.026) -0.85% 

#8 (0.34mm, n=79) 0.582 (0.019) -1.52% 

Voxel-based method 0.577 (0.014) -2.37% 

Experiment (CT) 0.591 (0.006) - 
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Figure 1. Illustration of eight different representations of the cylindrical particles (a) top view, 

(b) ¾ side view. 
 

Figure 2. Radial volume packing fraction of the bed with eight representations. 

 

Figure 3. Axial volume packing fraction of the bed with eight representations. 

 

Figure 4. Quantification of particle roundness (Ds/Di). 

 

Figure 5. Effect of particle roundness on packing structure. 

 

Figure 6. Radial volume packing fraction of original particles and modified particles. 

 

Figure 7. Quantification of surface roughness. 

 

Figure 8. Relationship of surface roughness and volume packing fraction. 

 

Figure 9. Axial packing fraction results from clumped sphere method and XMT. 

 

Figure 10. Radial packing fraction results from clumped sphere method and XMT. 

 

Figure 11. Radial packing fraction results from voxel-based method and XMT. 

 

Figure 12. Axial packing fraction results from voxel-based method and XMT. 

 

Figure 13. Vertical orientation distributions by clumped sphere method (representation #7), 

voxel-based method and XMT. 
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Figure 1 
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Figure 6 
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Figure 8 

 

 

Figure 9  
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Figure 10 

 

 

Figure 11 
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Figure 12 

 

 

Figure 13 

 

Figure Captions: 
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