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STABILITY ANALYSIS OF A MULTI-PHASE CAR-FOLLOWING MODEL 

Ronghui Liu* and Xiang Li# 

Institution for Transport Studies, University of Leeds, UK 

Abstract 

This paper presents a numerical stability analysis of a multi-phase car-following model under 
mild to severe disturbances. The results show that local stability was always conformed. An 
asymptotically unstable region was found for traffic in congested states. One of the previously 
calibrated boundary conditions for close-following situations was found to be in conflict with the 
stable condition required by the car-following model, which had attributed to speed oscillations 
during transition of the traffic from a non-congested to a congested state. Suggestions were 
made to the choice of model parameter values to meet the stability conditions and ways to 
improve the model.  

1. Introduction 

Traffic flow has attracted multidisciplinary interests in recent years due to the increasing traffic 
congestion problem on highways and the complexity of the traffic flow system [1-7]. Traffic 
behaviour has been studied by microscopic and macroscopic models, and by a variety of 
approaches ranging from car-following models [2,3], cellular automation models [4,5], to gas 
kinetic and hydrodynamic models [6,7]. 

Car-following model is a microscopic description of the behaviour of vehicles following one 
another in a single stream of traffic [1-3], and is one of the fundamental building blocks of 
microscopic representation of traffic flow. There are many formulations of car-following models 
and some attempt to generalise them [1]. Some of the earliest car-following models were 
developed by General Motors (GM) based on vehicle-following data collected on their test-
tracks [2]. The GM models represent the response of a following vehicle in terms of its 
acceleration and deceleration to the stimulus it received from the vehicle ahead and its driver’s 
sensitivity. The stimulus is usually represented as a function of the relative velocity and 
spacing between the two vehicles (e.g. [2, 3]). This type of models is often referred to as 
psycho-physical car-following models in reference to their combined representation of drivers’ 
reactions with the laws of physics on the dynamic equation of vehicle motion.   

Another type of models, so called safety-distance models, is based on the simple idea that, 
whatever the following vehicles do, they want to keep a safe distance behind so that they do 
not collide with the vehicle(s) in front. One of the most well-known safety-distance based car-
following models is the Gipps model [8], which is widely adopted in traffic micro-simulation 
software [9,10]. 

Most of these models represent a single state of traffic, i.e. there is a single, fixed rule for the 
car-following behaviour throughout. Moreover, many of the models including the GM models, 
are based on empirical investigations carried out at relatively low speeds (mostly in the region 
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of 30-60 km/hr), which may not reflect more general car-following behaviour of traffic on high-
speed road networks. 

In recent years, the technical progress and the instrumentation of many of our highway 
networks have enabled collection and analysis of large sets of empirical traffic flow data and 
across a wide range of different traffic conditions [11-12]. Studies of such highway traffic flows 
have revealed the existence of different traffic phases ranging from free-flow, synchronized 
traffic with lower velocity but still high flows, to complete flow breakdown and traffic jams [1, 
13]. This has led the development of multi-regime car-following models which apply different 
car-following rules to represent drivers’ adapting to different driving behaviour under different 
traffic conditions [e.g. 14, 15]. 

Two phenomena of highway traffic have received particular attention recently; namely close-
following behaviour and traffic hysteresis. Considerably closer following than often found in 
urban traffic is observed when highway traffic is near capacity, but before the breakdown [16, 
17]. This is characterised by vehicles driving at very high speed but keeping very small gaps, 
sometimes with a time gap as low as 0.8 second [18]. It is believed that close-following is one 
of the main causes of traffic instability and therefore traffic jams [11, 19, 20]. Traffic hysteresis 
is a phenomenon characterized by a loop structure from empirical observed flow-occupancy 
plots, where the capacity of a traffic flow recovering from a flow breakdown does not reach the 
capacity before the breakdown [21-24].  

Wang et al [25] proposed a multi-phase car-following model which explicitly included a close-
following phase and introduced the concept that drivers’ reaction times are different during 
different phases. The model was shown to be capable of reproducing the full spectrum of 
traffic states, and in particular close-following and traffic hysteresis. The key model parameters 
were calibrated using aggregated traffic detector data [26]. The main contribution of the 
current paper is to study the stability properties of this model using numerical simulation 
method.  

The paper is organised as follows: Section 2 of the paper describes briefly the model 
concerned. Section 3 introduces the concept of local and asymptotic stabilities and presents 
results showing the performance of the model in the stability tests. An unstable, oscillatory 
behaviour of the model was found and questions were raised on the model parameter values 
used. Section 4 discusses the implications and suggests ways the model can be improved. 
Finally conclusions are drawn in Section 5. 

2. A Multi-Phase Car-Following Model  

The model by Wang, Liu and Montgomery [25], hereafter WLM model, was designed to 
represent traffic flow on high-speed freeway networks, in particular to capture some of the key 
characteristics of freeway traffic flow such as the close-following behaviour and traffic 
hysteresis phenomenon.  

For the description and the formulation of the WLM model, we consider a simple car-following 
situation as illustrated in Fig. 1 where vehicle n follows vehicle n-1 in a single stream of traffic. 
The variable xn(t) denotes the position vehicle n as measured from an arbitrary starting point, 
whilst vn(t) its velocity at time t. Ln-1 is the “effective” size of vehicle n-1, which includes the 
physical length of the vehicle plus a safe margin. 

The WLM model was built on the concept that drivers in different traffic conditions (or states) 
behave differently. This concept was represented in the model by drivers applying different 
accelerations and reaction times in different states. The states considered were: traffic build-
up from free-flow towards congestion, close-following, flow break-down and recovery.  

The model assumed that, as the traffic was getting congested, drivers’ behaviour would 
change and they would become more alert to their surroundings. This change was 
characterised in the model by a critical driving speed, vc at 50 km/hr [17]. Above this speed 
threshold (i.e. when traffic moves more freely), drivers were considered to be in a non-alert 
state with longer reaction times and lower acceleration and deceleration. Below this critical 
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speed (when traffic becomes congested), drivers were considered to be in an alert state with 
shorter reaction times and higher acceleration and braking power. After a highly alert state 
during congestion and flow breakdown and during the recovery state, the drivers were 
assumed to want to relax a little bit and return back to the non-alert state with longer reaction 
time and lower acceleration/deceleration.  

Situated in between the non-alert and alert states during traffic build-up is a close-following 
state. The exact definition of the close-following state is described later.  

In its mathematical formulation, the WLM model combines the idea of the safe-distance model 
of Gipps [8] for alert and non-alert states, with the model of Leutzbach and Wiedemann [14] for 
close-following state. The WLM model then covers the full spectrum of traffic states and allows 
vehicles to move from one state to another in a continuous space-time domain.  

Gipps model gives the speed of each vehicle n at time t +  in terms of its speed at the earlier 
time t as:  
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where Vn is the desired speed of the driver drawn randomly from a distribution with the free-
flow speed vf as its mean. Here An > 0 and Bn < 0 are the acceleration and deceleration of 

vehicle n respectively. The Gipps model applies the same reaction time () and the perceived 
deceleration (B’) to all vehicles.  

The WLF model applies the Gipps’ car-following rule in both the alert and non-alert states, but 

with different accelerations and reaction times. We use symbols (a1, 1) to represent the 

acceleration and reaction time when drivers are in the alert state, and (a2, 2) for when they are 
in non-alert state.  

As first proposed in [14], traffic is said to be in a close-following state if it falls within a region of 

small relative speed (between Va and Vb) and relative space headway (between dmin and 
dmax) to the vehicle ahead. The spatial boundary conditions for close-following was further 
defined in [9] as: 

)(1min tvCLd nn   and  )(21max tvCCLd nn                (2) 

where C1 and C2 are constants. 

In the WLM model, the close-following state is further confined to a situation where none of the 
vehicles downstream in the platoon appears to be braking and the following vehicle will then to 
need to break very hard either, even when keeping a close headway. The decelerations of the 
two front vehicles in the platoon are used as indicators: if they are not decelerating at a rate 
noticeable to the following vehicle (i.e. the model parameter DC), the following vehicle is 
regarded as in a close-following state.  

The trajectories of the vehicle in a close-following state can be illustrated in Fig. 2 as a 
bounded circle in a relative speed and space headway domain. The model applies either a 
constant accelerate or deceleration to a vehicle depends on its space headway to the vehicle 
in front. The speed of the following vehicle is simply updated according to Newtonian equation 
of motion: 
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where a3 and 3 are the acceleration and reaction time respectively applied by drivers in close-
following state.  

Therefore, the speed of a following vehicle n at time t +  is determined by different functions 
(eq. (4)) according to the state it is in. The main model parameters which distinguish these 

for acceleration when Xn ≥ (dmin + dmax)/2 

for deceleration when Xn < (dmin + dmax)/2 
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different states are the vehicle’s acceleration (a) and the driver’s reaction time (). Table 1 
summarises the conditions of these different traffic states.  
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The values of acceleration and reaction time for alert and non-alert traffic of the WLM model 
were calibrated using aggregated detector data [26]. Table 2 lists the default values of the 
model parameters applied in this study. 

A macroscopic interpretation of the model in terms of the steady-state traffic flow (q) and 

density () relationships of the different driving states was derived [31] and the results are re-
produced here in equation (5) and illustrated in Fig. 3.  
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where ȡj is the jam density, vf and vC the free-flow and the critical speed respectively. 

It was clear from the simplified illustration of the model in Fig. 3 that the reaction times of the 

drivers affect the traffic flow levels significantly and the bigger the difference between 1 and 2, 
the more clearly a traffic hysteresis would occur. Treiber and Helbing [27] proposed a similar 
concept in which different adaptation or reaction times being applied to different types of 

congested traffic to explain the observed inverse- shaped and the wide scattering of flow-
density data. 

The ability of the model to reproduce flow breakdown, shock waves and the correct gap 
distributions was further demonstrated in [25]. In this paper, we present an investigation of the 
local and asymptotic stability of the model.  

 

3. Stability Analysis of the WLF Model 

Car-following models are generally assessed by their properties to agree satisfactorily with 
experimental evidence, to be physically and psychologically plausible, and to possess local 
and asymptotic stability.  

Stability of a car-following model is concerned with the growth of a small disturbance in speed 
and spacing when traffic is in a regime close to a steady state and how the perturbation 
propagates over time and down a line of vehicles [28]. Two types of stabilities are of general 
concern: local and asymptotic stability. Local stability is concerned with the response of a 
following vehicle to the fluctuation of the vehicle directly ahead and examines its distance-
headway and speed over time. Asymptotic stability is concerned with the propagation of the 
fluctuation of the lead vehicle through a platoon of vehicles [29].  

Linear stability analysis develops criteria which characterize the types of motions allowed by 
the model and determines, with a given range of model parameter values, if a disturbance 

for alert traffic state, i.e. traffic condition during a flow breakdown 

for non-alert states:  free-flow condition or recover from a breakdown 

for close-following state 
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would be damped, bounded or amplified [29]. The analysis is often mathematically complex 
and applied mostly to simple, linear car-following models such as the earlier GM models and 
under uniform flow conditions [30, 31].  

Herman et al [28] derived criteria for both local and asymptotic stability for the first GM model 
proposed in [2] by means of Laplace transform of the equations of motion of a line of identical 
vehicles. Wilson [31] derived a linear stability formulation of the Gipps model under uniform 
conditions. Numerical simulation method provides a flexible means to examine the properties 
of a model. Ez-Zahraouy et al [32, 33] studied the stability of optimal velocity models under the 
effect of reaction time and its fluctuation.  

In this section, we present a numerical simulation analysis of the WLM car-following model. No 
mathematical derivations of the stability conditions were attempted. The analysis was based 
on the examination of the simulated individual vehicles’ speeds and trajectories. A platoon of 
seven vehicles was simulated with different initial conditions for the lead and the following 
vehicles. We present below the test scenarios and the results for the stabilities examined.  

 

3.1 Local Stability 

Four scenarios with different trajectories of the lead vehicle and different initial distance 
headways of the following vehicle were tested. In each scenario, three sub-scenarios (cases) 
were further considered. The speed-profiles of the lead vehicle tested are shown in Fig. 4. 
Scenario I was concerned with the influence of different initial distance headway to the local 
stability. Three cases with different initial distance headways were set up; they were at 30, 40 
and 50m respectively for case 1, 2 and 3 of Scenario I. Their equivalent densities are 33.3, 25 
and 20 veh/km for case 1, 2 and 3 respectively. The other three scenarios were set up to 
identify the impacts of different speed perturbations from the lead vehicle to the following 
vehicle. The same initial distance headway, at 40m (or equivalent density of 25 veh/km), was 
used in these scenarios. 

The simulation results in terms of the changes over time of the distance headway and speed 

of the following vehicle are shown in Fig. 5, and from which, we can draw the following 

observations: 

1. In all scenarios, a local stable condition was reached, as the speeds and distance 

headways have all converged to a stable condition; however 

2. There were initial speed oscillations of the following vehicle, with different amplitudes; 

3. These oscillations were found to occur in the speed range of 10m/s to 14m/s; and finally 

4. The final distance headway and speed were only related to the final speed of leading 

vehicle.  

The last observation above suggests that the initial speed of leading vehicle and initial 

distance headway do not affect the final travel pattern of following vehicle. 

It is noted that the upper boundary of 14m/s (~50 km/hr) where the speed oscillations occurred 

coincides with the critical speed (vc) which defines the distinction between the non-alert 

situation and the alert situations (see Fig. 3). We postulate therefore that these speed 

oscillations are caused by the modelled transition between these two situations. Further 

discussion on this phenomenon is presented in Section 4. 

 

3.2 Asymptotic Stability 

A platoon of seven vehicles was simulated to study the behaviour of asymptotic stability of the 

model. Four scenarios with different speed profiles of the lead vehicle (Fig. 6) were simulated. 
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The vehicles were initially put at a distance-headway of 40m (or an equivalent density of 25 

veh/km) for Scenario I and II, and 35m (or density 28.6 veh/km) for the other two scenarios.  

The four scenarios were designed to represent most of the manoeuvre of a lead vehicle [34]. 

In Scenario I, a mild disturbance which involved a liner deceleration and acceleration of the 

lead vehicle was set to test the reactions of following vehicles. In Scenario II, the lead vehicle’s 
speed was varied according to a sinusoidal function and was used to represent a severe 

disturbance. Scenarios III and IV represented a simple acceleration and deceleration of the 

lead vehicle respectively.  

The simulation results are shown in Fig. 7, from which we observed the following:  

1. In scenarios I, II and III, asymptotic stability was reached, as the variations in distance 

headway and speed were gradually damped to a stable condition; 

2. In scenario IV, asymptotic stability was not reached, the disturbances in speed and 

distance headway were amplified along the platoon;  

3. In scenario IV, the final speed was lower compared to the other three scenarios and was 

also much lower than the critical speed; and  

4. As in the local stability, some initial speed oscillations were found in all scenarios and they 

occurred within the range of 10 m/s to 14 m/s, suggesting again a non-smooth transition 

between the non-alert and alert conditions. 

In scenarios I, II and III, the speeds are converged to 15 m/s which is above the critical speed 

vc at 50 km/hr (or 13.9 m/s), whilst in scenario IV the final speed of 5m/s is lower than vc. In the 

WLF model, travel speeds above vc represents the non-congested state, whilst those below vc 

represent the congested states. The above observation points 1 - 3 suggest therefore that 

asymtotic stability is reached in non-congested states, and not reached in congested state. 

4. Analysis and Discussion 

4.1 Speed Oscillations 

One common feature revealed by the results in both local and asymptotic stability analysis is 

speed oscilattions. The results seemed to suggest that frequent transitions between the non-

alert and alert states led to the observed speed oscillations in the range of 10m/s (36 km/hr) 

and 14m/s (~50km/hr) in the modelled traffic. We explain the conditions upon which this could 

have happened, show that one of the conditions for close-following was never met with the 

parameter values used, and suggest how the WLM model could be improved to overcome this 

problem.  

To do so, we refer back to the different states of the model as depicted in Fig. 3. Let’s assume 

that a vehicle is travelling at a speed above the critical speed vc and it is therefore considered 

to be in a non-alert, non-congested state (in the region marked by O-A-B in Fig. 3). In the 

model, this vehicle would be modelled with a reaction time  = 2 = 1.4s. We further assume 

that a vehicle’s desired headway equals to its current speed and its reaction time, as hdes = v.  

It follows, therefore, that if the current headway of a vehicle is less than its desired one, the 

vehicle would decelerate to increase the headway. If, when, the speed of the vehicle is 

reduced to below vc, the vehicle would move into the alert state and would then immediately 

adopt a smaller reaction time  = 1 = 0.4s. The driver would now have a smaller desired 

headway (hdes = v1 < v2) and would then want to accelerate to reach its new, smaller desired 
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headway. As a result, the vehicle could be in a constant acceleration or deceleration mode 

and traversing between the non-alert and the alert states, which results in speed oscillation.  

We illustrate the above interpretation with a schematic drawing of the possible trajectories of 

the vehicle in a speed and distance-headway plane, shown in Fig. 8. On this plane, there is an 

angular area defined by two lines originated at the origin and with slopes defined by 1 and 2. 

They represent the corresponding desired headways for the alert and the non-alert state, with 

hdes = 0.4v and hdes = 1.4v respectively. A verticle line at v = vc = 14 m/s marks the transition 

between the alert and the non-alert state.  

We demonstrate here that within this angular area, a vehicles’s speed would oscillating. Let’s 
look at a vehicle which starts at an arbitury point A in the speed-headway plane of Fig. 8. As 

its state are: v < vc and h > hdes = 0.4v, the vehicle would want to accelerate in order to reduce 

its headway. So it follows a path with increasing speed and decreasing headway (from point A 

to B in Fig. 8). When its speed increases so that v > vc, i.e. it reaches the non-alert state, its 

desired headway changes to hdes = 1.4v. Now, with a headway less than the hdes, and the 

vehicle would now have to decelerate in order to increase its headway.  

This process of acceleration and deceleration repeats itself and results in an oscillatory (or zig-

zag) pattern of the vehicle’s speeds and headways, until it reaches a stable condition indicated 

by point B1 where the vehicle’s headway matches its desired headway when it is in the alert 
state.  

For completion, we describe below what happens when a vehicle’s speed-headway lies 

outside the above “oscillation” region.  

In the area above the slope of hdes = 1.4v, the vehicle’s headway is aways higher than its 

desired headway. For a vehicle at point C in Fig. 8 (i.e. in the alert state with v < vc), its desired 

headway would be hdes = 0.4v. Whilst its desired headway would be hdes = 1.4v if it were at 

point D (i.e. in the non-alaert state). Therefore, the vehicle would want to accelerate to reduce 

its headway to its desired headway. Such acceleration could lead them to reach a stable 

condition as shown by the solid arrows originated from points C and D in Fig. 8. It is also 

possible that the acceleration may lead the vehicle into the “oscillation” region, shown by the 
dashed arrow from point C, from there the above oscillatory behaviour would follow.  

An opposite effect happens to vehicles in the area below the slope of hdes = 0.4v. Here, the 

vehicle’s headway is aways lower than its desired headway. The vehicle would therefore want 

to decelerate to increase its headway, the result of which may lead them to a stable state as 

shown by the solid arrow originated from points E and F in Fig. 8, or into the “oscillation” 
region.  

An example trajectory of a vehicle, in the speed oscillation region, is illustrated in Fig. 9. In this 

example, the vehicle is following a lead vehicle which is travelling at a constant speed. The 

following vehicle decelerates (or accelerates) at a constant rate when its headway is less (or 

greater) than its desired headway. Its desired headway is the product of its speed and reaction 

time, and the later swapps between 0.4s and 1.4s dependent on its speed. So the whole 

process is a circular one. This is illustrated in Fig. 9 that, in the speed oscillation region, the 

following vehicle’s speed-headway distribution shows a spiral structure, whilst its spatio-

temporal distribution shows a periodical structure in the oscillation region.   

The above analysis illustrate that, whilst the multi-state WLM model employing different 

reaction times to represent the different driver-alertness in different traffic conditions which had 

elegantly explained the traffic hysterisis phenomenon, it had made vehicles in certain driving 

conditions constantly changing their desired headways which leads to speed oscillations.  
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While fixging the reaction times, Ez-Zahraouy et al [32] also found discontinuous velocity 

oscillation between two velocity values, for low vehicle extraction rate probability, in optimal 

velocity traffic flow models.   

4.2 Close-Following Conditions 

The above analysis led us to exam the boundary conditions of the different states in the WLM 

model. In the model formulations, the traffic from the non-congested, non-alert state (OA) is 

expected to transit firstly into the close-following state (area marked by ADEC in Fig. 3) before 

moving into the congested alert state of CJ. Since the close-following of vehicles at high 

speeds is a common feature of freeway traffic, we would not expect large amount of direct 

transitions between the non-congested state and congested alert states.  

However, examining in detail the above simulation experiements, we found none of the 

vehicles simulated went into the close-following state at any time. Instead, they all moved 

directly from the non-congested non-alter state to the congested alert state. Detailed 

examinations revealed that using the calibrated parameter values [18, 26], the close-following 

conditions in the model could never be met.  

The WLM model requires that, for a vehicle to be in the close-following state, all four of the 

following conditions need to be met: 

(a) Moving in non-alert traffic build-up state:  vn(t)≥ vc 

(b) The front vehicles are not braking apparently: bn-1(t-Ĳ)> Dc and bn-2(t-Ĳ)> Dc 

(c) A minimum and a maximum desired following distance: dmin<[xn(t)-xn-1(t)]<dmax 

(d) A threshold for recornising a small negative (closing-in) and a small positive (moving-

away) relative speed: Va ≤ [vn(t)-vn-1(t)] ≤ Vb 

The first two conditions were adoped from the stability condition [35]. The last two were first 

suggested in [14] and their boundary conditions (dmin, dmax, Va, Vb) were calibrated in [18].  

We found that the conditions (a), (b) and (d) were met in the simulation. We illustrate below 

that condition (c) could not be met with the parameter values listed in Table 2. For condition 

(a) to be met, vehicles would be in the non-alert state and their car-following movements are 

described by eq. (1). Re-arranging eq. (1), we derive the desired distance headway as: 
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We assume a steady-state traffic and simplify vn(t) = vn-1(t) = v, Ln-1 = Ln = L, and adopt the 

calibrated parameter values for the non-alert state:  = 2 = 1.4s, a2 = 1.7m/s2, b2 = -2a2 = -

3.4m/s2, B’=-3m/s2. The distance headway can be calculated from eq. (6), and the boundaries 

of condition (c) from eq. (3). The results are presented in Fig. 10(a). It can be seen that, the 

actual distance headway for speed v > vc (condition (a)) with reaction time  = 1.4s is always 

higher than the maximum desired headway dmax.  

The distance headway with reaction time values 1.0s - 0.6s were also calculated and 

displayed in Fig. 10(b). The results show that, in order to meet the close-following condition 

(c), a smaller reaction times (in the region of 0.7s – 1.0s) would be required. 
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5. Conclusion 

We presented in this paper a numerical analysis of the stability conditions of a car-following 

model developed for freeway traffic. Different scenarios were set-up, with different speed 

profiles of the lead vehicle and different initial conditions of the following vehicles, to represent 

a range of possible driving conditions. The movements of a platoon of seven vehicles were 

simulated. Local and asymptotic stabilities of the model were analysed from the following 

vehicles’ speeds and distance headways distributions over time.   

In all the scenarios simulated, local stability was observed. The critical speed (vc) played an 

important role in determining asymptotic stability in that the stability can be achieved where the 

converged speeds were above vc, not where they are well below vc. In the model, traffic 

speeds above vc represent the non-congested state, whilst those below vc represent the 

congested states (the alert state during flow breakdow and non-alert state during recovery). 

This suggests that disturbances in a congested traffic conditions would be amplified, a 

sensible result.    

Speed oscillations were found in speeds range between 10 – 14m/s; the higher end of this 

range conincides with the critical speed. Investigations into the simulated states of the 

individual vehicles suggest that the oscillations were caused by vehicles jumping between 

these two states, whilst none of them transit through the intermediate, close-following state of 

the model designed to represent the high-speed and close-keeping (short headway) behaviour 

of freeway traffic.    

Detailed examination revealed that the close-following conditions of the model could not be 

met with the calibrated parameter values used in the study. With a reaction time of 1.4s 

calibrated for the non-congested state [26], the desired distance headway requirement of the 

close-following conditions [18] could not be met. We examined the effect of different reaction 

times. The results suggested that, with a smaller reaction time (in the region of 0.7 – 1.0s) for 

the non-congested state, the above close-following condition could be met. Further calibration 

of model parameter values and empirical observations of driver behaviour, especially during 

close-following conditions, are required to improve our modelling of the traffic conditions on 

high-speed freeway networks.  
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