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This paper extends the bottleneck model to study congestion behavior of morning commute with flexible work schedule. The
proposed model assumes a stochastic bottleneck capacity which follows a uniform distribution and homogeneous commuters who
have the same preferred arrival time interval.The commuters are fully aware of the stochastic properties of travel time and schedule
delay distributions at all departure times that emerge from day-to-day capacity variations. The commuters’ departure time choice
follows user equilibrium (UE) principle in terms of the expected trip cost. Analytical and numerical solutions of this model are
provided. The equilibrium departure time patterns are examined which show that the stochastic capacity increases the mean trip
cost and lengthens the rush hour. The adoption of flexitime results in less congestion and more efficient use of bottleneck capacity
than fixed-time work schedule. The longer the flexi-time interval is, the more uniformly distributed the departure times are.

1. Introduction

The bottleneck model was first proposed by Vickrey [1] and
has subsequently inspiredmany to developmore realistic ext-
ensions, to gain qualitative and theoretical insights into tran-
sport policy measures on commuter travel behavior (e.g.,
Smith [2]; Daganzo [3]; Braid [4]; Arnott et al. [5]; Yang
and Huang [6]; Ramadurai et al. [7]). In these analyses,
commuters must choose their departure times to minimize
the sum of travel delays (depending on the bottleneck
capacity) and schedule delays (depending on the difference
between actual and desired arrival times). At user equilib-
rium, no commuter could reduce the total commute cost by
unilaterally changing his/her departure time.

The study of decision making under risk (and uncer-
tainty) has a long history in the fields of economics, psychol-
ogy, transport, and beyond (Machina [8]; Cubitt and Sugden
[9]; Gollier and Treich [10]; Birnbaum and Schmidt [11]).
Manymathematical tools and analytical frameworks are used
tomodel people’s behavior and predict likely choice outcomes
in varying settings.The theory has also evolved fromexpected
utility to nonexpected utility and been used to describe choice
behavior in risky situations (Starmer [12]; de Palma et al. [13]).

This paper applies the expected utility theories to cap-
ture the departure time choice behavior in morning com-
mute problem under uncertainty. Morning commute plays
an important role in a monocentric city and the traffic
congestion in such network is caused by concentration of
travel demand around the work start time. The introduction
of flexible work schedule is one of the transport demand
management measures for alleviating peak congestion. The
paper provides useful insight into traveler’s decision making
in contrast to fixed-time schedule pattern. Henderson [14]
incorporated the productivity effect to analyze the equilib-
rium and optimum solution with staggered work hours. Mun
and Yonekawa [15] extended bottleneck congestion to study
the case that part of the firms in city adopts flexitime and
incorporated the effects on urban productivity.

Most literatures onmorning commute have assumed that
the capacity of the bottleneck is deterministic and the traffic
demand is also deterministic or governed by a predetermined
elastic demand function. In reality, not only does travel
time increase as traffic volume increases towards capacity
but also the travel time becomes increasingly random and
unpredictable due to the chaotic behavior of traffic at the
micro level. The source of variation in road capacity may
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occur due to physical and operational factors, such as road
repairs, construction, accidents, and bad weather. The varia-
tions in road capacity from physical and operational reasons
are what make the analysis of travel behavior so complex and
yet interesting. As such, understanding travelers’ attitudes
and their behavior in varying settings is key to developing
sustainable transport polices.There has been recent attention
to the stochastic nature of the bottleneck models (Siu and
Lo [16]; Li et al. [17]; Xiao et al. [18]). A reasonable way to
capture these variations and their impact on the network
performance is to formulate the problem using probability
distributions (Chen et al. [19]).

The focus of this paper is to analyze the departure time
choice behavior under uncertainty in the morning commut-
ing problem with flexi-time work schedule. It is expected
that the stochastic capacity leads to uncertainty in queuing,
travel time, and trip cost, which in turn influences the
commuters’ travel choice behavior. We assume that travelers
are fully aware of the stochastic properties of the travel time
and schedule delay distributions throughout the morning
peak period which emerges from their day-to-day travel
experience. Furthermore, we consider homogenous travelers
have the same preferred arrival time interval (PATI). We
formulate a stochastic bottleneck model for this flexi-time
commute problem and derive its analytical solution. The
properties of the model are investigated.

The solution of the proposedmodel shows that the capac-
ity variability of the bottleneck leads to significant changes in
departure time patterns, which are different to those derived
under deterministic conditions. In a deterministic bottleneck
model with flexi-time work schedule, an individual can
choose either to depart in the tails of the rush hour when
travel time is low and pay the penalty of arriving at work
early or late, or to depart close to the PATI when travel
time is high but schedule delay cost is low. In other words,
under the deterministic equilibrium, schedule delay early/late
and arrival on time cannot occur simultaneously for a given
departure time (Henderson [14]; Mun and Yonekawa [15]).
We demonstrate that, with day-to-day stochastic capacity,
commuters departing at the same time may endure schedule
delay early/late or not and may experience queuing delay or
not on different days.

The rest of this paper is organized as follows. Section 2
formulates separately a deterministic and a stochastic bottle-
neck model with homogeneous PATI. The equilibrium solu-
tions for the departure time pattern are derived for each case.
The theoretical properties of the proposed stochastic bottle-
neck model with PATI are investigated and compared with
the deterministic case. Numerical examples are presented in
Section 3 to illustrate further the equilibrium properties of
the model. Section 4 provides conclusion remarks.

2. Departure Patterns of Morning Commute
with Flexible Arrival Time

2.1. The Deterministic Case. We formulate the peak period
congestion based on the bottleneck model developed by
Vickrey [1]. Suppose a single road connecting a residential

area and the Commercial Business District (CBD), which has
a bottleneck just before the CBD. It is assumed that vehicles
drive at constant speed from home to the bottleneck point:
travel time for this portion of trip is constant and represented
as 𝑇free. Queue develops when traffic flow rate exceeds the
bottleneck capacity 𝑠. Travel time for a vehicle departing at
time instant 𝑡 is represented as follows:

𝑇 (𝑡) = 𝑇free +
𝑄 (𝑡)

𝑠
, (1)

where 𝑇(𝑡) is travel time and 𝑄(𝑡) is length of queue. The
second term represents the waiting time within the queue
behind the bottleneck. We set 𝑇free = 0, hereafter.This setting
will not affect the qualitative property.

The queue length that a trip maker departing at time 𝑡
encounters is calculated as follows:

𝑄 (𝑡) = max{∫
𝑡

𝑡0

[𝑟 (𝑥) − 𝑠] d𝑥, 0} , (2)

and the cumulative departures as,

𝑅 (𝑡) = ∫

𝑡

𝑡0

𝑟 (𝑥) d𝑥, (3)

where 𝑟(𝑥) is the departure rate at time instant 𝑡 and 𝑡
0
is the

earliest time with positive departure rate.
Suppose that every morning, a fixed number of 𝑁

individuals commute from home to office located in the
CBD, driving along the road stated above. All workers have
identical skills and preferences. Unlike Vickrey [1] which
assumes that there is only one preferred arrive time 𝑡∗, here,
firms in the CBD adopt a flexi-time work schedule such that
employees arriving at office earlier or later 𝛿(𝛿 ≥ 0) than 𝑡∗
incur no scheduling cost. Hereafter, we call this time period,
[𝑡
∗
− 𝛿, 𝑡
∗
+ 𝛿], as PATI.

Some commutersmay still arrive at the destination earlier
or later than PATI, in order to avoid a long queue at the
bottleneck. The cost for commuters traveling from home to
the CBD consists of three components: the cost of travel
time and the cost of schedule delay early or late. It can be
formulated as follows:

𝐶 (𝑡) = 𝛼𝑇 (𝑡) + SDE (𝑡) + SDL (𝑡) , (4)

where 𝛼 is the value of travel time.The cost of schedule delay
early (SDE) and schedule delay late (SDL) for a commuter
who leaves home at time 𝑡 can be expressed as

SDE (𝑡) = 𝛽 (𝑡
∗
− 𝛿 − (𝑡 + 𝑇 (𝑡))) ,

SDL (𝑡) = 𝛾 (𝑡 + 𝑇 (𝑡) − (𝑡
∗
+ 𝛿)) ,

(5)

where 𝛽 and 𝛾 denote the value of schedule delay early and
the value of schedule delay late, respectively.
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Figure 1: Departure time distributions in the deterministic case.

Substituting (1) and (5) into (4) and applying the equi-
librium condition, 𝜕𝐶(𝑡)/𝜕𝑡 = 0, we have the equilibrium
departure rate as follows,

𝑟 (𝑡) =

{{{{{{{

{{{{{{{

{

𝛼𝑠

(𝛼 − 𝛽)
, if 𝑡

0
≤ 𝑡 < 𝑡

1

𝑠, if 𝑡
1
≤ 𝑡 ≤ 𝑡

2

𝛼𝑠

(𝛼 + 𝛾)
, if 𝑡

2
< 𝑡 ≤ 𝑡

𝑒
,

(6)

where 𝑡
0
and 𝑡
𝑒
are the earliest time and the latest time with

positive departure rate, respectively. And 𝑡
1
and 𝑡
2
are the

watershed times for which an individual arrives at work on
time. Then

𝑡
0
= 𝑡
∗
+
𝛾 − 𝛽

𝛽 + 𝛾
𝛿 −

𝛾

𝛽 + 𝛾
⋅
𝑁

𝑠
,

𝑡
1
=
𝛼 − 𝛽

𝛼
𝑡
∗
−
𝛼 − 𝛽

𝛼
𝛿 −

𝛽𝛾

𝛼 (𝛽 + 𝛾)
⋅
𝑁

𝑠
,

𝑡
2
=
𝛼 − 𝛽

𝛼
𝑡
∗
+
𝛼 + 𝛽

𝛼
𝛿 −

𝛽𝛾

𝛼 (𝛽 + 𝛾)
⋅
𝑁

𝑠
,

𝑡
𝑒
= 𝑡
∗
+
𝛾 − 𝛽

𝛽 + 𝛾
𝛿 +

𝛽

𝛽 + 𝛾
⋅
𝑁

𝑠
.

(7)

Figure 1 depicts the cumulative departures (from home)
and arrivals (at CBD) in equilibrium under the deterministic
capacity case. For simplicity, we set 𝑡∗ to be zero, and then all
travelers have the same PATI [−𝛿, 𝛿]. The horizontal distance
between the departure and arrival curves gives the travel time.
Several critical time points are indicated. Travelers departing
at time interval [𝑡

1
, 𝑡
2
] have the longest travel time but will

arrive on time, that is, within PATI. Travelers departing before
𝑡
1
will arrive earlier than desired,while the travelers departing

after 𝑡
2
will arrive late at the destination.

2.2. The Stochastic Case. The deterministic case models a
single-day departure time equilibrium. In the real world, road

capacitiesmay vary from day to day due to unexpected events
such as incidents and weather conditions. Because of the
capacity fluctuations, both commuters’ travel time and their
schedule delays are stochastic. In this section, we hypothesize
that a constant long-term departure time patternmay emerge
given the responses of the travelers to the day-to-day capacity
variation. Each commuter chooses an optimal departure time
which minimizes his/her long-term expected trip cost. We
call this pattern, if it exists, a long-term equilibrium pattern.

2.2.1. Assumptions and Travelers’ Cost Function. The follow-
ing assumptions are made in the model formulation.

(A1) Commuters are homogeneouswith the same𝛼,𝛽, and
𝛾 values and the same PATI.

(A2) The capacity of the bottleneck is constant within a
day but fluctuates from day to day. The uncertainty
of capacity is completely exogenous and independent
of departures.

(A3) The capacity is a nonnegative stochastic variable
changing around a certain mean capacity. Following
Li et al. [17], we assume that stochastic capacity
follows a uniform distribution within interval [𝜃𝑠, 𝑠],
where 𝑠 is the design capacity and 𝜃(<1) is a positive
parameter which denotes the lowest rate of available
capacity.

(A4) Commuters are aware of the capacity degeneration
probability, and their departure time choice follows
the user equilibrium (UE) principle in terms of mean
trip cost.

We assume that the capacity of the single bottleneck
is stochastic but the commuters’ departure time choice is
deterministic. The calculation of the mean trip cost relies on
the calculations of the mean travel time, the mean schedule
delay early and late. For simplicity, we set the 𝑡∗ to be zero,
and then the PATI becomes [−𝛿, 𝛿]. Under the stochastic
condition, the mean trip cost with respect to departure time
𝑡 can be formulated as follows:

𝐸 [𝑐 (𝑡)] = 𝐸 [𝛼𝑇 (𝑡) + SDE (𝑡) + SDL (𝑡)] . (8)

The equilibriumcondition for commuters’ departure time
choice in a single bottleneckwith stochastic capacity is that no
commuter can reduce his/her mean trip cost by unilaterally
altering his/her departure time. This condition implies that
the commuters’mean trip cost is fixedwith respect to the time
instant with positive departure rate. That is

𝜕𝐸 [𝑐 (𝑡)]

𝜕𝑡
= 0, if 𝑟 (𝑡) > 0. (9)

2.2.2. Mathematical Formulations and Derivations. Due to
the stochastic capacity over days, the travel time experienced
by a traveler departing at the same time 𝑡 varies from day to
day. This is equivalent to saying that commuters departing
home to work at the same time may endure schedule delay
early/late or not and may experience queuing delay or not on
different days. Consequently, there are six situations which
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may occur: (I) always arrive early, (II) possibly arrive early
or on time, (III) always arrive on time, (IV) possibly arrive
on time or late, (V) always arrive late, and (VI) always arrive
late but queue may exist. We propose the following simple
extension of trip cost function under the six situations to
model user departure time choice under degradable capac-
ities, and we use 𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, and 𝑡

5
to denote the watershed

lines separating the six cases.
As we assume that stochastic capacity is completely

exogenous and independent of departure flows, the expec-
tation of travel time and schedule delay cost with respect to
different situations can be derived respectively as follows:

𝐸 [𝑇 (𝑡)]

=

{{{{{

{{{{{

{

∫

𝑠

𝜃𝑠

(
𝑅 (𝑡)

𝑠
+ 𝑡
0
− 𝑡)𝑓 (𝑠) 𝑑𝑠, 𝑡

0
≤ 𝑡 ≤ 𝑡

5

∫

𝑅(𝑡)/(𝑡−𝑡0)

𝜃𝑠

(
𝑅 (𝑡)

𝑠
− 𝑡 + 𝑡

0
)𝑓 (𝑠) 𝑑𝑠, 𝑡

5
< 𝑡 ≤ 𝑡

𝑒
,

𝐸 [SDE (𝑡)]

=

{{{{{

{{{{{

{

𝛽∫

𝑠

𝜃𝑠

(−𝛿 −
𝑅 (𝑡)

𝑠
− 𝑡
0
)𝑓 (𝑠) 𝑑𝑠, 𝑡

0
≤ 𝑡 ≤ 𝑡

1

𝛽∫

𝑠

𝑅(𝑡)/(−𝛿−𝑡0)

(−𝛿 −
𝑅 (𝑡)

𝑠
− 𝑡
0
)𝑓 (𝑠) 𝑑𝑠, 𝑡

1
< 𝑡 ≤ 𝑡

2
,

𝐸 [SDL (𝑡)]

=

{{{{{

{{{{{

{

𝛾∫

𝑅(𝑡)/(𝛿−𝑡0)

𝜃𝑠

(
𝑅 (𝑡)

𝑠
+ 𝑡
0
− 𝛿)𝑓 (𝑠) 𝑑𝑠, 𝑡

3
< 𝑡 ≤ 𝑡

4

𝛾∫

𝑠

𝜃𝑠

(
𝑅 (𝑡)

𝑠
+ 𝑡
0
− 𝛿)𝑓 (𝑠) 𝑑𝑠, 𝑡

4
≤ 𝑡 ≤ 𝑡

5
,

(10)

where 𝑓(𝑠) = 1/(𝑠 − 𝜃𝑠). Substituting (10) into (8), we get the
expected trip cost with respect to each situation. According
to (9), the equilibrium departure rates for the six situations
can be expressed as follows.

Situation 1. No commuters experience schedule delay later
subject to all possible values of the bottleneck capacity. We
get the departure rate

𝑟 (𝑡) =
𝛼

𝛼 − 𝛽
⋅
𝑠 (1 − 𝜃)

ln 𝜃−1
, 𝑡
0
≤ 𝑡 < 𝑡

1
. (11)

The boundary condition for this situation is SDL(𝑡
1
) = 0

when 𝑠 = 𝜃𝑠, and hence we have 𝑅(𝑡
1
) = −(𝑡

0
+ 𝛿)𝜃𝑠.

Situation 2. If the capacity of the bottleneck is large enough,
only schedule delay early will occur. On the contrary, no
schedule delay occurs when the capacity is small. The water-
shed capacity satisfies 𝑇(𝑡) + 𝑡 = −𝛿. Equivalently, we have
𝑠 = 𝑅(𝑡)/(−𝛿 − 𝑡

0
) and the departure rate,

𝑟 (𝑡) =
𝛼𝑠 (1 − 𝜃)

𝛼 ln 𝜃−1 − 𝛽 (ln ((−𝛿 − 𝑡
0
) 𝑠) − ln𝑅 (𝑡))

,

𝑡
1
< 𝑡 ≤ 𝑡

2
.

(12)

The boundary condition for this case is SDL(𝑡
2
) = 0when

𝑠 = 𝑠, and hence we have 𝑅(𝑡
2
) = −(𝑡

0
+ 𝛿)𝑠.

Situation 3. No commuters experience schedule delay subject
to all possible values of the bottleneck capacity.Therefore, the
departure rate is

𝑟 (𝑡) =
𝑠 (1 − 𝜃)

ln 𝜃−1
, 𝑡
2
< 𝑡 ≤ 𝑡

3
. (13)

The boundary condition for this case is SDE(𝑡
3
) =

SDL(𝑡
3
) = 0 when 𝑠 = 𝜃𝑠. Hence, we have 𝑅(𝑡

3
) = (𝛿 − 𝑡

0
)𝜃𝑠.

Situation 4. If the capacity of the bottleneck is large enough,
individuals arrive on time. On the contrary, schedule delay
late occurs when the capacity is small.Thewatershed capacity
satisfies 𝑇(𝑡) + 𝑡 = 𝛿. Equivalently, we have 𝑠 = 𝑅(𝑡)/(𝛿 − 𝑡

0
).

Therefore,

𝑟 (𝑡) =
𝛼𝑠 (1 − 𝜃)

𝛼 ln 𝜃−1 + 𝛾 (ln𝑅 (𝑡) − ln ((𝛿 − 𝑡
0
) 𝜃𝑠))

, 𝑡
3
< 𝑡 ≤ 𝑡

4
.

(14)

The boundary condition for this case is SDE(𝑡
4
) = 0when

𝑠 = 𝑠, and then we have 𝑅(𝑡
4
) = (𝛿 − 𝑡

0
)𝑠.

Situation 5. Similar to Situation 1, we have

𝑟 (𝑡) =
𝛼

𝛼 + 𝛾
⋅
𝑠 (1 − 𝜃)

ln 𝜃−1
, 𝑡
4
< 𝑡 ≤ 𝑡

5
. (15)

The boundary condition for this case is 𝑅(𝑡
3
) = 𝑠(𝑡

5
− 𝑡
0
);

that is, the queue length at time 𝑡
5
equals to zero when 𝑠 = 𝑠.

Situation 6. Similar to Situation 2, we can find a watershed
capacity of the bottleneck such that the queue length equals
zero; that is,𝑅(𝑡) = 𝑠(𝑡−𝑡

0
), and hence the watershed capacity

is 𝑅(𝑡)/(𝑡 − 𝑡
0
). We have

𝑟 (𝑡) =
d𝑅 (𝑡)
d𝑡

=
(𝛼 + 𝛾) 𝑅 (𝑡) / (𝑡 − 𝑡

0
) − (𝛼𝜃 + 𝛾) 𝑠

(𝛼 + 𝛾) (ln𝑅 (𝑡) − ln 𝜃𝑠 (𝑡 − 𝑡
0
))

,

𝑡
3
< 𝑡 ≤ 𝑡

𝑒
.

(16)

The boundary condition for this case is 𝑟(𝑡
𝑒
) = 0.

Equivalently, we have 𝑅(𝑡
𝑒
) = 𝑠(𝑡

𝑒
− 𝑡
0
), where 𝑠 = 𝑠(𝛼𝜃 +

𝛾)/(𝛼 + 𝛾) is the mean capacity under the stochastic case.

2.2.3. Determination of the Watershed Time Instants. Since
the departure rate 𝑟(𝑡) = 0 if 𝑡 > 𝑡

𝑒
, the cumulative departures

at time 𝑡
𝑒
are equal to the traffic demand; that is, 𝑅(𝑡

𝑒
) =

𝑁 = 𝑠(𝑡
𝑒
− 𝑡
0
). Therefore, we have 𝑡

𝑒
= 𝑡
0
+ 𝑁/𝑠. Moreover,

the equilibrium condition of the stochastic bottleneck implies
that 𝐸[𝑐(𝑡

0
)] = 𝐸[𝑐(𝑡

𝑒
)], and hence we have

𝑡
0
=
𝑁

𝑠
⋅

1

𝜔
0
− 1

+
𝜐
0

1 − 𝜔
0

𝛿, 𝑡
𝑒
=
𝑁

𝑠
⋅

𝜔
0

𝜔
0
− 1

+
𝜐
0

1 − 𝜔
0

𝛿,

(17)

where

𝜔
0
= 1 −

(1 − 𝜃) (𝛽 + 𝛾)

(𝛼𝜃 + 𝛾) (ln 𝑠 − ln 𝜃𝑠)
,

𝜐
0
=

(1 − 𝜃) (𝛾 − 𝛽)

(𝛼𝜃 + 𝛾) (ln 𝑠 − ln 𝜃𝑠)
.

(18)
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Using the boundary conditions of Situations 1–6, we can
obtain the watershed lines as follows:

𝑡
1
= 𝜔
1
𝑡
0
+ 𝜐
1
𝛿, 𝑡

2
= 𝜔
2
𝑡
0
+ 𝜐
2
𝛿,

𝑡
3
= 𝜔
3
𝑡
0
+ 𝜐
3
𝛿, 𝑡

4
= 𝜔
4
𝑡
0
+ 𝜐
4
𝛿,

𝑡
5
= 𝜔
5
𝑡
0
+ 𝜐
5
𝛿,

(19)

where

𝜔
1
= 1 −

(𝛼 − 𝛽) 𝜃𝜉

𝛼
, 𝜔

2
=
(𝛼 + 𝛽)

𝛼
− 𝜉,

𝜔
3
=
𝛽

𝛼
− 𝜃𝜉 + 1, 𝜔

4
=
(𝛼 + 𝛾) (1 − 𝜉)

𝛼
+
𝛽

𝛼
,

𝜔
5
= 1 +

(𝛾 + 𝛽)

(𝛼 − (𝛼 + 𝛾) 𝜉)
, 𝜐

1
=
(𝛽 − 𝛼) 𝜃𝜉

𝛼
,

𝜐
2
=
𝛽

𝛼
− 𝜉, 𝜐

3
=
𝛽

𝛼
+ 𝜃𝜉,

𝜐
4
=
((𝛼 + 𝛾) 𝜉 + (𝛽 − 𝛾))

𝛼
, 𝜐

5
=

(𝛽 − 𝛾)

(𝛼 − (𝛼 + 𝛾) 𝜉)
,

𝜉 =
ln 𝜃−1

(1 − 𝜃)
.

(20)

With the resulting stochastic departure pattern at long-
term equilibrium, the experienced day-to-day travel times
and number of travelers experiencing queues change accord-
ing to varied capacities over days. Given the boundary condi-
tions of Situations 1–6, the cumulative departures and arrivals
of a stochastic bottleneck are given in Figure 2. The two solid
curves denote the cumulative departures and cumulative
arrivals, as in Figure 1. The dotted lines are the maximum
and the minimum capacity of the bottleneck, that is, 𝑠 and
𝜃𝑠. The earliest departure time from home to workplace is 𝑡

0
,

and if the bottleneck capacity equals 𝜃𝑠, commuters departing
between 𝑡

1
and 𝑡
3
will arrive at workplace on time. If the

capacity equals 𝑠, commuters departing between 𝑡
2
and 𝑡
4
will

arrive at workplace on time. Commuters departing within
time interval [𝑡

2
, 𝑡
3
] will always arrive at workplace on time,

whatever the variability of capacity is. At the beginning,
commuters depart from home with a constant departure
rate until the watershed time 𝑡

1
. Subsequently, the departure

rate will gradually drop down. After time instant 𝑡
4
, another

constant departure rate will last until the watershed time
instant 𝑡

5
and the queuing length at this time will be zero.

Later, the departure rate continues to drop down to zero at
time 𝑡

𝑒
.

2.2.4. Properties of the Stochastic Bottleneck Model. In this
subsection, we investigate the theoretical properties of the
equilibrium solution of the proposed stochastic bottleneck
model with PATI.

Theorem 1. At equilibrium, the expected trip cost for all
commuters is a monotonically increasing function of traffic
demand and a monotonically decreasing function of 𝛿-value;
that is, 𝜕𝐸[𝑐(𝑡

0
)]/𝜕𝑁 > 0 and 𝜕𝐸[𝑐(𝑡

0
)]/𝜕𝛿 < 0 hold.

Proof. Since 𝐸[𝑐(𝑡
0
)] = (−𝛿 − 𝑡

0
)𝛽 and 𝑡

0
= 𝑁/(𝑠(𝜔

0
− 1)) +

𝜐
0
𝛿/(1 − 𝜔

0
), we have 𝜕𝐸[𝑐(𝑡

0
)]/𝜕𝛿 = −2𝛽𝛾/(𝛽 + 𝛾) < 0 and

0
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Figure 2: Departure time distributions in the stochastic case.

𝜕𝐸[𝑐(𝑡
0
)]/𝜕𝑁 = 𝛽/((1−𝜔

0
)𝑠).The definitions of𝛽 and 𝑠 imply

that they are positive; hence, to prove 𝜕𝐸[𝑐(𝑡
0
)]/𝜕𝑁 > 0, we

only need to prove 1 −𝜔
0
> 0. Since 0 < 𝜃 < 1 and 𝑠 = 𝑠(𝛼𝜃 +

𝛾)/(𝛼 + 𝛾) > 𝑠(𝛼𝜃 + 𝛾𝜃)/(𝛼 + 𝛾) = 𝜃𝑠, we have 1 − 𝜃 > 0. And
ln 𝑠 − ln 𝜃𝑠 > 0 clearly holds. Therefore, both the numerator
and denominator of the second term in the right-hand side
of the first equation of (18) are positive; therefore, we have
1 − 𝜔
0
> 0. This completes the proof.

Theorem 2. At equilibrium, the expected trip cost for all
commuters is amonotonically decreasing function of parameter
𝜃-value; that is, 𝜕𝐸[𝑐(𝑡

0
)]/𝜕𝜃 < 0 holds.

Proof. Submitting 𝑡
0
= 𝑁/(𝑠(𝜔

0
− 1)) + 𝜐

0
𝛿/(1 − 𝜔

0
) into

𝐸[𝑐(𝑡
0
)] = (−𝛿 − 𝑡

0
)𝛽, then the first-order derivative can be

given as follows:

𝜕𝐸 [𝑐]

𝜕𝜃
= 𝛽

𝑁

𝑠
⋅
𝛼 + 𝛾

𝛽 + 𝛾
𝑝
󸀠
(𝜃) , (21)

where

𝑝 (𝜃) =
ln 𝑠 − ln (𝜃𝑠)

1 − 𝜃
,

𝑝
󸀠
(𝜃) =

1

1 − 𝜃
(𝑝 (𝜃) −

𝛾

𝜃 (𝛼𝜃 + 𝛾)
) .

(22)

Since ln(𝑠/(𝜃𝑠)) < 1 − 𝜃𝑠/𝑠 = 𝛾(1 − 𝜃)/(𝛼𝜃 + 𝛾), we then have

𝑝 (𝜃) −
𝛾

𝜃 (𝛼𝜃 + 𝛾)

<
𝛾

𝛼𝜃 + 𝛾
−

𝛾

𝜃 (𝛼𝜃 + 𝛾)
=

𝛾

𝛼𝜃 + 𝛾
(1 −

1

𝜃
) < 0.

(23)

It is clear that 𝑝󸀠(𝜃) < 0 and therefore we get 𝜕𝐸[𝑐]/𝜕𝜃 < 0.
This completes the proof.

Theorem 3. At equilibrium, the departure rate is a monoton-
ically decreasing function of the departure time throughout the
whole peak period; that is, d𝑟(𝑡)/d𝑡 ≤ 0, 𝑡 ∈ [𝑡

0
, 𝑡
𝑒
].
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Proof. According to (11)–(16), the departure rate 𝑟(𝑡)

is continuous within each of intervals [𝑡
0
, 𝑡
1
), (𝑡
1
, 𝑡
2
), (𝑡
2
, 𝑡
3
),

(𝑡
3
, 𝑡
4
), (𝑡
4
, 𝑡
5
), and (𝑡

5
, 𝑡
𝑒
]. To prove the departure rate

is continuous during the peak period, we calculate the
following limitations:

lim
𝑡→ 𝑡
+

1

𝑟 (𝑡) = lim
𝑡→ 𝑡
+

1

𝛼𝑠 (1 − 𝜃)

𝛼 ln 𝜃−1 − 𝛽 (ln ((−𝛿 − 𝑡
0
) 𝑠) − ln𝑅 (𝑡))

=
𝛼

𝛼 − 𝛽
⋅
𝑠 (1 − 𝜃)

ln 𝜃−1
= lim
𝑡→ 𝑡
−

1

𝑟 (𝑡) ,

lim
𝑡→ 𝑡
−

2

𝑟 (𝑡) =
𝛼𝑠 (1 − 𝜃)

𝛼 ln 𝜃−1 − 𝛽 (ln ((−𝛿 − 𝑡
0
) 𝑠) − ln𝑅 (𝑡))

=
𝑠 (1 − 𝜃)

ln 𝜃−1
= lim
𝑡→ 𝑡
+

2

𝑟 (𝑡) ,

lim
𝑡→ 𝑡
−

3

𝑟 (𝑡) =
𝑠 (1 − 𝜃)

ln 𝜃−1

=
𝛼𝑠 (1 − 𝜃)

𝛼 ln 𝜃−1 + 𝛾 (ln𝑅 (𝑡) − ln ((𝛿 − 𝑡
0
) 𝜃𝑠))

= lim
𝑡→ 𝑡
+

3

𝑟 (𝑡) ,

lim
𝑡→ 𝑡
−

4

𝑟 (𝑡) =
𝛼𝑠 (1 − 𝜃)

𝛼 ln 𝜃−1 + 𝛾 (ln𝑅 (𝑡) − ln ((𝛿 − 𝑡
0
) 𝜃𝑠))

=
𝛼

𝛼 + 𝛾
⋅
𝑠 (1 − 𝜃)

ln 𝜃−1
= lim
𝑡→ 𝑡
+

4

𝑟 (𝑡) ,

lim
𝑡→ 𝑡
+

5

𝑟 (𝑡) =
(𝛼 + 𝛾) 𝑅 (𝑡

3
) / (𝑡
3
− 𝑡
0
) − (𝛼𝜃 + 𝛾) 𝑠

(𝛼 + 𝛾) ln (𝑅 (𝑡
3
) / (𝜃𝑠 (𝑡

3
− 𝑡
0
)))

=
𝛼

𝛼 + 𝛾
⋅
𝑠 (1 − 𝜃)

ln 𝜃−1
= lim
𝑡→ 𝑡
−

5

𝑟 (𝑡) .

(24)

This proves 𝑟(𝑡) is continuous indeed within the interval
[𝑡
0
, 𝑡
𝑒
].

Equations (11), (13), and (15) state that the departure rate
𝑟(𝑡) is constant for 𝑡

0
≤ 𝑡 ≤ 𝑡

1
, 𝑡
2
≤ 𝑡 ≤ 𝑡

3
, and 𝑡

4
≤ 𝑡 ≤

𝑡
5
, hence it is monotonically decreasing within these three

intervals. By definition, the cumulative departure flow 𝑅(𝑡) is
nondecreasing with respect to time 𝑡.Thus, the denominators
of the right-hand sides in (12) and (14) are nondecreasing
with respect to time 𝑡. Therefore, the right-hand sides of (12)
and (14) are nonincreasing with respect to time 𝑡; that is, the
departure rate 𝑟(𝑡) is monotonically decreasing within [𝑡

1
, 𝑡
2
]

and [𝑡
3
, 𝑡
4
]. The proof of d𝑟(𝑡)/d𝑡 ≤ 0 for all 𝑡 ∈ (𝑡

5
, 𝑡
𝑒
] can be

found in Xiao et al. [18].
In summary, the departure rate 𝑟(𝑡) is monotonically dec-

reasing within all four intervals and at their boundaries. Con-
sidering the continuity of 𝑟(𝑡) for all 𝑡 ∈ [𝑡

0
, 𝑡
𝑒
], we conclude

that 𝑟(𝑡) is monotonically decreasing within [𝑡
0
, 𝑡
𝑒
]. This

completes the proof.

Proposition 4. When parameter 𝜃 approaches one, the
stochastic bottleneck model immediately follows the determin-
istic model.

Proof. According to the L’Hôpital’s rule, we have lim
𝜃→1

(1 −

𝜃)/(ln 𝜃−1) = 1. We then have

lim
𝜃→1

𝜔
0
= lim
𝜃→1

𝜔
5
=
−𝛽

𝛾
,

lim
𝜃→1

𝜔
1
= lim
𝜃→1

𝜔
2
= lim
𝜃→1

𝜔
3
= lim
𝜃→1

𝜔
4
=
𝛽

𝛼
,

lim
𝜃→1

𝜐
0
= lim
𝜃→1

𝜐
5
=
(𝛾 − 𝛽)

𝛾
,

lim
𝜃→1

𝜐
1
= lim
𝜃→1

𝜐
2
=
(𝛽 − 𝛼)

𝛼
, lim

𝜃→1

𝜐
3
= lim
𝜃→1

𝜐
4
=
(𝛽 + 𝛼)

𝛼
,

(25)

lim
𝜃→1

𝑟 (𝑡) =

{{{{{{{{

{{{{{{{{

{

𝛼𝑠

(𝛼 − 𝛽)
, if 𝑡

0
≤ 𝑡 ≤ 𝑡

1

𝑠, if 𝑡
1
≤ 𝑡 ≤ 𝑡

4

𝛼𝑠

(𝛼 + 𝛾)
, if 𝑡

4
< 𝑡 ≤ 𝑡

𝑒
.

(26)

Substituting (26) into (19), we have

𝑡
0
= −

𝛾

𝛽 + 𝛾
⋅
𝑁

𝑠
+
𝛾 − 𝛽

𝛽 + 𝛾
𝛿, 𝑡

5
= 𝑡
𝑒
=

𝛽

𝛽 + 𝛾
⋅
𝑁

𝑠
+
𝛾 − 𝛽

𝛽 + 𝛾
𝛿,

𝑡
1
= 𝑡
2
= −

𝛽𝛾

𝛼 (𝛽 + 𝛾)
⋅
𝑁

𝑠
+
𝛽 − 𝛼

𝛼
𝛿,

𝑡
3
= 𝑡
4
= −

𝛽𝛾

𝛼 (𝛽 + 𝛾)
⋅
𝑁

𝑠
+
𝛼 + 𝛽

𝛼
𝛿.

(27)

Therefore, we get the same traffic flow pattern with that from
a deterministic bottleneck model.

Proposition 5. When the number of commuters is given,
increasing the value of parameter 𝜃 will result in a decrease in
the length of peak period.

Proof. According to (16), we have d𝑠/d𝜃 = 𝛼/(𝛼 + 𝛾) > 0.
This implies that 𝑠 is a monotonic increasing function with
respect to 𝜃. According to (17), we can obtain the length of
peak period as follows:

𝑡
𝑒
− 𝑡
0
=
𝑁

𝑠

𝜔
0

𝜔
0
− 1

+
𝜐
0

1 − 𝜔
0

𝛿 −
𝑁

𝑠

1

𝜔
0
− 1

−
𝜐
0

1 − 𝜔
0

𝛿 =
𝑁

𝑠
.

(28)

Since𝑁 is constant and 𝑠 is a monotonic increasing function
with respect to 𝜃, 𝑡

𝑒
− 𝑡
0
is also a monotonic increasing

function with respect to 𝜃. This completes the proof.

The above proof also shows that the length of peak period
is not affected by the 𝛿-value.

3. Numerical Examples

The input parameters of our numerical example are 𝛼 =

6.4 $/h, 𝛽 = 3.9 $/h, 𝛾 = 15.21 $/h, 𝑁 = 6000 veh, 𝑠 =

4000 veh/h, 𝛿 = 10 min, and 𝜃 = 0.9. By solving the proposed
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Table 1: The influence of parameter 𝜃 on the mean trip cost and the watershed time instant.

𝜃 𝐸[𝑐(𝑡)] 𝑡
0

𝑡
1

𝑡
2

𝑡
3

𝑡
4

𝑡
5

𝑡
𝑒

𝑡
𝑒
− 𝑡
0

1.00 3.62 −1.10 −0.74 −0.74 −0.40 −0.40 0.40 0.40 1.50
0.95 3.78 −1.14 −0.77 −0.73 −0.46 −0.31 0.36 0.39 1.52
0.90 3.95 −1.18 −0.80 −0.73 −0.52 −0.21 0.31 0.37 1.55
0.85 4.13 −1.23 −0.85 −0.72 −0.59 −0.09 0.26 0.35 1.57
0.80 4.33 −1.28 −0.89 −0.71 −0.66 0.05 0.21 0.32 1.60
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Figure 3: The mean equilibrium trip cost and other components.

model, we obtained the time period with positive departure
rate during [−1.18, 0.37] (see Table 1). The mean trip cost, the
mean travel time cost, and themean schedule delay cost (SDE
and SDL) are depicted in Figure 3. We find that the mean trip
costs of all commuters are the same and are equal to 3.95 $,
but endure a trade-off between cost of travel time and cost of
schedule delay. It is interesting that the waiting time cost is
not zero at the end of the peak period, indicating that queue
still exists.

It is interesting to investigate the impact of the fraction
parameter 𝜃 on the solution of the stochastic bottleneck
model. We changed the parameter 𝜃 from 0.8 to 1.0, and
computed themean trip cost and the watershed time instants.
The results are shown in Table 1; the row highlighted is with
the default 𝜃-value. It can be seen that 𝑡

1
= 𝑡
2
, 𝑡
3
= 𝑡
4
, and 𝑡

5
=

𝑡
𝑒
when 𝜃 = 1.0.This confirmsProposition 4.We can also find

that the length of time period with positive departure rate
increases with the 𝜃-value. This confirms Proposition 5. In
addition, the second column of Table 1 shows that the mean
trip cost decreases with the increase of 𝜃-value.This confirms
Theorem 2. Since decreasing the 𝜃-value is equivalent to
increasing the travel time uncertainty, commuters will leave
home earlier than before for avoiding the potential loss
caused by uncertainty risk.

The departure rates against different 𝜃-values are dis-
played in Figure 4. It can be clearly seen that the results
confirm Propositions 4 and 5 that the stochastic bottleneck
model immediately follows the deterministic model when

𝜃 = 1.0
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Figure 4: The influence of parameter 𝜃 on departure rate.

𝜃 approaches one, and that enlarging the parameter 𝜃 will
result in a decrease in the length of peak period. Figure 4 also
shows that in equilibrium the departure rate during the peak
period is monotonically decreasing, which is consistent with
Theorem 3.

Table 2 lists the mean trip costs and the watershed time
instants when 𝜃 = 0.9 and 𝛿-value from 0 minutes to 20
minutes. It is shown that in equilibrium the mean trip cost is
monotonically decreasing with increasing 𝛿, whilst the length
of the peak period remains unchanged.This is consistent with
Theorem 1.

Figure 5 depicts the departure rates against different 𝛿-
values at 𝜃 = 0.9. It can be seen that with larger 𝛿-value (or
longer PATI), the peak periods shift to later and the amount
of earlier departures (at a rate higher than capacity) reduces.
The overall departure time patterns become more flat and
approach designed capacity of the bottleneck with increasing
𝛿-value.This suggests that traffic congestion can be alleviated
by adopting flexi-timework schedule, similar to that achieved
through congestion pricing policy (see, Arnott et al. [5]).

Figure 6 depicts the mean trip times with different pre-
ferred arrival time intervals when 𝜃 = 0.9. One can observe
from this figure that adopting flexi-time work schedule can
reduce the commuters’ travel time or the queue behind the
bottleneck. The areas below three curves are 0.6208, 0.5940,
and 0.5131 hours, respectively. It shows further that the
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Table 2: The influence of parameter 𝛿 on the mean trip cost and the watershed time instants.

𝛿min 𝐸[𝑐(𝑡)] 𝑡
0

𝑡
1

𝑡
2

𝑡
3

𝑡
4

𝑡
5

𝑡
𝑒

𝑡
𝑒
− 𝑡
0

0 4.98 −1.28 −0.80 −0.80 −0.80 −0.55 0.21 0.27 1.55
5 4.46 −1.23 −0.80 −0.72 −0.68 −0.38 0.26 0.32 1.55
10 3.95 −1.18 −0.80 −0.73 −0.52 −0.21 0.31 0.37 1.55
15 3.43 −1.13 −0.80 −0.74 −0.36 −0.04 0.36 0.42 1.55
20 2.91 −1.08 −0.80 −0.75 −0.20 0.13 0.41 0.47 1.55
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Figure 5: The influence of parameter 𝛿 on departure rate.

adoption of flexi-time in equilibrium leads to less congestion
than under the fixed work schedule.

Figure 7 shows the joint effect of the 𝜃-value and the
𝛿-value on the equilibrium trip cost. For a fixed 𝜃, the
expected trip cost declines with an increase of the preferred
arrival time interval. Since the schedule delay costs endured
by commuters are reduced with an increase of the length
PATI without changing the departure pattern, this means
that transport policies to encourage firms in CBD to adopt
flexi-time can ease overall system traffic congestion. On the
other hand, for a fixed 𝛿-value, the expected trip cost declines
with the decrease of 𝜃-value, which confirms that improving
system reliability and reducing uncertainty will increase the
system’s effectiveness.

4. Conclusion

This paper investigated the travel choice behavior under
uncertainty on morning commute problem by considering
the capacity variability of a highway bottleneck. The bot-
tleneck model was applied to analyze the departure time
pattern of a group of homogeneous commuters with the
same preferred arrival time interval. The capacity of the
bottleneck is assumed to follow a uniform distribution and
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Figure 6: Travel time with different 𝛿-value.
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Figure 7: The equilibrium trip cost 𝐸[𝐶] with different 𝜃 and 𝛿.

the commuters’ departure time choice to follow the UE
principle in terms of the mean trip cost. The analytical
solution of the stochastic bottleneckmodel was derived. Both
analytical and numerical results show that increasing the
capacity variation results in longer peak period and higher
commuters’ mean trip cost. In addition, it is shown that with
longer flexi-time interval, the departure time distributions
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become flatter. This suggests that flexi-time is an effective
demand management measure for alleviating peak conges-
tion. For future research, we will further improve the model
with consideration of heterogeneous commuters and travel
risk and apply the model in analyzing such policy measures
as congestion pricing, metering, and flexible work scheme.
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