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Abstract 

High-precision 
 232

Th-
208

Pb dates have been obtained from allanite porphyroblasts that 

show unambiguous microstructural relationships to fabrics in a major syn-metamorphic fold 

in the SE Tauern Window, Austria. Three porphyroblasts were analysed from a single garnet 

mica schist from the Peripheral Schieferhülle in the core of the Ankogel Synform, one of a 

series of folds which developed shortly before the thermal peak of Alpine epidote-

amphibolite-facies metamorphism:  allanite grain 1 provided two analyses with a combined 

age of 27.7 ± 0.7 Ma; grain 2, which was slightly bent and fractured during crenulation, 

provided two analyses with a combined age of 27.7 ± 0.4 Ma; a single analysis from grain 3, 

which overgrew an already crenulated fabric, gave an age of 28.0 ±1.4 Ma. The five  
232

Th-
208

Pb ages agree within error and define an isochron with an age of 27.71 ± 0.36 Ma (95% 

c.l.; MSWD = 0.45). The results imply that the crenulation event was in progress in a short 

interval (<1 Ma) around 28 Ma and that the Ankogel Synform was forming at this time. The 

thermal peak of regional metamorphism in the SE Tauern Window was probably attained 

shortly after 28 Ma, only c. 5 Ma after eclogite facies metamorphism in the central Tauern 

Window.  

Metasediment may contain allanite porphyroblasts with clear-cut microstructural 

relationships to fabric development and metamorphic crystallization; for such rocks, 
232

Th-
208

Pb dating on microsamples offers a powerful geochronological tool. 

Keywords: allanite, Tauern Window, U-Th-Pb geochronology 
 

INTRODUCTION 

 

Determining accurate age information on the thermal and tectonic evolution of metamorphic 

belts requires both precise analytical techniques and thorough understanding of the 

relationship between the dated material and the metamorphic crystallization history. 

Achieving both simultaneously has proved difficult: the mst precise analytical data comes 

from the U-Th-Pb system but generally from minerals which cannot be easily linked by 

petrographic observation to metamorphic and deformation history, or from minerals where 
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there is doubt whether the observed isotope systematics relate to the minerals analysed or to 

U-Th rich inclusions they contain. These problems were reviewed by Vance et al. (2003) and 

some success in overcoming them using inclusions and rare-earth chemistry has been reported 

by Rubatto et al. (2011) for example. However the link to textural relationships among the 

major minerals is generally unclear. In this study we present an example where the textures of 

individual allanite porphyroblasts have clear textural relationships to the crystallization and 

deformation history of their matrix coupled with Th-Pb isotope systematics that allow precise 

dating of a specific deformation that produced major folding in the Pennine Zone of the 

Eastern Alps. The results emphasize the tight timeframe for the thermal evolution from high- 

P/low-T conditions to the metamorphic peak. 

 

GEOLOGICAL SETTING AND PETROGRAPHY 

Pennine Zone rocks are exposed in the Tauern Window whose general tectonic setting and 

the location of the sampling area within it are shown in Fig. 1a. The Ankogel Synform is a 

major structure developed in Mesozoic cover rocks (Peripheral Schieferhülle) in the SE part 

of the Tauern Window. It is the most easterly of a fan-shaped array of major asymmetric folds 

on the west side of the Hochalm-Ankogel massif, a dome cored by Hercynian and older 

basement orthogneisses (Zentralgneis) and paragneisses (Inner Schieferhülle) (Fig. 1b). These 

folds, which also include the Hölltor Antiform, Mallnitz Synform and Sonnblick Antiform, 

are broadly coeval and have been ascribed to the DA
2
 phase of Bickle & Hawkesworth (1978) 

by Droop (1979), equivalent to D2 of Kurz & Neubauer (1996). They possess W- to SW- 

dipping axial surfaces, deform older thrust surfaces and a penetrative schistosity (SA
1
), and 

are characterised by an SA
2
 axial-planar crenulation cleavage. The Ankogel Synform is an 

inclined tight to isoclinal fold that curves around the western flank of the Hochalm-Ankogel 

Dome (Fig 1). In the vicinity of Mallnitz, the amphibolite that occupies its core forms a 

rounded hinge with a bulbous outcrop whose width is accentuated by topography; in the mica 

schists surrounding the amphibolite here, the axial plane is hard to locate precisely, but the 

axial planes of mesoscopic closed-to-open FA
2
 folds and associated SA

2
 crenulation cleavage 

dip at ~ 30-50º to the WSW and FA
2
 fold axes plunge at ~ 25-40º to the SW. The DA

2
 folding 

predated the thermal peak of Alpine regional metamorphism as shown by the presence, in 

many schists, of annealed DA
2
 mica crenulations, locally overgrown by post-tectonic 

(helicitic) garnet porphyroblasts, and by the observation that the Ankogel Synform is cut by 

metamorphic isograds (Droop, 1981; Droop & Harte, 1995).  

The analysed sample, 53296,  is a mica-rich pelitic schist, containing porphyroblasts 

of garnet and smaller allanite; it occurs low in the Peripheral Schieferhülle, close to the axial 

trace of the Ankogel Synform. It was collected from Auernigwald, 1.75km NE of Mallnitz at 

an altitude of 1700m. The pelite is separated from the amphibolite that forms the core of the 

fold by a thin, up to 20m thick, discontinuous marble band. The full mineral assemblage is:  

muscovite, garnet, biotite, quartz, allanite, titanomagnetite, apatite, tourmaline, with minor 

retrograde chlorite. In the fine-grained muscovite-rich matrix, SA
1
 schistosity was extensively 

crenulated during folding, with some development of new mica parallel to the axial planes of 

the crenulations (Fig. 2a) which dip at 48/252; locally, randomly oriented recrystallized 

muscovite flakes overprint the crenulated schistosity (Fig. 2b).  

Euhedral 1.5-2.5 mm diameter garnet porphyroblasts contain fine-grained inclusions 

generally defining a straight internal schistosity (SA
1
) indicating growth before the 

development of crenulation. Occasional grains have slightly curved inclusion trails near the 

grain edges.  Semi-quantitative chemical data for a typical garnet (Table S1; Fig. S1a) show 

the garnet is Mn-rich with XMn approximately 0.36 in the bulk of the grain. Allanite, typically 

0.2-0.3 mm across, contains curved inclusion trails of aligned titanomagnetite. In detail the 
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textures indicate porphyrobast growth after original fabric formation and spanning at least 

part of the period of crenulation development. The inclusion patterns suggest allanite grew 

toward the end of garnet growth. Figure 2c shows an allanite porphyroblast which has grown 

over the hinge of a pre-existing crenulation, defined by alignment of titanomagnetite grains. 

Elsewhere allanite grains are deformed and fractured by the crenulation (Fig. 2d). This texture 

is closely similar to that of other pelitic schists in the vicinity although allanite in some cases 

clearly pre-dates the crenulations. The mineral assemblage of the sample itself does not 

provide tight constraints on metamorphic conditions but it is interbedded with pelites 

containing typical assemblages of the chloritoid-biotite zone mapped by Droop (1981) and 

further discussed by Droop (1985) and Droop & Harte (1995) who estimated conditions of 

0.7±0.1 GPa and 550±10 ºC based on conventional thermobarometry. Textural evidence in 

the form of the narrow syn-DA2 rims indicates that the garnet porphyroblasts in the studied 

schist effectively stopped growing during the DA
2
 crenulation event, i.e. before the helicitic 

garnet in some of the adjacent schists and thus before the thermal peak of metamorphism. The 

reason for this early cessation of garnet growth is likely to be related to the exhaustion of 

primary chlorite in this rock given that, in chloritoid-free schists in the Barrovian sequences 

of the SE Tauern and elsewhere, garnet growth can be attributed to the continuous reaction  

Chl + Ms + Qtz = Grt + Bt + H2O (Droop, 1981).  Chlorite is therefore likely to have been 

present during formation of the original SA
1
 schistosity (Fig. 6);  if the bulk Mg/Fe ratio of the 

rock were atypically low, chlorite consumption by this reaction could have resulted in 

exhaustion of chlorite at a relatively low temperature, which would have halted significant 

garnet growth at that point. 

 

Allanite Characterisation  

Individual allanite porphyroblasts were examined in situ by SEM. Selected examples are 

illustrated in Fig. 3. They exhibit complex zoning patterns comprising three distinct aspects:  

(i) concentric zoning, sometimes with an oscillatory character (Fig. 3 a);   

(ii)  sector zoning (Fig. 3b) and  

(iii)  fine scale laminar zoning sub-parallel to the titanomagnetite inclusion fabric 

and the external schistosity (Fig. 3c). In part it is defined by discrete rectangular outlines 

reminiscent of sheet silicate shapes; in some cases their arrangement defines crenulation 

hinges (Fig.3d) while locally they are randomly orientated, mimicking on a finer scale the 

decussate textures of  some muscovite (Fig.3e). These features are typical of other allanite 

grains examined including the three analysed grains.  

Examination of the chemistry of one porphyroblast in detail using the microprobe 

confirms that the atomic number contrast in all three zoning styles is mainly related to varying 

thorium concentration which ranges from <1 to >2.5% (Fig. 2f,g). Some of the more subtle 

effects appear to involve zoning of the light rare earth elements. Partial electron microprobe 

analyses of a typical grain are presented in  Table S2 and Fig. S2. 

In addition to inclusions of titanomagnetite and white mica inclusions there are 

occasional tiny (<10µm) inclusions of zircon and monazite, the latter mainly located in 

cracks. Zoning patterns in the allanite are sharply truncated  by these cracks and there is no 

evidence of  allanite recrystallization by later alteration and the continuity of zoning patterns 

from core to rim indicates they grew in a single metamorphic episode. 

The development of new allanite porphyroblasts at this metamorphic grade is 

interesting as it is well above conditions where allanite usually grows at the expense of 

detrital monazite and close to conditions where allanite is succeeded by new metamorphic 

monazite (Smith & Barreiro 1990; Wing et al., 2003; Janots et al., 2008, 2009) although as 

emphasised by Spear (2010) reactions controlling this isograd are complex and not fully 
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understood. However apart from minor grossular component in garnet, apatite and allanite are 

the only calcium-bearing minerals in this rock. Approximate whole rock CaO and Al2O3 

contents calculated from modal proportions of minerals are ~0.5 and 25 wt% respectively. 

Under the metamorphic conditions of the sample published models (Janots et al., 2007; 

Spear, 2010) suggest reactions with apatite, of the form: 

  apatite + allanite + … →  monazite + Ca-phase +… 

should have occurred in rocks of such low Ca concentrations. The composition of allanite in 

the present sample differs significantly from the modelled examples; in particular Th contents 

are much higher, typically 1% and up to 5% of the A-sites are occupied by Th. In addition 

significant amounts of Mn are also present (~0.1 per formula unit, Table S2). As a 

consequence the allanite stability field may have expanded to higher temperatures. It is 

noteworthy that the outermost zones of the analysed garnet have lower Mn (Fig. S1a) which 

correlates with the timing of allanite growth inferred from the inclusion patterns. 

A possible mechanism to explain the nucleation and growth of the allanite 

porphyroblasts close to the metamorphic peak in this sample would involve the survival of 

detrital monazite during prograde metamorphism because of  the unusually Ca-poor 

composition of this particular pelite until, at peak conditions, it reacted with Ca, introduced 

metasomatically from the immediately overlying greenstones and/or carbonates. 

 

Pb-isotopic behaviour of allanite 

The value of allanite in geochronology has been emphasized in several recent studies 

(Gregory et al., 2007; Janots et al., 2008, 2009; Smye et al., 2014). Because of its relatively 

high closure temperature for Pb isotopic diffusion, allanite is particularly suitable for dating 

metamorphic crystallization in the present context. Spear & Parrish (1996) confirmed earlier 

suggestions of a value close to 650°C, and Oberli et al. (2004) presented evidence for a value 

even above 700°C for an igneous system. In either case conditions of allanite crystallization 

here are well below the closure temperature and allanite ages potentially date crystallization. 

The excellent preservation of growth zoning features confirms that diffusion of major and 

trace elements was also limited under these metamorphic conditions.   

There are also potential complications with allanite dating. First, because allanite 

incorporates Th preferentially to U, it also  incorporates unsupported 
230

Th which by decay 

leads to enhanced 
206

Pb abundances which require correction if ages are based on the 
238

U-
206

Pb system (e.g. Schärer, 1984; Oberli et al., 2004). This problem is avoided by using the 
232

Th-
208

Pb decay scheme. Second, because metamorphic allanite growth is often linked to 

monazite breakdown there is a possibility that the initial Pb may be more radiogenic than that 

in U,Th-poor phases used to estimate the initial Pb (Romer & Siegesmund, 2003). This issue 

is discussed specifically below. An additional complication is the common presence of small 

thorite inclusions (Smye et al., 2014), but no evidence of such inclusions was seen during 

SEM examination of over 50 allanite grains in this study. Furthermore, an often relatively 

high common lead content in metamorphic allanite (e.g. Gregory et al., 2007) negatively 

affects age resolution, a problem which is also encountered in the present study. 

 

ANALYTICAL METHODS AND RESULTS 

Allanite samples were obtained from polished, 150 µm thick sections after petrographic 

examination in the SEM (SEM and electron microprobe techniques used are summarised in 

Appendix S1). Individual allanite porphyroblasts were extracted under the petrographic 

microscope using a stage-mounted drill. After extraction of the sample plugs, adhering mica-

rich matrix was gently scraped off the individual allanite crystals, revealing perfectly flat 

euhedral crystal faces. Prior to isotopic analysis, the allanite grains were ultrasonically 
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cleaned in analytical grade hexane, acetone, and high-purity water in order to remove residues 

from the crystal mounts. Th-U-Pb isotopic measurements were made on five allanite grains, 

two pairs of fragments of single allanite porphyroblasts and one single grain, following 

procedures described in Oberli et al. (2004).  Further analytical details are given in the 

footnotes to Table 1. Initial Pb isotopic composition was estimated by analysis of a 

conventional white mica separate from the same hand specimen. 

Analytical data for the white mica separate and five allanite microsamples are listed in 

Table 1. Each allanite yielded approximately 2-5 ng Pb; blanks were less than 1% of the Pb 

analysed. Th concentrations in allanite range from 8000 to 12000 µg/g, U concentrations are 

between 500 and 800µg/g and Pb concentrations between 150 and 220 µg/g. The white mica 

has a low U/Pb ratio with 
238

U/
204

Pb of 0.17;  the Th/U ratio was determined as <2 using in 

situ LA-ICPMS (see Appendix S1); this confirms that the Th/Pb ratio is low enough that 

thorogenic Pb growth is insignificant on the 30 Ma timescale. The data are plotted in Fig. 4  

which shows a perfect fit to an isochron within analytical error. Hence individual allanite ages 

were calculated using the white mica analysis as a proxy for initial lead isotopic 

compositions. The results are plotted on a 
208

Pb/
232

Th – 
206

Pb/
238

U concordia diagram in Fig. 

5, which also shows SEM images of the analysed grains. 

The two halves of grain 1 (Fig. 5) have 
232

Th-
208

Pb ages of  27.6±0.9 and 27.7±1.1 Ma 

while the fractured elongate grain 2 has 
232

Th-
208

Pb ages of 27.9±0.6 and 27.4±0.7 Ma. The 

single analysis of grain 3 gives 28.0 ±1.3 Ma (errors at the 95% confidence level). The five  
232

Th-
208

Pb ages agree well within error and taken together define an age of 27.71±0.36 Ma 

(MSWD=0.45, Fig. 3). The corresponding 
238

U-
206

Pb ages are slightly older and they plot 

below concordia on the Th-U concordia diagram in Fig 5; as noted above the latter ages are 

likely to be biassed by excess 
206

Pb and they are not considered further. 

 

DISCUSSION  

Because of their young age and high common  lead concentrations, the calculated ages are 

sensitive to uncertainties in the composition and uniformity of initial lead. The use of the lead 

isotopic composition of white mica as the best available estimate of initial lead is justified by 

consideration of the lead mass balance for this rock: white mica comprises ~ 90 volume% of 

the rock and the remaining 10% is dominated by quartz and biotite. The only mineral likely to 

have Pb concentrations greater than white mica is allanite but this comprises much less than 

1%. Overall we estimate that mica account for 98% of the Pb in the sample and hence would 

have dominated the composition of lead incorporated into growing allanite porphyroblasts. 

Romer & Siegesmund (2003) discussed the possibility that initial lead in allanite may be 

biassed by preferential incorporation of radiogenic lead from monazite breakdown. Given the 

Pb mass balance and petrographic evidence for active white mica crystallization during 

allanite growth  (Fig. 2), this is unlikely in the present case. For two of the analysed allanite 

grains two separate fragments of each, with different Th contents, were analysed and the good 

agreement between them supports this conclusion as does the agreement between the 
208

Pb/
204

Pb of white mica and and the initial 
208

Pb/
204

Pb ratio of  the allanite isochron if the 

five allanitegrains are regressed without the white mica data (Fig.4).  

Weighted averages of data for the paired fragments gives ages of  27.7 ± 0.7 Ma  for 

grain 1 and 27.7 ± 0.4 Ma for grain 2. The latter grain was slightly bent and fractured during 

crenulation (Fig. 5 lower image). In contrast grain 3 overgrew an already slightly crenulated 

fabric (Fig.5 upper image) but has an indistinguishable age of 28.0±1.4 Ma. Thus the 

crenulation event was in progress in a short interval around 28 Ma. If the dated allanite grains 

span the whole event then it probably lasted no more than 1 Ma.  
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The relationship of the allanite age to the overall microstructural evolution of the rock 

is summarised in the cartoon in Fig. 6 and the link between the microstructures and the 

mesoscopic folding implies that the Ankogel Synform was actively developing at this time. 

Peak-metamorphic temperatures were reached at shortly afterwards. The lack of post-

metamorphic deformation further implies that folding in the Ankogel Synform was complete 

by 28 Ma. 

Previous geochronological studies of the age of peak metamorphism in the SE Tauern 

Window have more ambiguous relationships to crystallization history. A study of white mica 

Rb-Sr ages in the schists from the Mallnitz Synform, 6 km NW of the present study (Inger & 

Cliff, 1994) found a range  of ages from 32 to 23 Ma which they correlated with variations in 

textural relationships between white mica and fabric development (Fig. 6); samples with well 

developed crenulation, correlated with formation of the Mallnitz Synform, gave ages of 28.7 

± 0.7 Ma. This is consistent with the assignment of the Mallnitz and Ankogel Synforms to the 

same  DA
2
 episode. On the SW flank of the Sonnblick Antiform, six white mica separates 

from Gneiss Lamella 4 (Exner, 1964), part of the Rote Wand-Modereck Nappe gave a mean 

Rb-Sr age of 27.2 ± 0.8 Ma (Reddy et al.., 1993). In the core of the Sonnblick Antiform Rb-

Sr bulk white mica ages scatter widely but a microsampling study showed white mica 

crystallization associated with crenulation occurred at 25.5 ± 0.3 Ma (Cliff & Meffan-Main, 

2003), implying continued deformation to a later date here. Glodny et al. (2008) presented 

white mica ages suggesting continued ductile deformation in mylonites along the Mölltal Line 

until 20 Ma. In the SE Tauern Window the earlier parts of the metamorphic P-T path, 

including the blueschist facies evidenced by pseudomorphs after lawsonite, remain undated. 

Near the southern margin of the central Tauern Window the earlier stages are better 

dated. Here eclogite facies assemblages have yielded consistent ages 32.8±0.5 Ma by Lu-Hf 

on garnet (Nagel et al,. 2013), 34.2±3.6 Ma by U-Pb on allanite (Smye et al., 2011); white 

mica Rb-Sr ages on coarse eclogite facies mobilisates are 31.5±0.7 and 32.1±1.6 Ma (Glodny 

et al., 2005). Tightly grouped white mica Rb-Sr ages between 30.6 and 31.4 Ma (Glodny et 

al., 2008) date subsequent shearing under greenschist facies conditions within and at the 

margins of the Eclogite Zone and samples with the best-preserved peak greenschist 

assemblages range from 31.3±0.6 to 28±1 Ma (Inger & Cliff, 1994 excluding samples with 

post-peak retrogressive minerals such as biotite). Smye et al. (2011) discussed the problems 

in achieving peak Barrovian metamorphic conditions within a short interval after eclogite 

formation; they suggest up to 10 Ma for this interval but the latest dating suggests the time 

scale may be no more than 3 Ma.  

In the West Tauern Window, peak amphibolite facies conditions appear to have been 

reached at a similar time: an Rb-Sr age based on analysis of two garnet rims and nearby 

matrix indicates an age of 31±1 Ma (Christensen et al., 1994). More recent work indicates 

that Sr incorporated into growing garnet may often have come from a reservoir that differed 

from that defined by the matrix at the time of garnet growth (Sousa  et al., 2013). However in 

the Upper Schieferhülle sample analysed by Christensen et al. (1994) the matrix was feldspar 

free and the Sr budget of the matrix is likely to reflect the assemblage from which garnet 

grew, at least for the garnet rims. One sample dated by Glodny et al. (2008) apparently 

confirms deformation under amphibolite facies conditions occurred at 31.2±0.4 Ma although 

other samples suggest similar conditions persisted until c.20 Ma. 

 

CONCLUSIONS 

The three allanite grains dated by Th-Pb here provide a precise age of 27.71±0.36 Ma for a 

texturally well-defined stage close to the metamorphic peak in  the SE Tauern Window. 

Together with recent improved estimates of the timing of eclogite facies metamorphism this 
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age again emphasises how quickly peak metamorphic conditions were reached after the high 

pressure stage.  

Where metasedimentary rocks contain allanite with clear-cut microstructural 

relationships to fabric development and metamorphic crystallization, 
232

Th-
208

Pb dating on 

microsamples offers a particularly powerful geochronological tool with the potential to 

resolve the timing of deformation at the <1 Ma level. In other situations where allanite 

crystallises earlier in the metamorphic history it may provide a means to data stages on the 

prograde P-T path. 
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SUPPORTING INFORMATION 

 

Appendix S1, includes Tables S1 and S2, Figures S1 and S2. 

 

Table S1 Garnet compositions 

Table S2  Allanite analyses of grain A48 

Figure S1 Typical garnet BSEM image showing straight inclusion trails, a Mn linescan 

(long white line) and spot analysis locations (white x) in the core, at the edge and 0.1mm 

from the edge. 

Figure S2 BSEM image of allanite A48 from 53296-ii showing the probe analysis 

locations in relation to zoning. Traverse 1 is approximately normal to the concentric zoning, 

starting in a ‘light’ sector (1.1 & 1.2) and continuing in the ‘dark’ sector. Traverse 3 crosses 

from the ‘light’ sector (3.1-3.2) into the ‘dark’ sector (3.3-3.6) 
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Figure Captions 

Figure 1  a) General tectonic map of the Tauern Window, showing the location of the 

detailed map of the study area b) Geological map of part of the SE Tauern Window, after 

Droop (1979), showing the relationship of the sample locality to the axial trace of the 

Ankogel Synform (AS).  HA: Hölltor Antiform 

Figure 2  Photomicrographs (a) typical area of crenulated schist with prorphyroblasts of 

garnet (G) and allanite (A); note the occurrence of individual white mica grains crystallized 

parallel to crenulation axial planes, (b) a second area in the same thin section with decussate 

white mica texture, (c) euhedral allanite porphyroblast overgrowing crenulation defined by 

titanomagnetite grains. The matrix is predominantly composed of white mica with minor 

biotite and titanomagnetite, (d) an elongate allanite grain that has fractured during 

crenulation. 

Figure 3  Back-scattered SEM images of  selected allanite grains showing different 

styles of zoning. (a) oscillatory zoning, (b) sector zoning, (a,b and c) zoning parallel to 

schistosity,  (d) zoning reflecting allanite replacement of a crenulated schistosity, (e) zoning 

reflecting allanite replacement of a decussate sheet silicate texture, (f,g) images of a small 

part of an allanite grain comparing the the back-scattered SEM image (f) and the Th x-ray 

image of the same area (g) confirming that thorium variation is a major cause of the observed. 

Figure 4 
208

Pb-
232

Th isochron plot of the five allanite analyses plus white mica; the 

latter is not resolved from the y-axis at this scale. 

Figure 5 U-Th concordia diagram showing the similar displacement of all five allanite 

analyses to the right of concordia due to excess 
206

Pb from incorporation of  
230

Th. The insets 

show BSEM images of the three analysed grains. 

Figure 6 A cartoon to illustrate microstructural development in relation to the formation 

of the the Mallnitz and Ankogel synforms. The upper panel shows the growth of allanite in 

53296. The lower panel compares this with the less precise data from the Mallnitz synform to 

the west. 
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Table 1  U, Th and Pb data for minerals from sample 53296 (Leeds registration number; 

collected by Droop (1979) as GD731g). 

 

 

Table 2  U, Th and Pb data for minerals from sample GD731g (Droop, 1979, registered at Leeds as specimen 

53296) 
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Allanite analyses were made at ETH Zurich using techniques described by Oberli et al. (2004); white mica was analyzed at 

Leeds using standard chemical techniques and a 202Pb-205Pb double spike. 

The uncertainties shown are 1σ and  for isotope ratios refer to the least significant digits of the corresponding numbers. 
a
 corrected for Pb analytical blank (samples 1a, 1b, 2a: 12.2 ± 3.1 pg; samples 2b, 3: 7.2 ± 2.8 pg; U and Th blanks were 

negligible) and instrumental mass bias  

b 
 correlation coefficient 

c
 corrected for Pb initially present in the samples using white mica Pb isotopic composition 

d
 approximate limit on Th concentration in white mica based on LA-ICPMS determination of Th/U ratio (~2) 
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