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We calculate the deformation of a spherical droplet, resyfrom the application of a pair of opposite forces to et located
diametrically opposite at the two ends of the droplet. Thefenergy analysis is used to calculate the force—distamges for the
generated restoring forces, arising from the displacewfeht particles relative to each other. While the logarithdependence
of the “de Gennes—Hooke” constant on the particle to dragiget ratio,v, is rather well known in the limit of very smail, we
find that for more realistic particle to droplet size ratiog, v = 0.001 to Q01, the additional constant terms@©f1) constitute
a significant correction to previously reported results. déeive the restoring force constant to bey20.5—In(v/2)] "2, in
perfect agreement with the exact semi-numerical analysieecsame problem. The deviation from the linear force-ldisgment
behaviour, occurring close to the point of detachment,de atvestigated. A study of the energy dissipated showshetan
increasingly dominant component of the work done duringdéichment of the particles, asdecreases. This indicates the
existence of a significantly higher energy barrier to desonpof very small particles, compared to the one suggesyethdir
adsorption energy alone. The influence of the line tensiatherletachment force is also considered. It is shown thatenhree
tension is important, the contact angle is no longer a cohbta instead alters with the displacement of the partitta®s their
equilibrium positions.

1 Introduction easily shown to b&1®

2 2
The behaviour of small particles trapped at liquid-liquid o Eag = mya“(1—cosb) 1)

liquid-gas interfaces continues to be an area of greatdster \yherey is the surface tensiom is the radius of the particle,
both from an academic point of view, as well as for its impor-and g is the contact angle between the liquid and a solid sub-
tance in many industrial applications. The adsorption of hy strate comprising of the same material as that for the pertic
drophobic or partially hydrophobic particles to the suef@¢  \jore precisely, the energy difference as given by Eq. (Breef
bubbles during the froth flotation process is often consider tg the energy of a particle that has been fully displaced from
to be the most widespread technique in recovery and separgse interface into the bulk phase, as measured relativesto it
tion of ore minerals in mining and related industfiés The  energy when setting at equilibrium at the surface. The parti
crucial role played by particles adsorbed at surfaces, $tede  cje displacement here is assumed to be into the more dense
bilisation of bubbles has similarly been well known and fre'liquid phase,.e. the one into which the contact angfeis
quently used to prevent foamig, as for example in defoam- {raditionally measured. If the particle is moved into the op
ing of liquids used in air-conditioners and cooling systems posite phase, then the facttt — cosf) in Eq. (1) needs to
Interestingly, it is now also well recognised that partoldth be replaced wit{1+ cosd). The result in equation (1) also
appropriate surface chemistries, and hence contact awgles  taes into account any interfacial energy associated uih t
stabilise bubbles and emulsion droplets against manyrdifte  creation of an additional circular contact area betweervie
modes of colloidal instability, including coalescencetv@dd |k phases, which originally would have been occupied by
ripening and disproportionatidrf. Indeed, the adsorption of the particle when at the interface. Even for a small nanepart
nanoparticles onto the surface of microbubbles remain®bne ¢le of radiusa = 10 nm, the adsorption energy can be several
the very few methods that seem to be genuinely able to arregins of thousands ¢ T. Thus, particles, once adsorbed, are
the disproportionation process in such systems and ertseire tyather difficult to displace from the interfaces. It is thiop-
long term stability for these very small bubbfedhe adsorp- erty which makes the particles such a good colloidal steduii
tion energy for a particle adsorbed at a liquid-air inteefé&  of emulsions and bubbles. In a similar manner, particles-acc
a Food Colloids Group, School of Food Science and Nutrition, University of mUIating- a-t the interface-s between tWQ phases, formed giyrin
Leeds, Leeds L 9JT, United Kingdom. : the demixing of two fluids th_rough splnqdal decqmposmon,
b Department of Mathematics, University of Leicester, Leicester LEL 7RH,  Can arrest the phase separation at some intermediate stage d
United Kingdom. ing the process. This gives rise to the so called bicontisuou
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interfacially jammed emulsion gel (bijel) systeths first The theoretical treatment of the detachment of the parti-
predicted theoretically by Cates and co-workérs cles from fluid interfaces has largely focused on situations

While the adhesion of particles to the surface seems irrevolving planar interfaces, where the gravitational, ansdme
versible in many situations, it is nonetheless possiblatse ~ cases also the buoyancy forces, are inclded. Such situ-
desorption of these through the application of a suitablerex ~ations are of course what one encounters in problems rglatin
nal field. For example magnetic or electrically polarisgie  t0 the process of froth flotation. These types of analysis pro
ticles are shown to detach from the interfaces in the presencvide limits on the size of particles that can be floated on the
of strong enough magnetic or electrical fielfs'8 Similarly, interface and also the maximum detachment forces necessary
a higher density of particles relative to the surroundimg li to pull the particles out and away from the surface. Huh and
uid medium may be sufficient to detach the particles from theScriverP! provide tabulated numerical data for the shape of
bubbles, as the bubbles try to rise and the particles arecpull @n equilibrium fluid that extends far outwards from a circu-
down by the gravity®. Detachment of the particles from the lar line of contact away from an immersed cylinder, given as
surface of such Pickering stabilised bubbles or droplets no @ function of radius of the contact circle, contact angle; su
mally leads to the breakup of the foam or the emulsion sysface tension and density difference across the interface. A
tem. The triggered destabilisation of the emulsions hasymanalytical results for the same problem have been obtained by
potential applications, as for example in the targetechssiof ~ Rapacchietta and Neumathtin the limit of small Bond num-
drugs. Development of such vehicles for controlled dejiver bers (ratio of gravity forces to capillary ones). These atgh
could benefit from a clearer understanding of the nature angonsidered forces acting on the particle during the detactim
magnitude of restoring forces that result from the displacePprocess and proposed the particle/interface aggregdig- sta
ment of a particle, when it is disturbed from its equilibrium ity criteria based on the work of detachment of the particle
position on an interface. Control of the particle adsomtio ~ from the interface. The detachment work of a small sphere
detachment is important in liquid marbles which have premis from a surface was also considered analytically by Pitots an
ing applications in micro-chemical and bioreacf9r&and  Chatead’#® making use of Derjaguin approximation. Com-
tuning droplet impact dynamiég paring their analytical and experimental data, the impuorgéa

On the experimental side, several studies involving atomi@ the contact angle hysteresis for the detachment work was
force microscopy and micro-force balance have provided 41ghlighted in this work. KOW"’"CZUkﬁnd Drzymédfa using
detail account of the forces that result during the apprpactfduations derived by Scheludkeo al.™, show how experi-
subsequent attachment, and finally the detachment of partp_wents involving attachment and detachment of particles to a

cles from the surface of bubf&232 Close to the surfaces of 1Quid interface could be used to determine the staticchtta
bubbles, and prior to the attachment of the particle, theelor MeNt and detachment contact angles using a Washburn-type

involved are a combination of the well-known colloidal in- {€chnique. Indeed, pulling a sphere through the liquidrinte
teractions, namely van der Waals, electrostatic and hydrop faceis tht_a b:_:\Sls for measuring the surface tenspn andatonta
bic force€®33 Where the surface of particles or bubble is angle of liquids on sphe_rlcal surfage; ina teqhmque oféenr
covered by macromolecules, additional interactions vingi ~ [€'Ted to as sphere tensmme‘t_?y‘f"“ 52751 O'Brien*®, work-
steric repulsion, as well as bridging and depletion atibas; N9 in the low Bond number limit (Be< 1), has proved that
may also be prese#t38 At the point of attachment, there is a the restoring force resulting from the displacement of tae p
discontinuous jump in the value of measured force. From thidiclé from its equilibrium position on the interface canisat
point onward the variation of the force with displacement isfactorily be described as a linear function of the distairce,
largely governed by the interfacial tensions between the tw similar manner to the Hooke’s law as had been anticipated by
surrounding fluids €.g. air-water or oil-water) and the fluids J0anny and de Genns

and the particle. In particular, the experimental resultgest The inclusion of gravity in all of the calculations mentiche
that in the majority of cases the restoring forces generased above, even those involving small Bo numbers, and in par-
a result of the displacement of a particle trapped on the suticular for the fluid phase, is rather crucial in allowing Buc
face of a bubble or droplet, away from its equilibrium pasiti  theoretical analysis to be performed. The boundary canditi
varies almost in a linear fashion with the displacement ef th assuming a flat interface at distances far from the contaet li
particle®®. This linear Hookean type variation, first suggestedwill fail to provide an analytical solution in the completb-a

by Joanny and de Genn¥s®, continues to distances almost sence of gravity. The situation is best demonstrated by con-
up to the point where the particle becomes detached frorsidering an air—water interface where the displacemertiof t
the droplet,.e. where the force reaches its maximum value, particle into the air causes the distortion of the interfadee
shortly prior to the particle leaving the interface. Howeve rise of the liquid pulled up with the particle involves adalital
determining the range of validity of “de Gennes-Hooke'st'la gravitational energy. For example, for a rather simple aase
analytically is an interesting problem that is considereceh  volving a rectangular slab held partially immersed in ailigu
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the height to which the fluid will rise next to the slab is found  Yet, a further possibility in choosing a suitable constrain
to beh=/(2y/pg)(1—sinB) whenb < /2, wheregis the s the one employed by Guzowsdtial.>’. There, the centre
gravitational strength and is the density of the fluieP. In of mass of the droplet (or the droplet+particle system) is re
the absence of gravity whepgy — 0 we haveh — . Inthe  strained, remaining fixed throughout the calculationsipee-
same manner, the distance away from the particle to which theve of the distortion of the droplet shape. The actual peabl
distortion of the interface extends also diverges in theabs considered in this work consisted of a particle which sat on
of gravity. This holds true for the slab problémabove, as the surface of a sessile droplet, to which a foFceas then
well as cylindrical object$°! and cases involving spherical applied. As such, the calculations of Guzowstkl. involved
particles:43, Clearly this is expected, since in absence of thetwo distinct contact angles; one between the particle aad th
gravitational energy associated with the distortion oflthe  droplet and the other between the droplet and the substrate.
uid interface, the whole bulk of the liquid will simply move They derive an interesting, and in principle rather genéoal

up with the particle such that the position of the particlare malism for solving this problem. They argue that the qugntit
tive to the liquid interface remains the same as its equilior £ = F/(yR) (i.e. the ratio of the pressure perturbation due to
value. forceF applied to the particle to the excess Laplace pressure

In problems involving the displacement of particles from inside the droplet) remains small in almost all practicalai

the surface of bubbles or droplets dispersed throughout 40Ns- Thus, the equations describing the disturbanceedfith
medium, as for example in Pickering emulsions, inclusion ofterface, the shiftin the position of the particle and thesrealof

gravity is neither appropriate nor relevant. It would bedinc e Lagrange multipliers, associated with constraintsiseg
rect to attribute a gravitational energy to any distortiéthe " total volume and_ﬂxed_posmon (_)f the centre of mass of the
interface in these circumstances. It is clear then, thatdero  droplet, can all be linearised in this small parametefThe

to be able to make progress with the theoretical calculation!in€ar nature of the equations allows the problem to be fermu
one has to either apply an equal but opposite counter forclted in terms of Green's functions, with the latter giving t
(to the one acting on the particle) to some part of the particl "€SPonse of the interface to a unit point force applied atny
droplet system, or alternatively impose some constraiptee ~ Siréd position on the _surfaé:Ye of the droplet. Using the metho
vent the displacement of the system as a whole. One possibftf Images, Guzowskét al.>" derive explicit expressions for

approach would be to apply a pair of opposite forces of maggheir Green'’s functions, in the special symmetricgl ase;rwh
nitudeF to the particle and the centre of mass of the droplet!N€ contactangle between droplet and substrate’isi8@rin-

In a real situation such a counter force may arise from thg draCiP!€ then, the response of the interface to the applicaifon

experienced by the droplet, given By~ 67 nRuif the spheri- & force_ to a_small _but f|r_1|te S|zegl particle, can be ob_talned by
cal shape of the dropletis not severely distorted. Herethe ~ '€Placing this particle with a series of appropriate paimcés
velocity of the system under the influence of the externaigor Cting along an imaginary surface passing through the-parti

applied to the particleRis the radius of the droplet, anpithe ~ C!€- However, in their work Guzowskt al. mainly focus on
viscosity of the dispersion medium. Alternatively, one mayC@Ses involving very small particles & a/R< 1) where, at
impose the “effective” constraint that the liquid contisue €St for the interfacial disturbance far from the partiies-
fully wet the surface of the container in which it residestes ~ t@Nces much larger thag) it suffices to treat the particle as a
particles are slowly displaced and eventually become ethc Pointsource. Theresults of this approach are evaluatedsiga
from the airliquid interface. This is the approach adojtgd  €x@ct” numerical (finite-elements) and semi-analytiazils
Davieset al.5° where also the volume of the liquid phase is tions _(solvmg the non-l_lr?earlsed.equanong in spemaésas
kept constant. In their study, the detachment energy for a vadut with boundary_ conditions having to be fitted numerically
riety of particles with different spheroidal shapes, inthg ~ 2nd found to provide a good level of agreement.

oblate and prolate spheroids, is numerically calculatétbes In the current study we consider a droplet (or bubble) hav-
suitable lattice Boltzmann simulation scheme. All elsenjei ing two particles adsorbed at its surface placed diamdirica
the same, it is found that the detachment energy can be expposite each other. The symmetry of the problem and hence
pressed as a function of the particle aspect ratio and tlglhei the mathematical formulation is identical to one of theiearl

of the centre of mass of the particle above the fluid interfdce papers on an axisymmetric capillary bridge by Orr, Scriven
equilibrium®®. These results are used in a latter study by theand Riva$®. We apply equal but opposite forces to each par-
same authors to consider the impact on an ensemble of sutitle as is shown schematically in Figure 1. The symmetri-
spheroid particles accumulated at a liquid interf&ceNote  cal nature of the problem, considered in this way, provides
that the requirement for the container walls to be fully imett  significant simplifications allowing us to obtain exact apial
together with constant volume of the liquid phase, ensuae th cal expressions for the distortion of the spherical bubde]

the air—water interface will once again be a flat one at detan hence the force vs displacement curves as the particles are
far from the particle, even when no gravity is present. pulled away from each other. In the limit where the radius of
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dropletR — o, the current problem becomes identical to the
one studied by Davieat al. for their spherical particle ca8®

Our problem is identical to that considered by Guzovesiai.
when the contact angle between their sessile drop and the sub
strate is 90 and the particle is located at the apex of the drop.
We attempt to extend their calculations to provide anadytic
expressions for the distortion in the shape of the droptets i
the smallv limit. While Guzowskiet al. also considered sim-
plifications to their more general analysis for small péetic
case$’, here our analytical expressions for the distortion of
the shape of the droplets, as well as force vs particle displa
ment, are obtained without resort to such a linearisatiadhén
force term. This allows for a very accurate description &f th
interfacial distortion and the force displacement relatight

up to the point of the detachment of the particle, and even at
distances very close to the particle (i-€.a). Thus, oneis able

to assess the range of the validity of the “Hooke-de Gennes”
law and the linearity of the force displacement relatiopshi
Furthermore, Guzowsle al. showed that to the leading term,
the dependence of the “compliance constant” on the size rati
of the particle to the droplet, is logarithmi®’. While for
very small values ob this term alone suffices in determin-
ing the value of the compliance, we note that typical sizerat
for Pickering stabilised emulsions in practice lie in thega
between 0.001 and 0.0&¢. nanoparticles o0& ~ 5 nm stabil-
ising droplets oR ~ 1 um). These values af are small, but
nonetheless-Inv ~ 4.6 to 6.9. This means that the presence
of a constant term of~ O(1) can constitute a major correc-
tion to the actual value of the “compliance constant”, which
can only be ignored in problems where the size ratio is unre-
alistically small. It is one of our aims_in this work to calats Fig. 1 The geometry of the system.
a more accurate value for the compliance constant thatgdhoul

remain valid for these small but nonetheless more practical

values ofv. 2 Model

The paper is organised as follows. The details of our modeJI_
t d ibed in Section 2. Section 3 ts,wtitho _. . . ) . . .
sysiem are gescribed in section ection = presents, utl 0S|der a droplet of incompressible fluid 1 immersed in fluid 2.

derivation, the key result of the present worle the analyti- ¢ ‘ tension bet the two fluids. the droplet i
cal expression for dependence between the force and the diQ—ue 0 surtace tension between the two Tiulds, the droplet in

placement of the particles in the limit of small ratio of pielet equilibrium is spherical with r.adiua, which is determined by
to droplet sizes. The rest of the paper details the derivatio 1€ VOIUMEvo of the droplet given by
of this result and its consequences. The solution of the vari A
ational problem corresponding to the model of Section 2 is Vo= 3

presented in Section 4 leading to exact “semi-analytioad” r )
In order to overcome the problem of having a net zero force

sults for the problem, valid for any particle size. In Sect : , . !
on the droplet—particle system we use two identical solid pa

the small particle to the bubble size ratio limit is exploted * | ¢ radi h . tth I
provide analytical expression for the distortion of theples  Ucles of radiusa adsorbed at the opposite ends of the droplet.
e equilibrium contact angle between the fluid interfacg an

surface and the displacement of the particles on each side Eﬁh ) _ ) .
the droplet, resulting from the application of equal but @pp the flat surface, is determined by Young's equation
site forced- to the particles. In Section 6, using our force vs Yip— Yop

displacement graphs we consider the dissipation of theggner 0= arccos<7) 5

that arises from the detachment of a particle from the iaterf

Finally, we discuss the effect of line tension in Section 7. wherey;, and y,,, are surface tensions of the surface of the

particle

he geometry of our system is shown in Figure 1. We con-

(@)

3)
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particles in contact with fluids 1 and 2, respectively. The re
sulting system is axially symmetric. We take the denser con-
tinuous fluid phase to be phase 2 here, with the fluid 1 then
comprising the body of the droplet. As such, the contactang| 3t SN 2
is then conventionally measured as the one consideredhato t oz
phase 2.

We apply opposite force§, and—F, on both particles, act- /
ing along the axis of symmetry of the system. Our aim is to L. Y
establish the positions of the centre of the partictgsand 1t Y
ro, as the functions of the applied force of magnitikdeUn- /
der applied force the system will remain symmetric, so that 4
ri = —r, =r, wherer is the distance of the patrticle centre 0
from the centre of mass of the fluid droplet. 0 1 2 3 4 )

We can write the magnitude of the external force applied to Ar/a
the particles as the derivative of the free energy of theesyst
Z, with respect to distance between them:

Az Fig. 2 Depe_ndence of force upon the posit?on of the particles at
— . (4) 6 = 90°. Solid curves are calculated numerically and correspond to
d(2r) v =0.1,0.03,0.01,0.003 0.001 (from left to right). Dashed curves

Free energy of the system is determined by presence of tHe?"respond to the small-particle limit, Eq. (12).
interfaces and can be written as

—
g /
v2- YA
~

F =YSp2+ YipSip + VopSp, (5) where >
where the quantitie$ denote areas between different con- &=/K2— %, )
stituents, indicated by subscripts 1, 2 apdcorresponding
to fluids 1 and 2 and the patrticles, respectively. SimilaHg, U =2K (\/ 1—k2sing — Kcose) , (10)

subscript for eacly indicates the interfacial tension between
the indicated phases. We neglect line tension for the mamen@nd the parameter changes betweeiin and 1, wheremin
Generally, the free energy of the system is the functional ofS the solution of transcendental equation

the shape of the droplet. The equilibrium shape of the dtople dAr (k)
at given particle positions can be obtained by minimisirey th < > =0, (11)
free energy of the system (5) with respect to possible dtople dk K=Kmin

shape, with the additional constraint of constant volunthef

droplet with Ar (k) being given by Eq. (8).

6) In the case of 90contact angle, the displacement can be

V =V, - :
0 expressed explicitly as a function of the force:

whereVj is given by Eqg. (2). This condition arises due to
incompressibility of the droplet fluid.

ar_ JiEe (12)
3 Displacement—force diagram in small- a - 2 .
article limit LA a
p m{2+|n[8R (1i¢+wi¢>)}},

This section presents, without derivation, the key redihe h
present work: the analytical expression for dependence peNere >
tween the forcé and the displacement of the particksin _ B i
- ; : ; o d=4/1 . (13)
the limit of small ratio of particle to droplet sizes. It isvgh

mya
parametrically by the formulas The derivation of the above formulas and their conse-

F(k) = myau 7 quences is given in the rest of the paper. Figure 2 demon-
strates the accuracy of these formulas in comparison with th
and full numerical solution, described in Subsection 4.4, &edi

B — U (k+&)a ent values of particle to droplet size ratios, as do Figures 3
Ar(k) = a{ 1-k2- 4 {1+2In 4R » (8 5_gand 11 further,
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4 Free-energy analysis Here

o . Siz= [ ds (18)
In this Section the free-energy analysis is performed fer th
model described in Section 2. We obtain the exact expressions the area of the fluid interface and
for the shape and volume of the droplet, as well as the free
energy of the system as functions of three parameters which V= / dv (19)
characterise the size of the droplet, its deformation aaddh
dius of the contact circle. Following this we solve numeltica  is the volume of the droplet, and (@) is Lagrange multiplier
for the values of these parameters which minimise the free erassociated with the fixed volume of the droplet. The function
ergy of the system under the constraint of constant volume of17) can be represented in the form
the droplet, given by Eq. (6), and use the results to caleulat

the detachment force and other properties of the system. R /Ldp, (20)
4.1 Droplet shape. with the integrand function given by

Minimisation of the free energy of the system under the con- 27

straint of fixed volume constitutes a variational problerthwi L= 27TP( 1+22+ %) : (21)
variable end points. Different equivalent methods exist fo

solving this class of variational problems, which are désad, The corresponding Euler-Lagrange equation,

for example, by Bolz&. We adopt the method in which the

variational problem is decomposed into two probléfh&irst ﬁ _ % _ i% _ (22)
we consider the variations which leave the end points fixed 6z 0dz dpodzZ

(which physically corresponds to pinned contact line). eAft

that, finding the extremal satisfying boundary conditioas r then becomes

duces to an algebraic problem, which is simpler than consid- 5 20
ering from the beginning the full variation including theden pZ'+ (1+7°) (Z, o0V 1+Z'2) =0. (23)
points.

In accordance with the above, we first determine the class of The solution to this equation is
the shapes of the fluid droplet which minimise the contriuti Lo
to free energy due to the presence of the fluid interface only. S 2P+ P (24)
This contribution is proportional to the area of the fluideint \/pzpz ~ (lcpz N p2)27
face,.Z1, = ySi», S0 the problem is equivalent to minimising 0 270
the are;, at constant volume of the droplet. The result will \yherec is integration constant. Due to the symmetric nature
depend on the parameters which will be later determined by the problem, the conditiori = —eo gives the maximum and

minimising the total free energy of the system. minimum radii of the cross-section of the droplet:
Itis convenientin our study to describe the droplet shape by
the functionz = z(p), where the cylindrical polar coordinates B T
p andzare depicted in Figure 1. Henceforth we shall omit the py = Lzlcho. (25)

argumenp for brevity when referring ta. The element of the
arc length corresponding to the incremdptis

l-c—-v1-2c
dl =+/1+22dp, (14) p-= S E— Po. (26)
where prime denotes derivative with respecipto The cor- To obtain the formula for the droplet shape, we integeate
responding elements of the surface area and the volume ate yield
given by
ds= 2rpd (15) = [ ? 2dp = / P __(5op6+p7)de (27)
and & P /(02— p?)(p2—p?)
dv = 2mpzdp. (16)
The function to be minimised is The resulting shape is the so called undu®§iét described by
formula 5
2 C
S =St V. (17) 2= P E(9.K)+ 22 F (9K, (28)
Po 2p,

6| Journal Name, 2010, [vol] 1-16 This journal is © The Royal Society of Chemistry [year]



whereF (¢,k) andE(¢,k) are incomplete elliptic integrals of 4.3 Droplet volume.

first and second kind, respectively, and ) ] ) )
In this subsection we obtain the expression for the volume

_ p2 —p2? of the droplet which corresponds to the shape described by
sing =/ —5——. (29)  Eq. (28). We shall impose the constraint of constant volume
Pr—p= of the droplet, given by Eq. (6), when we come to minimise
and the free energy of the system.
p2 First we consider the case when the angle
k=4/1-=. (30)
p+ pc

In casesc > 0 andc < 0 Eq. (28) describes, respectively, de = arcs'”? (38)

unduloids and nodoids, which are members of the family of

constant mean curvature surfat®&. They correspondto the @s depicted in Figure 1, satisfies the condition
detachment of the particles in the outward and inward direc- T

tion with respect to droplet. We shall henceforth consiter t ac < > (39)
case when the particles detach in the outward directiond).

Note that at = 0 the shape described by Eq. (28) reduces tan this case the volume of the droplet can be written as

a spherical one,
lim 7= \/ P& — P2 (31) V =Vp<p, +Vo>pc, (40)

C—

where
4.2 Free energy.

"Pc
In this subsection we obtain the explicit formula for theefre J0

energy of the system. For this, we need the expressionsdor th, 4
contact areas between different constituent phases. o4
Due to the symmetry of the problem, the surface of the Vospe =2 (27T PZdP) : (42)
droplet contacts the particles at circular lines. We dettate Pe
radii asp.. Then the interfacial areas can be represented as  In the integral (41)z is the position of the surface of the
particles:

Slp=2[2na<a—,/a2_p02)]7 (32) S /az—pz. 43)
Sp=2 [Zna (aJr [a2 _ pz)] (33)  Theintegration yields

_ A3 5 (3 2 232
p- 2 mpe2dp Vo<pe = 3 {ZPCr [a (@ —pc) } ' (44)
S12=2 2 _ 22— p2)
pe \/(p+ —p?)(p?=p2) In the integral (42)zis the position of the fluid-fluid inter-
= 2[211p, PoE (e, K)] (34) face. The integration yields
with am 3 3
p2 — p2 Vospe = 3 {p+ {PE +p% — 593+ ZCPg} E(¢c, k)
singe = | 5——- (35)
P —pP=

B [pzm 3cpgpé
Note that in the case of a spherical droptetH0) the surface

2 + 4 o :| F (¢Ca k)
area of the fluid—fluid interface reduces to that for a splagric Pc o 2
zone: +7\/(P+—Pc)(Pc —P)}- (45)

lim So = 4@/ p§ — PZ. (36)
=0 Note, in the case of an undeformed dropletH 0) we have

As aresult, the free energy of the system, up to a constanhe yolume of relative complement of cylinder of radpsin

term, is sphere of radiugg (spherical ring):
F = amy o, poE (o) — /a2~ plooss] . (@7 o, L
imVp>pe = (05 —pc)™" (46)

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-16 |7
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a., degrees

Ar/a

Fig. 3 Dependence of the angte, defined by Eq. (38) and
depicted in Figure 1, upon the position of the particle8 at 90°.
Solid curves are calculated numerically and correspond to

v =0.1,0.03 0.01,0.003 0.001 (from left to right). Dashed curves

correspond to the small-particle limit, Eq. (69). ~ Ar=0
_/
As a result, the volume of the droplet is given by formula
am C\ » 3,
V=3 { {(1 Z) Py — Epc} P+E(¢c,k)
p2p. 3 cpngZ Fig. 4 Shapes of the droplet surface at different positions of the
- 2 + 2 o ] F(c,k) particle, calculated fov = 0.01 and@ = 90°. Dashed lines
+ correspond to equilibrium shape of the droplet. The top &glmows
4 Pc \/(Pi _ pg)(pg _ pg) particle position which corresponds to maximum force foickthe
2 particle still remains attached to the interface.
3
5Pk — &= (@@ - )P } - (47)

of these parameters are those that minimise the free enérgy o
Finally, in the caserc > 71/2, 1. e. opposite situation to that  the system. The minimisation should be undertaken under two

defined by Eq. (39), the volume of two spherical rings with conditions. First, the volume of incompressible fluid in the
sphere radiua and cylindrical hole radiupc, droplet should be constarte. Eq. (6). Second, the interface
AT, 32 should cpntact particle at circle of radipgg yvhich can be cast
3 (a*—pg)”"", (48)  asequality of the valug(pc), calculated using Eq. (28) for the

droplet shape, to the value pfcalculated using Eq. (43) for
which corresponds to the volume@t> pc which lies inside  the shape of the particle.
the particles and therefore should be subtracted from the to In order to calculate the force required to detach the dartic
tal volume, Eq. (47), to yield the actual volume of the fluid from the droplet we proceed as follows. We fix the value of
droplet. This is particularly important when the size oftpar particle displacemertr defined as
cles becomes comparable to that of the droplet.

Ar=r—R (49)

4.4 Numerical solution. .

and solve numerically for the values of the paramepgr<,
We have obtained the exact expressions for the shape, Bg. (2&ndpc, which minimise free energy under the conditions given
and volume, Eq. (47), of the droplet, as well as the free ghergabove. Repeating this procedure for different value&rofve
of the system, Eq. (37), as functions of the parametgrs, obtain free energy of the syster#,, as a function of particle
andpc, which characterise size and deformation of the dropletlisplacement. Then we use numerical differentiation te cal
and radius of the contact circle, respectively. The actalles  culate the force as a function of particle position accaydn

8| Journal Name, 2010, [vol] 1-16 This journal is © The Royal Society of Chemistry [year]
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Fig. 5 Dependence of the detachment force witlat6 = 90°. Fig. 6 Dependence of the particle position, corresponding to the
Solid curve is calculated numerically. Dashed curve cpoeds to point where the maximum force occurs, withat 8 = 90°. Solid
the small-particle limit, Eq. (70). curve is calculated numerically. Dashed curve corresptmtise

small-particle limit, Eq. (71).

Eq. (4). In force-measuring experiments the maximum of this

function corresponds to the detachment force. angle, and Figure 10 displays the corresponding shapes of th
We start by considering the case of 90 degree contact angléroplet interface at the particle position correspondmthe

Figures 2 and Figure 3 show the dependence of the force, camaximum force.

culated using Eq. (4), and the angtg, defined by Eq. (38), Hysteresis of the contact angle may significantly affect

upon particle displacement, at different values of theorafi  the behaviour of the particles being detached from the-inter

particle to droplet sizes, denoted as face?”37:47_ Our model can still be applied in this case, if we

take 0 as the value of the receding contact angle.
= (50)

1%
R

5 Limit of small particles
The resulting shapes for the droplet surface at differelutes

of the particle displacement, calculatedvat 0.01, are shown In the most common cases the size of the particles is much
at Figure 4. The force—displacement dependence shown ismaller than the size of the droplet. This section focuses on
Figure 2 is similar to the experimental data for detachmént oinvestigating the limit of small particle to droplet sizeica
particles from air bubble®s26:32 |n the case of flat fluid in-
terfaces, qualitatively a similar behaviour is predictegidret- 51 General formulas.
ically 43-4648,50.5%3nd also observed experimentdfhy}6:47:52

Figures 5, 6 and 7 show the dependence upofithe de- N the small-particle limit the ratio of particle and dropdézes

tachment forcd=*, corresponding particle displacemext, V. defined by Eq. (50) is a natural small parameter.
and the Hookean (“spring”) constaktdefined as Since the radius of the contact circle cannot be larger than
the radius of the particleg < a, then this is always small
K d_F . (51) compared to droplet size, too,
dAr Ar=0
pc<R (52)

Note that the analytical formulas, derived in Section 5hia t

limit of small particle-to-droplet size ratio, for the demkence

of particle detachment position (Figure 6) and Hookean con-

stant (Figure 7) work well even for relatively larger paei
Next we consider different contact angles. The variationThe parameterc, which controls the deformation of the

of the force with particle displacement, at different valwé  groplet, is also small in this limit:

the contact anglé, is shown in Figure 8. Figure 9 shows

dependence of the detachment force as a function of contact ck 1. (54)

The parametepy is comparable with the size of the droplet,

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 1-16 |9
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Fig. 7 Dependence of the Hookean constant defined by Eq. (51) Fig. 8 Plots of force vs. the position of the particles, for= 0.01.
uponv at8 = 90°. Solid curve is calculated numerically. Dashed  Solid curves are calculated numerically and correspond to
curve corresponds to the small-particle limit, Eq. (72). 6 =150°,120°,90°,60°,30° (from left to right). Dashed curves
correspond to our analytical expression for the smalliglartimit,
Eqgs (8) and (7). Note that the equilibrium position of thetisbes
This allows us to introduce the following set of dimensi@sle does not generally correspondio = 0, except wher® = 9C°.

quantities:

(55) of v we obtain

_ /1—_ k2sing —
N —R, (56) [J—ZK( 1—k2sinf KCOSG)+O(V). (60)

. C To expresg in terms ofk we also expand the volume given
U= (57) by Eq. (47) in powery. Using the expansions of the elliptic
o integrals given by Egs (91) and (92) (see Appendix), we abtai
which in general are not small.

Let us choos& as an independent parameter and regard V— 4TIR3 113 ()\ B E) y
A, as well as other quantities, as functions<ofThen we can -3 4
express the force given by Eq. (4) as a functior of 3
+—(16A2—12/\u—u2)v2+0(v2)} (61)
T 16
(k) = S0F/0K) (58)
2 (dr/ok) The incompressibility condition, Eq. (6), then yields
In order to calculate the derivatives in Eq. (58), we need to u  3u? 1
express the free energy and particle positiom as functions A= 2T sV TO (v, (62)

of k in smallv limit. For this we require the expressions for
the parameterg andA as functions ok.
The numerical solutions described in Section 4 hav
demonstrated that the actual contact angle at the surface of
; {K2+“—2[ d +1 (K+5)v}+

Using the above expressions, we can write the free energy
eof the system in the following form:

the particles in the absence of line tension remains equal t0.% (k) = %y — 2ma’y n
: , . 4 |kK+E& 4
contact angle at flat surfac8, as given by Young’s equation,

Eq. (3), with accuracy of the order 1t This can be seen in 0
Figure 12 where the top line is horizontal. To expresi +2v/1—k2cosh ¢ +0(V0), (63)
terms ofk, we will use this result from now on and fix the
actual contact angle equal oexpressed as where
: Fo = 4nR? 64
6 = arcsirk — arctare (pc) (59) 0 Y (64)

is free energy of undeformed droplet without adsorbed parti
Substituting Eq. (24) for and expanding the result in powers cles, ancf is defined by Eqg. (9).

10| Journal Name, 2010, [vol], 1-16 This journal is © The Royal Society of Chemistry [year]
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Fig. 9 Dependence of the detachment force upon contact angle at
v =0.01. Solid curve is calculated numerically. Dashed curve
corresponds to the small-particle limit, Eq. (67).

In order to calculate force using Eq. (58), we also need the
expression for the position of the particlesas a function of
the parametex, too. Expressing as

r=2z(pc)+ 1/ a% - pz. (65)

and expanding(p) given by Eq. (28) inv, we obtain Fig. 10 Distortion of the shape of the droplet surface at particle

positions corresponding to displacement where the maxirfiouce
U (k + &) occurs, for different contact angles. Results are caled|&dr

r(k) =R+ a{ V1i-k2-= [1+ 2In 7} } v = 0.01. Dashed lines correspond to equilibrium shape of the
4 4 droplet. Thin circles correspond to equilibrium positiaighe

+o (VO) , (66) particles {. e whenF = 0).

which is equivalent to Eq. (8). Now substituting Eqgs (63) and

(66) into Eq. (58), we finally obtain Eq. (7) for the force. yields the criterior{fa/R)? < 1, which is well satisfied. There-
Formulas (7) and (8), together with (9) and (10), allow us tofore, our formulas can be used for compressibgg &ir) bub-

calculate parametrically the dependence of the féragoon  bles as well.

the position of the particles in the small-particle limit (see

Figure 8). The maximum force in the small-particle limit, 5.2 Case of 90 degree contact angle.

F* = mya(l-cosv), (67)  For right angle contact anglé = 90°) equations (8) and (7)
) o ) o _ simplify and the force and the position of the particles are
is shown in Flgur_e 9. Note, the expression (67) coincidel wit given parametrically in terms af as follows:
the formula obtained by Scheludkbal.*! for the case of flat
fluid interface. o . _ F— ZHWKM, (68)

In our model we neglect compressibility of the inner fluid.

Now we can demonstrate that this assumption is also valid in
the case of gaseous bubbles. The change in free energy of I =R+av 1—K2{1—K E +In @] } (69)
the system due to the increase of the interfacial area, given
by Eq. (63), is of ordewa?. The corresponding change in From these formulas the dependede¢F) can be obtained
pressure is- ya?/R%, whereV ~ R is the volume of the bub-  explicitly as Eq. (12). This variation is plotted in Figure 2
ble. The inner fluid can be considered incompressible if thisThe maximum force
change is small compared to the Laplace pressurgR. This F*=rmy (70)

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 | 11
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Fig. 11 Dependence of the detachment energy upon the value of
for the case witl® = 90°. Solid curve is calculated numerically.
Dashed curve corresponds to the small-particle limit, E4).(

Dotted curve shows the energy of adsorption for particlepiked
here for comparison.

occurs at position
(71)

(see Figure 6).
The Hookean constant defined by Eq. (51) is given by

2ty
k=13 (72)
2 2

and is of the order of surface tensipifsee Figure 7). Numer-
ical constants apart, the form of equation (72) is quite lsimi
to that reported by Pitois and Chateau kpobtained for the
case of a flat interface in the limit of small Bond numiférs
However, it must be noted that the parametéor such prob-

interface relaxes back and the droplet returns to its aaigin
undisturbed spherical form, thus leaving the particleshim t
dispersion medium at a distancea away from the surface of
the droplet. The process occurs over a finite relaxation,time
dictated by the viscosities of the dispersed and the digpers
media. The localised flows of the fluid in the droplet and in
that of the surrounding liquid close to the interfaciallys-di
torted region, taking place during this relaxation timepiwe

the dissipation of some of the stored interfacial energyi-Ty
cal stresses and strain rates involved in the procesg/ar@nd
y/(na), respectively, where for simplicity we assume that the
viscosity, 1, for the more viscous phase is much higher than
the other one. The rate of energy dissipation per unit volume
is then~ y?/(na?), i.e. inversely proportional to the viscos-
ity. On the other hand, since the duration of the relaxatioe t
increases linearly withy, it is expected that the overall dissi-
pated energy during the full process should not be dependent
on viscosity. The value of the energy dissipation, resgltin
from dislodging of the particles from the droplet surfacan c
be calculated by subtracting the stored energy in the déstor
droplet interface just prior to particle detachment, frérattof

the particles that are fully displaced into the dispersealsph
residing away from the droplet. The latter is simply given
by Eg. (1), while the former is the area under the appropri-
ate force—displacement curve, similar to those we displatye
Figures 2 and 8, integrated up to the point of detachment.

Figure 11 shows the dependence of the work required to

detach the particles from the droplet encalculated as
W= ydetachment— yequilibrium- (73)

This work is compared with the adsorption energy, which is

different from that given by Eq. (1) for flat interfaces due to

deformation of the droplet in equilibrium.

As v decreases, the dependence of the force upon the dis-
placement of the particles becomes more linear. This allows
calculating the detachment work, in small particle to dedpl
size ratio limit as the area of the triangle on the displacggme
force diagram. Using Eqgs (70) and (71) we can write for the

lems is different to ours and there represents the ratioef thcase of the 90contact angle:

radius of the particle to the capillary lengty,(y/pg)*/2.

6 Work of detachment

W = —gya2 Ini(\/ﬂl) ’ V-

8 > (74)

As the two spherical particles are pulled gently apart, an in This is plotted in Figure 11, normalised byra?. The dashed
creasing amount of energy is stored in the resulting distorline in the figure is for our approximate equation, Eq. (74),

tion of the droplet (or bubble) surface. This situation dont

while the solid line represents the exact results obtaisathu

ues until the displacement of the particles reaches a distan the numerical analysis of section 4.4. For valwes 0.03,
whereupon they become detached from the droplet. As althe two curves are in perfect agreement, though they began to
ready shown in Figure 2, the position at which this happensleviate at higher size ratios. The adsorption energy ofdine p

is slightly further away from the point where the generatedticles is also included in the figure, shown by the dotted, line
restoring force attains its maximum value. At this stage, th for comparison. As expected, this is simply @& for the pair

12| Journal Name, 2010, [vol], 1-16
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of particles with a contact angle of 90whenv is small. It

marginally deviates from 2ya? at higher size ratios, as the "

effects of the finite curvature of the interface become more § 90

prominent. Note that Eq. (74) provides the dissipated gnerg o

for the pair of particles and should be divided by a factor of ©

two, if needed for a single particle. It is seen from Figure 11 ¢

that the dissipated energy becomes an increasingly more sig 2

nificant component of the work done during the detachment of ©

the particles, in comparison to the adsorption energy,a0.

The results in Figure 11 indicate that for small particlég t

energy barrier to adsorption can be significantly largentha

that simply taken to be equal to the adsorption energy. The de 60 : :

tachment work of particles from the interfaces had also been 0 1 2 3

considered by Pitois and Chatédun the limit of small but Ar/a

finite Bond numbers (and therefore also flat interfaces)irThe

conclusions for such cases are broadly in accord with those

found here. Fig. 12 Dependence of actual contact angle upon particles’
Dissipation in moving the particle away from the surface ispositiong av =0.01, 6 =907, and different values of dimensionless

rate dependent but we are considering it post detachmeyt onine tensiont/(ya) = 0,0.1,0.2,0.3,0.4,0.5 (top to bottom).

assuming that up to the point of detachment the particle was

moved sufficiently slowly so as to maintain the equilibrium

liquid profile. Although in this case the exact energy dissi-

pation during the detachment of the particle does not requir

any detailed knowledge of the of the actual relaxation dynam . . o
y 9 yn Presence of line tension modifies the contact angle at the

ics, it maybe interesting to model this using LB or even tradi ; X .
tional CFD methods. It would also be useful then to study thesurface of the particles. Moreover, it makes it dependeabup
displacement of the patrticles, as is shown in Figure 12.

henomenon using a high speed camera and compare the d . ; . . .
P g gh sp P is results in changes in the manner in which the force sarie

with the theoretical results. To do so, it may be more sugtabl * . ~ "~ . .
y with displacement (Figure 13) and in the value of the detach-

to use moderately viscous fluids, either for the droplet er th e Fi 14) A &dat | i |
dispersion medium. This can easily be tailored to the appror-ne.n orce( \gure )'_ S €xpectetiat jarge positive valles -
of line tension the particles do not stay at the surface ewen i

priate value by adding a suitable amount of rheology modifier b ¢ h 't
or thickening agents to either of the two fluids, slowing down@PSence otany external force.
the interfacial relaxation kinetics to ranges that canlgds

captured by the camera. 8 Conclusion

e

80 r

€,

contact

Then we can minimise numerically the free energy of the sys-
tem with the contribution of line tension given by Eq. (76)
using the method described in Subsection 4.4.

We have considered two spherical solid particles adsorbed o
the surface of, and located at the opposite poles of an incom-
pressible fluid droplet. We have calculated the deformation
of the droplet and subsequent detachment of the particles un
der the influence of two opposite external forces applied to
T the particles at each end, as the magnitude of the forces is in
a~ Y/ (75) creased. The free-energy analysis have been used to ¢alcula
the force-displacement curves for restoring forces theagjan-
Both positive and negative values of line tensionerated as a result of the droplet deformation and displaneme
T were reported with magnitudes spanning a rangef the particles relative to each other.
10712—10"°N.®3%5 Roughness of the contact line can |n the case of the particles being small compared to the
also manifest itself as the effective line tensian droplet, the problem has been solved analytically. Theeforc
To account for line tension in our model, we add a contri-given by Eq. (7), varies almost in a linear fashion with the
bution to the free energy of the system, Eq. (37), equal to thelisplacement of the particle, Eq. (8), almost up to the point
length of the contact circles of both particles multipligdinbe  where the particle becomes detached from the droplet. The
tension: maximum force=*, given by Eq. (67), depends upon the size
Fr=4nQT. (76)  of the particlesa, the value of the surface tensignand the

7 Effect of line tension

Line tension can affect the behaviour of the particles aukstr
at fluids interfaces if the particles are small enotfefit—66

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [vol], 1-16 | 13
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Fig. 13 Dependence of force on position of particles for cases Fig. 14 Dependence of detachment force upon line tension at
wherev = 0.01 andf = 90°. Results are for different values of v = 0.01 and different values of the contact angle.

dimensionless line tensiary (ya) = 0,0.1,0.2,0.3,0.4,0.5 (from
top to bottom). ] o
A Expansion of elliptic integrals

In this Appendix the series expansions of incomplete ellip-
plic integralsF (¢c,k) andE(¢c,k) are derived for the small-
particle limit described in Section 5.

In this limit the arguments of the elliptic integrals appeba
¢c — 1/2 andk — 1. Van de Vel® derived the series expan-
sions of elliptic integrals valid in this double limit, whicre
summarised below.

The expansions are:

equilibrium contact anglé in a way similar to that for a flat
fluid interface. However, the dependence of the force upent
displacement of the particles is sensitive to the ratio ofigla
and droplet radiv.

In the case of arbitrary ratio of particle and droplet ragg,
have solved the problem “semi-analytically”. These “eXact
results agree with the analytical solution for small paetc
At larger particle sizes the force decreases compared to the
small-particle limit predictions, as shown in Figures 2 &nd 2 N 1
The effect of line tension becomes noticeable for partiofes K(k) —F(¢,k) = EK(k/)S'nh (k’tanq&)
very small size given by Eq. (75). " 12

The results of this work can be extended in several different — (1+K%tarf ¢) " cof' ¢ x
directions. The series expansioninderived in Section 5, can , 2 2-4
be extended by considering higher-order terms. This should x <C° éc’lcotqu + ﬁdZCOlA(p o > ’ (77)
result in better description of large particles. In partcyex-
tended series should be able to describe the dependenee of th
detachment force upan Figure 5. However, the formulas de- E(k) —E(¢,k) = E[K(kf) —E(K)]sinht ( 1 )
rived in Section 5 already have a good accuracy for the typica n K'tang
size ratios. For the dependence of particle detachment posi . (17 K2 sir? ¢)l/200t¢ _ (1+ k’ztar?(p)l/zcotz:p
tion (Figure 6) as well as Hookean constant (Figure 7) these 5 2.4
formulas seem to work well even for larger particles. X <d6 — —d’lcot2 ¢+-——d cotrp — .. ) . (78)

Similar approach can be used to extend the results to the 3 3:5
case of pinned contact lif8 and to particle shapes other |n these formulas

than spherical. The work can be also extended to the case K=v1-k2 (79)
of surfactant-covered droplets by using Helfrich surfaes f . N
energyﬁg. The effect of adsorbed surfactant has been inves- ;o an _ T2 pei-2n-2
; . . ) Ch= Tons = Z . , (80)
tigated experimentally by Spyridopoulos and Sim&hswe kente 4\
expect that in such cases the global rather than local defor- )

. . / 00 1 H
mations of the droplet to play the main role due to curvature r_ b, _ Z -3 2 |2i—2n-2 (81)
contribution to the free energy. nokz e i) 2i-1 ’
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These formulas contain complete elliptic integrals of first ¢
and second kindK(k) = F(5,k) andE(k) = E(5,k). For 39
|k < 1, they can be represented in terms of Gauss hypergeo-

metric function,F(a, b; c; ) as follows'®: 11
12
s 11, 5

K(k)*EZFl (Evéll!k >5 (86) ii
m 11, ., 15

E(k)fizFl (5,5,1,k>. (87)
16
Their asymptotic behaviour near the singularitkat 1 is’* 17
18
19

- (%)| k/i

-3

(88)

2
1 .

[In (W) +d(|)} ,
(%)| (%)| k/2i+2><
£ (2)i!
1 : 1

X ['” (W) -G E +2)] + o (89)
where(x), is Pochhammer symbol, and
x) ,

wherey(x) is digamma function.

Substituting the expressions (35) and (30) ggrandk in 31

Eqgs (77) and (78) we obtain the following formulas for the 3
case of smalb:

20
21
22

23
= 24
25
26
27

28
29

d(x) = w<1+x>w<§+ (90)

30

B (K—l—f)v 33

F (e, k) = —InT+o(v°) (91) “

and 35
R L e | L
+0(v?) (92) g;
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