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We calculate the deformation of a spherical droplet, resulting from the application of a pair of opposite forces to particles located
diametrically opposite at the two ends of the droplet. The free-energy analysis is used to calculate the force–distancecurves for the
generated restoring forces, arising from the displacementof the particles relative to each other. While the logarithmic dependence
of the “de Gennes–Hooke” constant on the particle to dropletsize ratio,ν , is rather well known in the limit of very smallν , we
find that for more realistic particle to droplet size ratios,i.e. ν = 0.001 to 0.01, the additional constant terms ofO(1) constitute
a significant correction to previously reported results. Wederive the restoring force constant to be 2πγ[0.5− ln(ν/2)]−1, in
perfect agreement with the exact semi-numerical analysis of the same problem. The deviation from the linear force–displacement
behaviour, occurring close to the point of detachment, is also investigated. A study of the energy dissipated shows it tobe an
increasingly dominant component of the work done during thedetachment of the particles, asν decreases. This indicates the
existence of a significantly higher energy barrier to desorption of very small particles, compared to the one suggested by their
adsorption energy alone. The influence of the line tension onthe detachment force is also considered. It is shown that where line
tension is important, the contact angle is no longer a constant but instead alters with the displacement of the particlesfrom their
equilibrium positions.

1 Introduction

The behaviour of small particles trapped at liquid-liquid or
liquid-gas interfaces continues to be an area of great interest
both from an academic point of view, as well as for its impor-
tance in many industrial applications. The adsorption of hy-
drophobic or partially hydrophobic particles to the surface of
bubbles during the froth flotation process is often considered
to be the most widespread technique in recovery and separa-
tion of ore minerals in mining and related industries1,2. The
crucial role played by particles adsorbed at surfaces, in desta-
bilisation of bubbles has similarly been well known and fre-
quently used to prevent foaming3,4, as for example in defoam-
ing of liquids used in air-conditioners and cooling systems.
Interestingly, it is now also well recognised that particles with
appropriate surface chemistries, and hence contact angles, can
stabilise bubbles and emulsion droplets against many different
modes of colloidal instability, including coalescence, Ostwald
ripening and disproportionation5–8. Indeed, the adsorption of
nanoparticles onto the surface of microbubbles remains oneof
the very few methods that seem to be genuinely able to arrest
the disproportionation process in such systems and ensure the
long term stability for these very small bubbles9. The adsorp-
tion energy for a particle adsorbed at a liquid-air interface is
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easily shown to be7,10

Ead = πγa2(1− cosθ)2 (1)

whereγ is the surface tension,a is the radius of the particle,
andθ is the contact angle between the liquid and a solid sub-
strate comprising of the same material as that for the particle.
More precisely, the energy difference as given by Eq. (1) refers
to the energy of a particle that has been fully displaced from
the interface into the bulk phase, as measured relative to its
energy when setting at equilibrium at the surface. The parti-
cle displacement here is assumed to be into the more dense
liquid phase,i.e. the one into which the contact angleθ is
traditionally measured. If the particle is moved into the op-
posite phase, then the factor(1− cosθ) in Eq. (1) needs to
be replaced with(1+ cosθ). The result in equation (1) also
takes into account any interfacial energy associated with the
creation of an additional circular contact area between thetwo
bulk phases, which originally would have been occupied by
the particle when at the interface. Even for a small nanoparti-
cle of radiusa = 10 nm, the adsorption energy can be several
tens of thousands ofkBT . Thus, particles, once adsorbed, are
rather difficult to displace from the interfaces. It is this prop-
erty which makes the particles such a good colloidal stabilisers
of emulsions and bubbles. In a similar manner, particles accu-
mulating at the interfaces between two phases, formed during
the demixing of two fluids through spinodal decomposition,
can arrest the phase separation at some intermediate stage dur-
ing the process. This gives rise to the so called bicontinuous
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interfacially jammed emulsion gel (bijel) systems11–14, first
predicted theoretically by Cates and co-workers15.

While the adhesion of particles to the surface seems irre-
versible in many situations, it is nonetheless possible to cause
desorption of these through the application of a suitable exter-
nal field. For example magnetic or electrically polarisablepar-
ticles are shown to detach from the interfaces in the presence
of strong enough magnetic or electrical fields16–18. Similarly,
a higher density of particles relative to the surrounding liq-
uid medium may be sufficient to detach the particles from the
bubbles, as the bubbles try to rise and the particles are pulled
down by the gravity19. Detachment of the particles from the
surface of such Pickering stabilised bubbles or droplets nor-
mally leads to the breakup of the foam or the emulsion sys-
tem. The triggered destabilisation of the emulsions has many
potential applications, as for example in the targeted release of
drugs. Development of such vehicles for controlled delivery
could benefit from a clearer understanding of the nature and
magnitude of restoring forces that result from the displace-
ment of a particle, when it is disturbed from its equilibrium
position on an interface. Control of the particle adsorption or
detachment is important in liquid marbles which have promis-
ing applications in micro-chemical and bioreactors20–22 and
tuning droplet impact dynamics23.

On the experimental side, several studies involving atomic
force microscopy and micro-force balance have provided a
detail account of the forces that result during the approach,
subsequent attachment, and finally the detachment of parti-
cles from the surface of bubble24–32. Close to the surfaces of
bubbles, and prior to the attachment of the particle, the forces
involved are a combination of the well-known colloidal in-
teractions, namely van der Waals, electrostatic and hydropho-
bic forces26,33. Where the surface of particles or bubble is
covered by macromolecules, additional interactions involving
steric repulsion, as well as bridging and depletion attractions,
may also be present34–36. At the point of attachment, there is a
discontinuous jump in the value of measured force. From this
point onward the variation of the force with displacement is
largely governed by the interfacial tensions between the two
surrounding fluids (e.g. air-water or oil-water) and the fluids
and the particle. In particular, the experimental results suggest
that in the majority of cases the restoring forces generatedas
a result of the displacement of a particle trapped on the sur-
face of a bubble or droplet, away from its equilibrium position,
varies almost in a linear fashion with the displacement of the
particle30. This linear Hookean type variation, first suggested
by Joanny and de Gennes37,38, continues to distances almost
up to the point where the particle becomes detached from
the droplet,i.e. where the force reaches its maximum value,
shortly prior to the particle leaving the interface. However,
determining the range of validity of “de Gennes-Hooke’s” law
analytically is an interesting problem that is considered here.

The theoretical treatment of the detachment of the parti-
cles from fluid interfaces has largely focused on situationsin-
volving planar interfaces, where the gravitational, and insome
cases also the buoyancy forces, are included39–50. Such situ-
ations are of course what one encounters in problems relating
to the process of froth flotation. These types of analysis pro-
vide limits on the size of particles that can be floated on the
interface and also the maximum detachment forces necessary
to pull the particles out and away from the surface. Huh and
Scriven51 provide tabulated numerical data for the shape of
an equilibrium fluid that extends far outwards from a circu-
lar line of contact away from an immersed cylinder, given as
a function of radius of the contact circle, contact angle, sur-
face tension and density difference across the interface. An-
alytical results for the same problem have been obtained by
Rapacchietta and Neumann43 in the limit of small Bond num-
bers (ratio of gravity forces to capillary ones). These authors
considered forces acting on the particle during the detachment
process and proposed the particle/interface aggregate stabil-
ity criteria based on the work of detachment of the particle
from the interface. The detachment work of a small sphere
from a surface was also considered analytically by Pitois and
Chateau47,48 making use of Derjaguin approximation. Com-
paring their analytical and experimental data, the importance
of the contact angle hysteresis for the detachment work was
highlighted in this work. Kowalczuk and Drzymala49, using
equations derived by Scheludkoet al.41, show how experi-
ments involving attachment and detachment of particles to a
liquid interface could be used to determine the static, attach-
ment and detachment contact angles using a Washburn-type
technique. Indeed, pulling a sphere through the liquid inter-
face is the basis for measuring the surface tension and contact
angle of liquids on spherical surfaces in a technique often re-
ferred to as sphere tensiometry40,44,46,52–54. O’Brien45, work-
ing in the low Bond number limit (Bo≪ 1), has proved that
the restoring force resulting from the displacement of the par-
ticle from its equilibrium position on the interface can satis-
factorily be described as a linear function of the distance,in a
similar manner to the Hooke’s law as had been anticipated by
Joanny and de Gennes37.

The inclusion of gravity in all of the calculations mentioned
above, even those involving small Bo numbers, and in par-
ticular for the fluid phase, is rather crucial in allowing such
theoretical analysis to be performed. The boundary condition
assuming a flat interface at distances far from the contact line,
will fail to provide an analytical solution in the complete ab-
sence of gravity. The situation is best demonstrated by con-
sidering an air–water interface where the displacement of the
particle into the air causes the distortion of the interface. The
rise of the liquid pulled up with the particle involves additional
gravitational energy. For example, for a rather simple casein-
volving a rectangular slab held partially immersed in a liquid,
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the height to which the fluid will rise next to the slab is found
to beh =

√

(2γ/ρg)(1− sinθ) whenθ ≤ π/2, whereg is the
gravitational strength andρ is the density of the fluid55. In
the absence of gravity whereρg → 0 we haveh → ∞. In the
same manner, the distance away from the particle to which the
distortion of the interface extends also diverges in the absence
of gravity. This holds true for the slab problem55 above, as
well as cylindrical objects42,51 and cases involving spherical
particles41,43. Clearly this is expected, since in absence of the
gravitational energy associated with the distortion of theliq-
uid interface, the whole bulk of the liquid will simply move
up with the particle such that the position of the particle rela-
tive to the liquid interface remains the same as its equilibrium
value.

In problems involving the displacement of particles from
the surface of bubbles or droplets dispersed throughout a
medium, as for example in Pickering emulsions, inclusion of
gravity is neither appropriate nor relevant. It would be incor-
rect to attribute a gravitational energy to any distortion of the
interface in these circumstances. It is clear then, that in order
to be able to make progress with the theoretical calculations
one has to either apply an equal but opposite counter force
(to the one acting on the particle) to some part of the particle-
droplet system, or alternatively impose some constraint topre-
vent the displacement of the system as a whole. One possible
approach would be to apply a pair of opposite forces of mag-
nitudeF to the particle and the centre of mass of the droplet.
In a real situation such a counter force may arise from the drag
experienced by the droplet, given byF ∼ 6πηRu if the spheri-
cal shape of the droplet is not severely distorted. Here,u is the
velocity of the system under the influence of the external force
applied to the particle,R is the radius of the droplet, andη the
viscosity of the dispersion medium. Alternatively, one may
impose the “effective” constraint that the liquid continues to
fully wet the surface of the container in which it resides, asthe
particles are slowly displaced and eventually become detached
from the air–liquid interface. This is the approach adoptedby
Davieset al.50 where also the volume of the liquid phase is
kept constant. In their study, the detachment energy for a va-
riety of particles with different spheroidal shapes, including
oblate and prolate spheroids, is numerically calculated using a
suitable lattice Boltzmann simulation scheme. All else being
the same, it is found that the detachment energy can be ex-
pressed as a function of the particle aspect ratio and the height
of the centre of mass of the particle above the fluid interfaceat
equilibrium50. These results are used in a latter study by the
same authors to consider the impact on an ensemble of such
spheroid particles accumulated at a liquid interface56. Note
that the requirement for the container walls to be fully wetting,
together with constant volume of the liquid phase, ensure that
the air–water interface will once again be a flat one at distances
far from the particle, even when no gravity is present.

Yet, a further possibility in choosing a suitable constraint
is the one employed by Guzowskiet al.57. There, the centre
of mass of the droplet (or the droplet+particle system) is re-
strained, remaining fixed throughout the calculations irrespec-
tive of the distortion of the droplet shape. The actual problem
considered in this work consisted of a particle which sat on
the surface of a sessile droplet, to which a forceF was then
applied. As such, the calculations of Guzowskiet al. involved
two distinct contact angles; one between the particle and the
droplet and the other between the droplet and the substrate.
They derive an interesting, and in principle rather general, for-
malism for solving this problem. They argue that the quantity
ε = F/(γR) (i.e. the ratio of the pressure perturbation due to
forceF applied to the particle to the excess Laplace pressure
inside the droplet) remains small in almost all practical situa-
tions. Thus, the equations describing the disturbance of the in-
terface, the shift in the position of the particle and the values of
the Lagrange multipliers, associated with constraints imposed
on total volume and fixed position of the centre of mass of the
droplet, can all be linearised in this small parameterε. The
linear nature of the equations allows the problem to be formu-
lated in terms of Green’s functions, with the latter giving the
response of the interface to a unit point force applied at anyde-
sired position on the surface of the droplet. Using the method
of images, Guzowskiet al.57 derive explicit expressions for
their Green’s functions, in the special symmetrical case where
the contact angle between droplet and substrate is 90◦. In prin-
ciple then, the response of the interface to the applicationof
a force to a small but finite sized particle, can be obtained by
replacing this particle with a series of appropriate point forces
acting along an imaginary surface passing through the parti-
cle. However, in their work Guzowskiet al. mainly focus on
cases involving very small particles (ν ≡ a/R ≪ 1) where, at
least for the interfacial disturbance far from the particle(dis-
tances much larger thana) it suffices to treat the particle as a
point source. The results of this approach are evaluated against
“exact” numerical (finite-elements) and semi-analytical solu-
tions (solving the non-linearised equations in special cases,
but with boundary conditions having to be fitted numerically)
and found to provide a good level of agreement.

In the current study we consider a droplet (or bubble) hav-
ing two particles adsorbed at its surface placed diametrically
opposite each other. The symmetry of the problem and hence
the mathematical formulation is identical to one of the earlier
papers on an axisymmetric capillary bridge by Orr, Scriven
and Rivas58. We apply equal but opposite forces to each par-
ticle as is shown schematically in Figure 1. The symmetri-
cal nature of the problem, considered in this way, provides
significant simplifications allowing us to obtain exact analyti-
cal expressions for the distortion of the spherical bubble,and
hence the force vs displacement curves as the particles are
pulled away from each other. In the limit where the radius of
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dropletR → ∞, the current problem becomes identical to the
one studied by Davieset al. for their spherical particle case50.
Our problem is identical to that considered by Guzowskiet al.
when the contact angle between their sessile drop and the sub-
strate is 90◦ and the particle is located at the apex of the drop.
We attempt to extend their calculations to provide analytical
expressions for the distortion in the shape of the droplets in
the smallν limit. While Guzowskiet al. also considered sim-
plifications to their more general analysis for small particle
cases57, here our analytical expressions for the distortion of
the shape of the droplets, as well as force vs particle displace-
ment, are obtained without resort to such a linearisation inthe
force term. This allows for a very accurate description of the
interfacial distortion and the force displacement relation right
up to the point of the detachment of the particle, and even at
distances very close to the particle (i.e.< a). Thus, one is able
to assess the range of the validity of the “Hooke-de Gennes”
law and the linearity of the force displacement relationship.
Furthermore, Guzowskiet al. showed that to the leading term,
the dependence of the “compliance constant” on the size ratio
of the particle to the droplet,ν , is logarithmic57. While for
very small values ofν this term alone suffices in determin-
ing the value of the compliance, we note that typical size ratio
for Pickering stabilised emulsions in practice lie in the range
between 0.001 and 0.01 (e.g. nanoparticles ofa ∼ 5 nm stabil-
ising droplets ofR ∼ 1 µm). These values ofν are small, but
nonetheless− lnν ∼ 4.6 to 6.9. This means that the presence
of a constant term of∼ O(1) can constitute a major correc-
tion to the actual value of the “compliance constant”, which
can only be ignored in problems where the size ratio is unre-
alistically small. It is one of our aims in this work to calculate
a more accurate value for the compliance constant that should
remain valid for these small but nonetheless more practical
values ofν .

The paper is organised as follows. The details of our model
system are described in Section 2. Section 3 presents, without
derivation, the key result of the present work:i.e. the analyti-
cal expression for dependence between the force and the dis-
placement of the particles in the limit of small ratio of particle
to droplet sizes. The rest of the paper details the derivation
of this result and its consequences. The solution of the vari-
ational problem corresponding to the model of Section 2 is
presented in Section 4 leading to exact “semi-analytical” re-
sults for the problem, valid for any particle size. In Section 5,
the small particle to the bubble size ratio limit is exploredto
provide analytical expression for the distortion of the droplet
surface and the displacement of the particles on each side of
the droplet, resulting from the application of equal but oppo-
site forcesF to the particles. In Section 6, using our force vs
displacement graphs we consider the dissipation of the energy
that arises from the detachment of a particle from the interface.
Finally, we discuss the effect of line tension in Section 7.

droplet

FF
R

ρ

z(ρ)

droplet

FF
R

ρ

z(ρ)

particle

a
ρc αc

θ

Fig. 1 The geometry of the system.

2 Model

The geometry of our system is shown in Figure 1. We con-
sider a droplet of incompressible fluid 1 immersed in fluid 2.
Due to surface tension between the two fluids, the droplet in
equilibrium is spherical with radiusR, which is determined by
the volumeV0 of the droplet given by

V0 =
4π
3

R3. (2)

In order to overcome the problem of having a net zero force
on the droplet–particle system we use two identical solid par-
ticles of radiusa adsorbed at the opposite ends of the droplet.
The equilibrium contact angle between the fluid interface and
the flat surface,θ, is determined by Young’s equation

θ = arccos

(

γ1p − γ2p

γ

)

, (3)

whereγ1p andγ2p are surface tensions of the surface of the
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particles in contact with fluids 1 and 2, respectively. The re-
sulting system is axially symmetric. We take the denser con-
tinuous fluid phase to be phase 2 here, with the fluid 1 then
comprising the body of the droplet. As such, the contact angle
is then conventionally measured as the one considered into the
phase 2.

We apply opposite forces,F and−F, on both particles, act-
ing along the axis of symmetry of the system. Our aim is to
establish the positions of the centre of the particles,r1 and
r2, as the functions of the applied force of magnitudeF . Un-
der applied force the system will remain symmetric, so that
r1 = −r2 ≡ r, wherer is the distance of the particle centre
from the centre of mass of the fluid droplet.

We can write the magnitude of the external force applied to
the particles as the derivative of the free energy of the system,
F , with respect to distance 2r between them:

F =
dF

d(2r)
. (4)

Free energy of the system is determined by presence of the
interfaces and can be written as

F = γS12+ γ1pS1p + γ2pS2p, (5)

where the quantitiesS denote areas between different con-
stituents, indicated by subscripts 1, 2 andp, corresponding
to fluids 1 and 2 and the particles, respectively. Similarly,the
subscript for eachγ indicates the interfacial tension between
the indicated phases. We neglect line tension for the moment.

Generally, the free energy of the system is the functional of
the shape of the droplet. The equilibrium shape of the droplet
at given particle positions can be obtained by minimising the
free energy of the system (5) with respect to possible droplet
shape, with the additional constraint of constant volume ofthe
droplet,

V =V0, (6)

whereV0 is given by Eq. (2). This condition arises due to
incompressibility of the droplet fluid.

3 Displacement–force diagram in small-
particle limit

This section presents, without derivation, the key result of the
present work: the analytical expression for dependence be-
tween the forceF and the displacement of the particles∆r in
the limit of small ratio of particle to droplet sizes. It is given
parametrically by the formulas

F(κ ) = πγaµ (7)

and

∆r(κ ) = a

{

√

1− κ 2− µ
4

[

1+2ln
(κ + ξ )a

4R

]}

, (8)
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Fig. 2 Dependence of force upon the position of the particles at
θ = 90◦. Solid curves are calculated numerically and correspond to
ν = 0.1,0.03,0.01,0.003,0.001 (from left to right). Dashed curves
correspond to the small-particle limit, Eq. (12).

where

ξ =

√

κ 2− µ2

4
, (9)

µ = 2κ
(

√

1− κ 2sinθ − κ cosθ
)

, (10)

and the parameterκ changes betweenκmin and 1, whereκmin

is the solution of transcendental equation
(

d∆r(κ )
dκ

)

κ=κmin

= 0, (11)

with ∆r(κ ) being given by Eq. (8).
In the case of 90◦ contact angle, the displacement can be

expressed explicitly as a function of the force:

∆r
a

=

√

1∓Φ
2

(12)

− F
2πγa

{

1
2
+ ln

[ a
8R

(

1±Φ+
√

2(1±Φ)
)]

}

,

where

Φ=

√

1−
(

F
πγa

)2

. (13)

The derivation of the above formulas and their conse-
quences is given in the rest of the paper. Figure 2 demon-
strates the accuracy of these formulas in comparison with the
full numerical solution, described in Subsection 4.4, at differ-
ent values of particle to droplet size ratios, as do Figures 3,
5–9 and 11 further.
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4 Free-energy analysis

In this Section the free-energy analysis is performed for the
model described in Section 2. We obtain the exact expressions
for the shape and volume of the droplet, as well as the free
energy of the system as functions of three parameters which
characterise the size of the droplet, its deformation and the ra-
dius of the contact circle. Following this we solve numerically
for the values of these parameters which minimise the free en-
ergy of the system under the constraint of constant volume of
the droplet, given by Eq. (6), and use the results to calculate
the detachment force and other properties of the system.

4.1 Droplet shape.

Minimisation of the free energy of the system under the con-
straint of fixed volume constitutes a variational problem with
variable end points. Different equivalent methods exist for
solving this class of variational problems, which are discussed,
for example, by Bolza59. We adopt the method in which the
variational problem is decomposed into two problems60. First
we consider the variations which leave the end points fixed
(which physically corresponds to pinned contact line). After
that, finding the extremal satisfying boundary conditions re-
duces to an algebraic problem, which is simpler than consid-
ering from the beginning the full variation including the end
points.

In accordance with the above, we first determine the class of
the shapes of the fluid droplet which minimise the contribution
to free energy due to the presence of the fluid interface only.
This contribution is proportional to the area of the fluid inter-
face,F12 = γS12, so the problem is equivalent to minimising
the areaS12 at constant volume of the droplet. The result will
depend on the parameters which will be later determined by
minimising the total free energy of the system.

It is convenient in our study to describe the droplet shape by
the functionz ≡ z(ρ), where the cylindrical polar coordinates
ρ andz are depicted in Figure 1. Henceforth we shall omit the
argumentρ for brevity when referring toz. The element of the
arc length corresponding to the incrementdρ is

dl =
√

1+ z′2dρ, (14)

where prime denotes derivative with respect toρ. The cor-
responding elements of the surface area and the volume are
given by

dS = 2πρdl (15)

and
dV = 2πρzdρ. (16)

The function to be minimised is

S = S12+
2
ρ0

V. (17)

Here
S12=

∫

dS (18)

is the area of the fluid interface and

V =

∫

dV (19)

is the volume of the droplet, and (2/ρ0) is Lagrange multiplier
associated with the fixed volume of the droplet. The function
(17) can be represented in the form

S =

∫

Ldρ, (20)

with the integrand function given by

L = 2πρ
(

√

1+ z′2+
2z
ρ0

)

. (21)

The corresponding Euler-Lagrange equation,

δL
δz

=
∂L
∂ z

− d
dρ

∂L
∂ z′

= 0, (22)

then becomes

ρz′′+
(

1+ z′2
)

(

z′− 2ρ
ρ0

√

1+ z′2
)

= 0. (23)

The solution to this equation is

z′ =−
1
2cρ2

0 +ρ2

√

ρ2
0ρ2−

(1
2cρ2

0 +ρ2
)2
, (24)

wherec is integration constant. Due to the symmetric nature
of the problem, the conditionz′ =−∞ gives the maximum and
minimum radii of the cross-section of the droplet:

ρ+ =

√

1− c+
√

1−2c
2

ρ0. (25)

ρ− =

√

1− c−
√

1−2c
2

ρ0. (26)

To obtain the formula for the droplet shape, we integratez′

to yield

z =
∫ ρ

ρ+
z′dρ =

∫ ρ+

ρ

(

1
2cρ2

0 +ρ2
)

dρ
√

(ρ2
+−ρ2)(ρ2−ρ2

−)
(27)

The resulting shape is the so called unduloid58,61described by
formula

z = ρ+E(ϕ ,k)+
cρ2

0

2ρ+
F(ϕ ,k), (28)
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whereF(ϕ ,k) andE(ϕ ,k) are incomplete elliptic integrals of
first and second kind, respectively, and

sinϕ =

√

ρ2
+−ρ2

ρ2
+−ρ2

−
. (29)

and

k =

√

1− ρ2
−

ρ2
+

. (30)

In casesc > 0 andc < 0 Eq. (28) describes, respectively,
unduloids and nodoids, which are members of the family of
constant mean curvature surfaces58,61. They correspond to the
detachment of the particles in the outward and inward direc-
tion with respect to droplet. We shall henceforth consider the
case when the particles detach in the outward direction (c> 0).
Note that atc = 0 the shape described by Eq. (28) reduces to
a spherical one,

lim
c→0

z =
√

ρ2
0 −ρ2. (31)

4.2 Free energy.

In this subsection we obtain the explicit formula for the free
energy of the system. For this, we need the expressions for the
contact areas between different constituent phases.

Due to the symmetry of the problem, the surface of the
droplet contacts the particles at circular lines. We denotetheir
radii asρc. Then the interfacial areas can be represented as

S1p = 2

[

2πa

(

a−
√

a2−ρ2
c

)]

, (32)

S2p = 2

[

2πa

(

a+
√

a2−ρ2
c

)]

, (33)

S12= 2 ·
∫ ρ+

ρc

2πρ0ρ2dρ
√

(ρ2
+−ρ2)(ρ2−ρ2

−)
=

= 2[2πρ+ρ0E(ϕc,k)] (34)

with

sinϕc =

√

ρ2
+−ρ2

c

ρ2
+−ρ2

−
. (35)

Note that in the case of a spherical droplet (c = 0) the surface
area of the fluid–fluid interface reduces to that for a spherical
zone:

lim
c→0

Sio = 4πρ0

√

ρ2
0 −ρ2

c . (36)

As a result, the free energy of the system, up to a constant
term, is

F = 4πγ
[

ρ+ρ0E(ϕc,k)− a
√

a2−ρ2
c cosθ

]

. (37)

4.3 Droplet volume.

In this subsection we obtain the expression for the volume
of the droplet which corresponds to the shape described by
Eq. (28). We shall impose the constraint of constant volume
of the droplet, given by Eq. (6), when we come to minimise
the free energy of the system.

First we consider the case when the angle

αc = arcsin
ρc

a
, (38)

as depicted in Figure 1, satisfies the condition

αc ≤
π
2
. (39)

In this case the volume of the droplet can be written as

V =Vρ<ρc +Vρ>ρc, (40)

where

Vρ<ρc = 2

(

2π
∫ ρc

0
ρzdρ

)

(41)

and

Vρ>ρc = 2

(

2π
∫ ρ+

ρc

ρzdρ
)

. (42)

In the integral (41),z is the position of the surface of the
particles:

z = r−
√

a2−ρ2. (43)

The integration yields

Vρ<ρc =
4π
3

{

3
2

ρ2
c r−

[

a3− (a2−ρ2
c )

3/2
]

}

. (44)

In the integral (42),z is the position of the fluid-fluid inter-
face. The integration yields

Vρ>ρc =
4π
3

{

ρ+

[

ρ2
++ρ2

−− 3
2

ρ2
c +

3
4

cρ2
0

]

E(ϕc,k)

−
[

ρ2
−ρ+

2
+

3
4

cρ2
0ρ2

c

ρ+

]

F(ϕc,k)

+
ρc

2

√

(ρ2
+−ρ2

c )(ρ2
c −ρ2

−)

}

. (45)

Note, in the case of an undeformed droplet (c = 0) we have
the volume of relative complement of cylinder of radiusρc in
sphere of radiusρ0 (spherical ring):

lim
c→0

Vρ>ρc =
4π
3
(ρ2

0 −ρ2
c )

3/2. (46)

1–16 | 7



 0

 30

 60

 90

 120

 0  1  2  3  4  5

α c
,  

de
gr

ee
s

∆r / a

 0

 30

 60

 90

 120

 0  1  2  3  4  5

α c
,  

de
gr

ee
s

∆r / a

 0

 30

 60

 90

 120

 0  1  2  3  4  5

α c
,  

de
gr

ee
s

∆r / a

 0

 30

 60

 90

 120

 0  1  2  3  4  5

α c
,  

de
gr

ee
s

∆r / a

 0

 30

 60

 90

 120

 0  1  2  3  4  5

α c
,  

de
gr

ee
s

∆r / a

 0

 30

 60

 90

 120

 0  1  2  3  4  5

α c
,  

de
gr

ee
s

∆r / a

Fig. 3 Dependence of the angleαc, defined by Eq. (38) and
depicted in Figure 1, upon the position of the particles atθ = 90◦.
Solid curves are calculated numerically and correspond to
ν = 0.1,0.03,0.01,0.003,0.001 (from left to right). Dashed curves
correspond to the small-particle limit, Eq. (69).

As a result, the volume of the droplet is given by formula

V =
4π
3

{[

(

1− c
4

)

ρ2
0 −

3
2

ρ2
c

]

ρ+E(ϕc,k)

−
[

ρ2
−ρ+

2
+

3
4

cρ2
0ρ2

c

ρ+

]

F(ϕc,k)

+
ρc

2

√

(ρ2
+−ρ2

c )(ρ2
c −ρ2

−)

+
3
2

ρ2
c r−

[

a3− (a2−ρ2
c )

3/2
]

}

. (47)

Finally, in the caseαc > π/2, i. e. opposite situation to that
defined by Eq. (39), the volume of two spherical rings with
sphere radiusa and cylindrical hole radiusρc,

4π
3

(

a2−ρ2
c

)3/2
, (48)

which corresponds to the volume atρ > ρc which lies inside
the particles and therefore should be subtracted from the to-
tal volume, Eq. (47), to yield the actual volume of the fluid
droplet. This is particularly important when the size of parti-
cles becomes comparable to that of the droplet.

4.4 Numerical solution.

We have obtained the exact expressions for the shape, Eq. (28),
and volume, Eq. (47), of the droplet, as well as the free energy
of the system, Eq. (37), as functions of the parametersρ0, c,
andρc, which characterise size and deformation of the droplet
and radius of the contact circle, respectively. The actual values

∆r = 0

∆r = 0.25 ∆r*

∆r = 0.5 ∆r*

∆r = 0.75 ∆r*

∆r = ∆r*

Fig. 4 Shapes of the droplet surface at different positions of the
particle, calculated forν = 0.01 andθ = 90◦. Dashed lines
correspond to equilibrium shape of the droplet. The top figure shows
particle position which corresponds to maximum force for which the
particle still remains attached to the interface.

of these parameters are those that minimise the free energy of
the system. The minimisation should be undertaken under two
conditions. First, the volume of incompressible fluid in the
droplet should be constant,i. e. Eq. (6). Second, the interface
should contact particle at circle of radiusρc, which can be cast
as equality of the valuez(ρc), calculated using Eq. (28) for the
droplet shape, to the value ofz calculated using Eq. (43) for
the shape of the particle.

In order to calculate the force required to detach the particle
from the droplet we proceed as follows. We fix the value of
particle displacement∆r defined as

∆r = r−R (49)

and solve numerically for the values of the parametersρ0, c,
andρc, which minimise free energy under the conditions given
above. Repeating this procedure for different values of∆r we
obtain free energy of the system,F , as a function of particle
displacement. Then we use numerical differentiation to cal-
culate the force as a function of particle position according to

8 | 1–16
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Fig. 5 Dependence of the detachment force withν , atθ = 90◦.
Solid curve is calculated numerically. Dashed curve corresponds to
the small-particle limit, Eq. (70).

Eq. (4). In force-measuring experiments the maximum of this
function corresponds to the detachment force.

We start by considering the case of 90 degree contact angle.
Figures 2 and Figure 3 show the dependence of the force, cal-
culated using Eq. (4), and the angleαc, defined by Eq. (38),
upon particle displacement, at different values of the ratio of
particle to droplet sizes, denoted as

ν ≡ a
R
. (50)

The resulting shapes for the droplet surface at different values
of the particle displacement, calculated atν = 0.01, are shown
at Figure 4. The force–displacement dependence shown in
Figure 2 is similar to the experimental data for detachment of
particles from air bubbles25,26,32. In the case of flat fluid in-
terfaces, qualitatively a similar behaviour is predicted theoret-
ically43–46,48,50,52and also observed experimentally44,46,47,52.

Figures 5, 6 and 7 show the dependence uponν of the de-
tachment forceF∗, corresponding particle displacement∆r∗,
and the Hookean (“spring”) constantk, defined as

k =

(

dF
d∆r

)

∆r=0
. (51)

Note that the analytical formulas, derived in Section 5, in the
limit of small particle-to-droplet size ratio, for the dependence
of particle detachment position (Figure 6) and Hookean con-
stant (Figure 7) work well even for relatively larger particles.

Next we consider different contact angles. The variation
of the force with particle displacement, at different values of
the contact angleθ, is shown in Figure 8. Figure 9 shows
dependence of the detachment force as a function of contact

 0
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 6

 0.0001  0.001  0.01  0.1  1

∆r
*  / 

a

ν

Fig. 6 Dependence of the particle position, corresponding to the
point where the maximum force occurs, withν at θ = 90◦. Solid
curve is calculated numerically. Dashed curve correspondsto the
small-particle limit, Eq. (71).

angle, and Figure 10 displays the corresponding shapes of the
droplet interface at the particle position corresponding to the
maximum force.

Hysteresis of the contact angle may significantly affect
the behaviour of the particles being detached from the inter-
face27,37,47. Our model can still be applied in this case, if we
takeθ as the value of the receding contact angle.

5 Limit of small particles

In the most common cases the size of the particles is much
smaller than the size of the droplet. This section focuses on
investigating the limit of small particle to droplet size ratio.

5.1 General formulas.

In the small-particle limit the ratio of particle and droplet sizes
ν , defined by Eq. (50) is a natural small parameter.

Since the radius of the contact circle cannot be larger than
the radius of the particles,ρc ≤ a, then this is always small
compared to droplet size, too,

ρc ≪ R. (52)

The parameterρ0 is comparable with the size of the droplet,

ρ0 ≈ R. (53)

The parameterc, which controls the deformation of the
droplet, is also small in this limit:

c ≪ 1. (54)
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Fig. 7 Dependence of the Hookean constant defined by Eq. (51)
uponν atθ = 90◦. Solid curve is calculated numerically. Dashed
curve corresponds to the small-particle limit, Eq. (72).

This allows us to introduce the following set of dimensionless
quantities:

κ ≡ ρc

a
, (55)

λ ≡ ρ0−R
a

, (56)

µ ≡ c
ν
, (57)

which in general are not small.
Let us chooseκ as an independent parameter and regardµ ,

λ , as well as other quantities, as functions ofκ . Then we can
express the force given by Eq. (4) as a function ofκ :

F(κ ) =
1
2
(∂F/∂κ )
(∂ r/∂κ )

. (58)

In order to calculate the derivatives in Eq. (58), we need to
express the free energyF and particle positionr as functions
of κ in smallν limit. For this we require the expressions for
the parametersµ andλ as functions ofκ .

The numerical solutions described in Section 4 have
demonstrated that the actual contact angle at the surface of
the particles in the absence of line tension remains equal to
contact angle at flat surface,θ, as given by Young’s equation,
Eq. (3), with accuracy of the order 10−4. This can be seen in
Figure 12 where the top line is horizontal. To expressµ in
terms ofκ , we will use this result from now on and fix the
actual contact angle equal toθ expressed as

θ = arcsinκ −arctanz′(ρc) (59)

Substituting Eq. (24) forz′ and expanding the result in powers
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Fig. 8 Plots of force vs. the position of the particles, forν = 0.01.
Solid curves are calculated numerically and correspond to
θ = 150◦,120◦,90◦,60◦,30◦ (from left to right). Dashed curves
correspond to our analytical expression for the small-particle limit,
Eqs (8) and (7). Note that the equilibrium position of the particles
does not generally correspond to∆r = 0, except whenθ = 90◦.

of ν we obtain

µ = 2κ
(

√

1− κ 2sinθ − κ cosθ
)

+O(ν). (60)

To expressλ in terms ofκ we also expand the volume given
by Eq. (47) in powersν . Using the expansions of the elliptic
integrals given by Eqs (91) and (92) (see Appendix), we obtain

V =
4πR3

3

[

1+3
(

λ − µ
4

)

ν

+
3
16

(

16λ 2−12λ µ − µ2)ν2+ o
(

ν2)
]

. (61)

The incompressibility condition, Eq. (6), then yields

λ =
µ
4
+

3µ2

16
ν + o

(

ν1) , (62)

Using the above expressions, we can write the free energy
of the system in the following form:

F (κ ) = F0−2πa2γ

{

κ 2+
µ2

4

[

ξ
κ + ξ

+ ln
(κ + ξ )ν

4

]

+

+2
√

1− κ 2cosθ

}

+ o
(

ν0) , (63)

where
F0 = 4πR2γ (64)

is free energy of undeformed droplet without adsorbed parti-
cles, andξ is defined by Eq. (9).
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Fig. 9 Dependence of the detachment force upon contact angle at
ν = 0.01. Solid curve is calculated numerically. Dashed curve
corresponds to the small-particle limit, Eq. (67).

In order to calculate force using Eq. (58), we also need the
expression for the position of the particles,r, as a function of
the parameterκ , too. Expressingr as

r = z(ρc)+
√

a2−ρ2
c . (65)

and expandingz(ρc) given by Eq. (28) inν , we obtain

r(κ ) = R+ a

{

√

1− κ 2− µ
4

[

1+2ln
(κ + ξ )ν

4

]}

+ o
(

ν0) , (66)

which is equivalent to Eq. (8). Now substituting Eqs (63) and
(66) into Eq. (58), we finally obtain Eq. (7) for the force.

Formulas (7) and (8), together with (9) and (10), allow us to
calculate parametrically the dependence of the forceF upon
the position of the particlesr in the small-particle limit (see
Figure 8). The maximum force in the small-particle limit,

F∗ = πγa(1− cosθ), (67)

is shown in Figure 9. Note, the expression (67) coincides with
the formula obtained by Scheludkoet al.41 for the case of flat
fluid interface.

In our model we neglect compressibility of the inner fluid.
Now we can demonstrate that this assumption is also valid in
the case of gaseous bubbles. The change in free energy of
the system due to the increase of the interfacial area, given
by Eq. (63), is of orderγa2. The corresponding change in
pressure is∼ γa2/R3, whereV ∼ R3 is the volume of the bub-
ble. The inner fluid can be considered incompressible if this
change is small compared to the Laplace pressure∼ γ/R. This

θ = 45o

θ = 90o

θ = 135o

Fig. 10 Distortion of the shape of the droplet surface at particle
positions corresponding to displacement where the maximumforce
occurs, for different contact angles. Results are calculated for
ν = 0.01. Dashed lines correspond to equilibrium shape of the
droplet. Thin circles correspond to equilibrium positionsof the
particles (i. e. whenF = 0).

yields the criterion(a/R)2 ≪ 1, which is well satisfied. There-
fore, our formulas can be used for compressible (eg. air) bub-
bles as well.

5.2 Case of 90 degree contact angle.

For right angle contact angle (θ = 90◦) equations (8) and (7)
simplify and the force and the position of the particles are
given parametrically in terms ofκ as follows:

F = 2πγaκ
√

1− κ 2, (68)

r = R+ a
√

1− κ 2

{

1− κ
[

1
2
+ ln

κ (1+ κ )ν
4

]}

. (69)

From these formulas the dependence∆r(F) can be obtained
explicitly as Eq. (12). This variation is plotted in Figure 2.
The maximum force

F∗ = πγa (70)
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Fig. 11 Dependence of the detachment energy upon the value ofν
for the case withθ = 90◦. Solid curve is calculated numerically.
Dashed curve corresponds to the small-particle limit, Eq. (74).
Dotted curve shows the energy of adsorption for particle, included
here for comparison.

occurs at position

r∗ = R− a
2



ln

(√
2+1

)

ν

8
−
√

2+
1
2



 (71)

(see Figure 6).
The Hookean constant defined by Eq. (51) is given by

k =
2πγ

1
2 − ln ν

2

(72)

and is of the order of surface tensionγ (see Figure 7). Numer-
ical constants apart, the form of equation (72) is quite similar
to that reported by Pitois and Chateau fork, obtained for the
case of a flat interface in the limit of small Bond numbers47.
However, it must be noted that the parameterν for such prob-
lems is different to ours and there represents the ratio of the
radius of the particle to the capillary length,a/(γ/ρg)1/2.

6 Work of detachment

As the two spherical particles are pulled gently apart, an in-
creasing amount of energy is stored in the resulting distor-
tion of the droplet (or bubble) surface. This situation contin-
ues until the displacement of the particles reaches a distance
whereupon they become detached from the droplet. As al-
ready shown in Figure 2, the position at which this happens
is slightly further away from the point where the generated
restoring force attains its maximum value. At this stage, the

interface relaxes back and the droplet returns to its original
undisturbed spherical form, thus leaving the particles in the
dispersion medium at a distance∼ a away from the surface of
the droplet. The process occurs over a finite relaxation time,
dictated by the viscosities of the dispersed and the dispersion
media. The localised flows of the fluid in the droplet and in
that of the surrounding liquid close to the interfacially dis-
torted region, taking place during this relaxation time, involve
the dissipation of some of the stored interfacial energy. Typi-
cal stresses and strain rates involved in the process areγ/a and
γ/(ηa), respectively, where for simplicity we assume that the
viscosity,η , for the more viscous phase is much higher than
the other one. The rate of energy dissipation per unit volume
is then∼ γ2/(ηa2), i.e. inversely proportional to the viscos-
ity. On the other hand, since the duration of the relaxation time
increases linearly withη , it is expected that the overall dissi-
pated energy during the full process should not be dependent
on viscosity. The value of the energy dissipation, resulting
from dislodging of the particles from the droplet surface, can
be calculated by subtracting the stored energy in the distorted
droplet interface just prior to particle detachment, from that of
the particles that are fully displaced into the dispersed phase
residing away from the droplet. The latter is simply given
by Eq. (1), while the former is the area under the appropri-
ate force–displacement curve, similar to those we displayed in
Figures 2 and 8, integrated up to the point of detachment.

Figure 11 shows the dependence of the work required to
detach the particles from the droplet onν , calculated as

W = Fdetachment−Fequilibrium. (73)

This work is compared with the adsorption energy, which is
different from that given by Eq. (1) for flat interfaces due to
deformation of the droplet in equilibrium.

As ν decreases, the dependence of the force upon the dis-
placement of the particles becomes more linear. This allows
calculating the detachment work, in small particle to droplet
size ratio limit as the area of the triangle on the displacement–
force diagram. Using Eqs (70) and (71) we can write for the
case of the 90◦ contact angle:

W =−π
2

γa2



ln

(√
2+1

)

ν

8
−
√

2− 1
2



 . (74)

This is plotted in Figure 11, normalised by 2πγa2. The dashed
line in the figure is for our approximate equation, Eq. (74),
while the solid line represents the exact results obtained using
the numerical analysis of section 4.4. For valuesν < 0.03,
the two curves are in perfect agreement, though they began to
deviate at higher size ratios. The adsorption energy of the par-
ticles is also included in the figure, shown by the dotted line,
for comparison. As expected, this is simply 2πγa2 for the pair
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of particles with a contact angle of 90◦, whenν is small. It
marginally deviates from 2πγa2 at higher size ratios, as the
effects of the finite curvature of the interface become more
prominent. Note that Eq. (74) provides the dissipated energy
for the pair of particles and should be divided by a factor of
two, if needed for a single particle. It is seen from Figure 11,
that the dissipated energy becomes an increasingly more sig-
nificant component of the work done during the detachment of
the particles, in comparison to the adsorption energy, asν →0.
The results in Figure 11 indicate that for small particles, the
energy barrier to adsorption can be significantly larger than
that simply taken to be equal to the adsorption energy. The de-
tachment work of particles from the interfaces had also been
considered by Pitois and Chateau47 in the limit of small but
finite Bond numbers (and therefore also flat interfaces). Their
conclusions for such cases are broadly in accord with those
found here.

Dissipation in moving the particle away from the surface is
rate dependent but we are considering it post detachment only,
assuming that up to the point of detachment the particle was
moved sufficiently slowly so as to maintain the equilibrium
liquid profile. Although in this case the exact energy dissi-
pation during the detachment of the particle does not require
any detailed knowledge of the of the actual relaxation dynam-
ics, it maybe interesting to model this using LB or even tradi-
tional CFD methods. It would also be useful then to study the
phenomenon using a high speed camera and compare the data
with the theoretical results. To do so, it may be more suitable
to use moderately viscous fluids, either for the droplet or the
dispersion medium. This can easily be tailored to the appro-
priate value by adding a suitable amount of rheology modifiers
or thickening agents to either of the two fluids, slowing down
the interfacial relaxation kinetics to ranges that can easily be
captured by the camera.

7 Effect of line tension

Line tension can affect the behaviour of the particles adsorbed
at fluids interfaces if the particles are small enough41,62–66,

a ∼ τ
γ
. (75)

Both positive and negative values of line tension
τ were reported with magnitudes spanning a range
10−12−10−5 N.63–65 Roughness of the contact line can
also manifest itself as the effective line tension67.

To account for line tension in our model, we add a contri-
bution to the free energy of the system, Eq. (37), equal to the
length of the contact circles of both particles multiplied by line
tension:

Fτ = 4πρcτ . (76)
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Fig. 12 Dependence of actual contact angle upon particles’
positions atν = 0.01,θ = 90◦, and different values of dimensionless
line tensionτ/(γa) = 0,0.1,0.2,0.3,0.4,0.5 (top to bottom).

Then we can minimise numerically the free energy of the sys-
tem with the contribution of line tension given by Eq. (76)
using the method described in Subsection 4.4.

Presence of line tension modifies the contact angle at the
surface of the particles. Moreover, it makes it dependent upon
the displacement of the particles, as is shown in Figure 12.
This results in changes in the manner in which the force varies
with displacement (Figure 13) and in the value of the detach-
ment force (Figure 14). As expected66, at large positive values
of line tension the particles do not stay at the surface even in
absence of any external force.

8 Conclusion

We have considered two spherical solid particles adsorbed on
the surface of, and located at the opposite poles of an incom-
pressible fluid droplet. We have calculated the deformation
of the droplet and subsequent detachment of the particles un-
der the influence of two opposite external forces applied to
the particles at each end, as the magnitude of the forces is in-
creased. The free-energy analysis have been used to calculate
the force-displacement curves for restoring forces that are gen-
erated as a result of the droplet deformation and displacement
of the particles relative to each other.

In the case of the particles being small compared to the
droplet, the problem has been solved analytically. The force,
given by Eq. (7), varies almost in a linear fashion with the
displacement of the particle, Eq. (8), almost up to the point
where the particle becomes detached from the droplet. The
maximum forceF∗, given by Eq. (67), depends upon the size
of the particlesa, the value of the surface tensionγ, and the
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Fig. 13 Dependence of force on position of particles for cases
whereν = 0.01 andθ = 90◦. Results are for different values of
dimensionless line tensionτ/(γa) = 0,0.1,0.2,0.3,0.4,0.5 (from
top to bottom).

equilibrium contact angleθ in a way similar to that for a flat
fluid interface. However, the dependence of the force upon the
displacement of the particles is sensitive to the ratio of particle
and droplet radiiν .

In the case of arbitrary ratio of particle and droplet radii,we
have solved the problem “semi-analytically”. These “exact”
results agree with the analytical solution for small particles.
At larger particle sizes the force decreases compared to the
small-particle limit predictions, as shown in Figures 2 and5.
The effect of line tension becomes noticeable for particlesof
very small size given by Eq. (75).

The results of this work can be extended in several different
directions. The series expansion inν , derived in Section 5, can
be extended by considering higher-order terms. This should
result in better description of large particles. In particular, ex-
tended series should be able to describe the dependence of the
detachment force uponν , Figure 5. However, the formulas de-
rived in Section 5 already have a good accuracy for the typical
size ratios. For the dependence of particle detachment posi-
tion (Figure 6) as well as Hookean constant (Figure 7) these
formulas seem to work well even for larger particles.

Similar approach can be used to extend the results to the
case of pinned contact line68 and to particle shapes other
than spherical. The work can be also extended to the case
of surfactant-covered droplets by using Helfrich surface free
energy69. The effect of adsorbed surfactant has been inves-
tigated experimentally by Spyridopoulos and Simons28. We
expect that in such cases the global rather than local defor-
mations of the droplet to play the main role due to curvature
contribution to the free energy.
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Fig. 14 Dependence of detachment force upon line tension at
ν = 0.01 and different values of the contact angle.

A Expansion of elliptic integrals

In this Appendix the series expansions of incomplete ellip-
tic integralsF(ϕc,k) andE(ϕc,k) are derived for the small-
particle limit described in Section 5.

In this limit the arguments of the elliptic integrals approach
ϕc → π/2 andk → 1. Van de Vel70 derived the series expan-
sions of elliptic integrals valid in this double limit, which are
summarised below.

The expansions are:

K(k)−F(ϕ ,k) =
2
π

K(k′)sinh−1
(

1
k′ tanϕ

)

−
(

1+ k′2 tan2ϕ
)1/2

cot2ϕ ×

×
(

c′0−
2
3

c′1cot2ϕ +
2 ·4
3 ·5c′2cot4ϕ − . . .

)

, (77)

E(k)−E(ϕ ,k) =
2
π
[K(k′)−E(k′)]sinh−1

(

1
k′ tanϕ

)

+
(

1− k2sin2ϕ
)1/2

cotϕ −
(

1+ k′2 tan2ϕ
)1/2

cot2ϕ

×
(

d′
0−

2
3

d′
1cot2ϕ +

2 ·4
3 ·5d′

2cot4ϕ − . . .

)

. (78)

In these formulas
k′ =

√

1− k2, (79)

c′n =
a′n

k′2n+2 =
∞

∑
i=n+1

(− 1
2

i

)2

k′2i−2n−2, (80)

d′
n =

b′n
k′2n+2 =

∞

∑
i=n+1

(− 1
2

i

)2
2i

2i−1
k′2i−2n−2, (81)
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a′n =
∞

∑
i=n+1

(− 1
2

i

)2

k′2i, (82)

a′0 =
2
π

K(k′)−1, (83)

b′n =
∞

∑
i=n+1

(− 1
2

i

)2
2i

2i−1
k′2i, (84)

b′0 =
2
π
[

K(k′)−E(k′)
]

. (85)

and
(n

k

)

are binomial coefficients.
These formulas contain complete elliptic integrals of first

and second kind,K(k) = F(π
2 ,k) and E(k) = E(π

2 ,k). For
|k| < 1, they can be represented in terms of Gauss hypergeo-
metric function2F1(a,b;c;z) as follows71:

K(k) =
π
2 2F1

(

1
2
,
1
2

;1;k2
)

, (86)

E(k) =
π
2 2F1

(

−1
2
,
1
2

;1;k2
)

. (87)

Their asymptotic behaviour near the singularity atk = 1 is71

K(k) =
∞

∑
i=0

[

(1
2

)

i

i!
k′i
]2

[

ln

(

1
k′

)

+ d(i)

]

, (88)

E(k) = 1+
1
2

∞

∑
i=0

(

1
2

)

i

(

3
2

)

i

(2)ii!
k′2i+2×

×
[

ln

(

1
k′

)

+ d(i)− 1
(2i+1)(2i+2)

]

, (89)

where(x)n is Pochhammer symbol, and

d(x) = ψ(1+ x)−ψ
(

1
2
+ x

)

, (90)

whereψ(x) is digamma function.
Substituting the expressions (35) and (30) forϕc andk in

Eqs (77) and (78) we obtain the following formulas for the
case of smallν :

F(ϕc,k) =− ln
(κ + ξ )ν

4
+ o

(

ν0) (91)

and

E(ϕc,k) = 1−
{

κ 2

2
+

µ2

16

[

2ln
(κ + ξ )ν

4
− κ − ξ

κ + ξ

]}

ν2

+ o
(

ν2) . (92)
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