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1 The Field of Spatial Reasoning

The field of spatial reasoning is concerned with representations and inference
mechanisms that enable one to draw conclusions from spatial information.

The the study of principles of spatial reasoning dates back to ancient times.
It is known that the Egyptians used a variety of systematic procedures for spatial
inference, especially with regard to measuring and demarcating areas of land.
Geometry (literally meaning ‘Earth measurement’) was also a central topic of
ancient Greek mathematics. This investigation culminated in the publication
(around 300 B.C.) of Euclid’s Elements, an axiomatic system that provides a
more or less comprehensive set of rules for reasoning about geometrical figures
as described by points and lines and the relationships between them.

A major shift in the analysis and representation of spatial information was in-
stigated by Descartes (1596–1650), who showed how point locations in space can
be represented by means of numerical coordinates. This idea can be generalised
to specify complex figures in terms of sets of numerical values and equations.
The coordinate-based approach provides an extremely powerful mathematical
tool for representing and manipulating spatial information, and enables certain
useful kinds of spatial reasoning to be carried out by algebraic numerical meth-
ods. Consequently, the spatial representations used in modern scientific models
and computational information systems (such as GIS) are predominantly Carte-
sian in nature.

While the Cartesian analysis of space is certainly both profoundly illuminat-
ing and of immense practical value, it does have limitations, and is ill-suited to
describing many intuitively natural forms of spatial inference. The main limi-
tation stems from the fact that concise and mathematically simple descriptions
in terms of coordinates can only be given for specific instances of spatial fig-
ures and configurations, whose geometry is fully determined; whereas, natural
reasoning about space is often couched in terms of general qualitative proper-
ties and relationships of spatial objects. For instance, we may know that a
spatial region is convex or that one spatial region is part of another, without
knowing the particular geometry of the regions involved. Qualitative reasoning
is required whenever, spatial information is partial or is presented in terms of
abstract, high-level concepts.
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Recently, arising out from the Knowledge Representation strand of Artificial
Intelligence (AI) and also from the need for more flexible interaction with GIS,
much research has been directed towards the study of reasoning with qualita-
tive spatial information. The field of Qualitative Spatial Reasoning is now an
established branch of AI research and elements of this work are beginning to be
incorporated into GIS.

2 Aspects of Spatial Information

The realm of spatial information encompasses a wide variety of different entities,
properties and relationships. Because reasoning with all these aspects together
is extremely complex, representations designed for computing spatial inferences
typically handle only sub-domains of spatial information, comprising specific
types of entity and a limited range of related concepts. This section summarises
the most significant ways in which the domain of spatial information can be
divided into more restricted sub-domains.

2.1 Basic Entities: Points, Lines and Regions

Euclidean geometry takes points and lines as the basic entities and Cartesian
geometry is based on points. More complex entities are constructed as con-
figurations or sets of these elements. By contrast, many of the more recently
developed qualitative spatial calculi deal directly with extended regions (either
2 or 3 dimensional) and often do not explicitly refer to points at all. This can be
advantageous for implementing procedures for reasoning about regions, since it
abstracts away from their complex structure. Some representations handle enti-
ties of mixed dimensionality but this makes computation of inferences extremely
complex.

2.2 Mereology

The domain of mereology concerns the fundamental relation of parthood which
can hold among extended entities and spatial regions. Parthood can be used
to define other relations such as overlap and disjointness: two regions overlap
if they share a common part, otherwise they are disjoint. The notion of a
mereological sum can also defined: the sum of a set of regions is that (unique)
region such that all of its parts overlap some region in the original set.

2.3 Topology

Topology is concerned with those properties of a spatial configuration that
remain constant if the configuration is continuously deformed (i.e. stretched,
squashed or bent). In mathematics, topology is often studied using very expres-
sive formalisms (such as set-theory) which can refer to both points and regions.
However, in order to achieve effective computation, researchers in spatial reason-
ing have mostly concentrated on (binary) topological relations between regions.
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The well-known Region Connection Calculus is a theory expressed in classical
first-order logic (see below), in which spatial properties and relations are defined
in terms of the primitive relation of connection. For instance one can specify
that: region x is part of region y if and only if every region z that is connected
to x is also connected to y. (Consequently, the domain of topology is generally
considered to include mereology as a sub-domain, although some analyses treat
these as separate aspects, which combine to form a mereo-topology.)

Figure 1 illustrates a set of eight basic topological relations definable from
connection. Here, standard symbolic names are used for the relations holding
between regions a and b: disconnected (DC), externally connected (EC), tangen-

tial proper part (TPP), tangential proper part inverse (TPPi), partially overlap-

ping (PO), equal (EQ), non-tangential proper part (NTPP) and non-tangential

proper part inverse (NTPPi). This set, known as RCC-8, is particularly sig-
nificant, since any two regions must be related by exactly one of these eight
relations.

Figure 1: the RCC-8 topological relations

2.4 Betweenness, Convexity and Affine Geometry

Affine geometry concerns those properties that are definable from the relation of
betweenness. This includes the notion of convexity, since a convex region is one
such that any point that lies between two points of the region is also included
in the region.

Betweenness is a very useful concept for describing or querying geographic
information. For instance, one might be interested in settlements lying between
some range of mountains and the sea, or the land between two rivers. The
concept of convexity is also very expressive. The notion of a convex-hull of a
region r can be defined as the smallest convex region that contains r. This
notion can be very useful in describing forms and relationships of geographic
features.
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For example, in Figure 2 we see an island i and three smaller islands a, b and
c. Of these only a is convex. The convex-hull of i consists of i itself together with
the dark regions surrounding i (which correspond to bays around the island).
We see that a is completely within the convex-hull of i, c is completely outside
it and b is partly in and partly out.

Figure 2: example of a convex-hull

2.5 Direction and Orientation

A class of spatial relationships that is particularly significant for GIS applica-
tions is those relating to compass direction. The standard nomenclature for
describing directions (N, S, W, E, NW, NE etc.) may be used to represent the
direction of one point location relative to another; but, since the points may
not be aligned exactly along a designated direction, this is normally adapted so
that directions are associated with segments, rather than lines, as illustrated in
Figure 3.

Figure 3: cardinal directions associated with segments

This scheme must also be modified if it is to be applied to extended regions,
which do not lie on a unique line. To handle this case, it has been proposed
that directions should be defined in terms of a grid, as illustrated in Fig 4. Here
the white region lies to the west of the dark reference region, which defines the
grid; and the mid-tone region overlaps each of the N, NE, E and SE sectors of
the grid.

Relative locations may also be described in terms of orientation. Here we
consider the position of one object in relation to another, from the perspective
of a particular observation point. Fig 5 illustrates how a given viewpoint (the
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Figure 4: cardinal direction grid determined by a reference region

black disc) and reference landmark (the black triangle) determine a grid, by
means of which we can characterise the position of another object in terms of
whether it is to the left or right of the landmark and whether it is nearer or
further away. Here, the white disc lies on the “right perpendicular” (rp) relative
to the viewpoint and reference point; and the cross lies in the left centre (lc)
region.

Figure 5: orentation relative to a landmark

2.6 Metric Geometry

To fully describe spatial structure one needs to utilise some notion of the dis-
tance. In fact, (as demonstrated by Tarski’s formulation of the theory of El-
ementary Geometry) the relation of equidistance (holding when the distance
between points a and b is the same as that between points c and d) is suf-
ficient to completely define the metrical structure of space. Reasoning about
metric information in a general way is extremely complex and inferences cannot
be computed effectively. However, representation of specific configurations in
terms of Cartesian coordinates does enable efficient numerical computation of
metrical properties.
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3 Spatial Inference Mechanisms

One of the main obstacles to the employment of automated spatial reasoning in
practical applications is the complexity of computing deductions. Theoretical
results show that even when dealing with information expressed using seemingly
very restricted vocabularies of spatial concepts, the number of computational
steps required to determine whether a given consequence follows is typically
an exponential function of the amount of information involved. Thus inference
computations performed on large amounts of data are likely to require huge
amounts of CPU time and memory. To mitigate this problem, a number of
special purpose procedures have been developed that are effective for computing
certain kinds of spatial inference. But there is always a trade-off between the
generality and computational tractability of any reasoning algorithm.

The rest of this section summarises some of the most widely used reasoning
mechanisms that have been applied to spatial information.

3.1 Reasoning with Cartesian Coordinate Information

Cartesian coordinate representations enable qualitative relationships to be com-
puted by numerical calculation. For instance one may compute whether a point
lies within a polygon or circle, or whether two polygons touch or overlap. Such
functions are widely implemented in spatial information systems. However, this
is only a limited form of reasoning, in that the representation does not allow
partial or general information to be expressed and does not support extended
chains of inference.

3.2 Reasoning with Classical Formal Logic

The the notation of formal logic was developed by mathematicians during the
end of the 19th and the first half of the 20th century (in particular by Got-
tlob Frege (1848–1925 and Bertrand Russell (1872–1970). It provides general
purpose mathematical tool for representing and reasoning with information for-
mulated in terms of properties and relationships holding among any domain
of entities. This representation can be used to formulate axioms constraining
the meanings of the conceptual terms and the structure of the domain, as well
as for specifying particular facts. Moreover, it provides a general mechanism
for determining valid inferences that follow from any set of theoretical axioms
and/or specific facts.

A number of theories of spatial entities and properties have been formu-
lated using classical formal logic. For instance: Tarski’s Elementary Geometry

is a fully formal specification of the Euclidean geometry of points; the Region

Connection Calculus is a theory of topological (and in its extended form also
affine) properties of spatial regions; and Region-Based Geometry is a highly ex-
pressive theory of spatial regions. Typically such theories employ the restricted
(but still very expressive) sub-language of full classical logic known as first-order
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logic. However, not all spatial properties can be adequately expressed in purely
first-order logic (e.g. the continuity axiom of Euclidean geometry).

An advantage of using classical logic is that it has a well-defined semantics
(formulated in terms of set-theory), and for first-order formulae a complete in-
ference procedure can be specified. A major disadvantage is that the complexity
of computing inferences it typically extremely high. Hence, unless the formalism
is severely restricted, it is not usually possible to implement practical reasoning
algorithms.

3.3 Relational Constraints and Compositional Reasoning

One simplification of the representational framework that has proved very ef-
fective in making spatial reasoning problems more effective is to limit the range
of spatial facts under consideration to those expressed using a fixed vocabulary
of spatial relations among entities. These are typically binary relations such as
“a is connected to b” or “r is to the north of s”. These can be seen as forming a
network of constraints between entities. The reasoning problem is then confined
to determining whether such a network is consistent or deriving new relations
entailed by the given constraints.

Compositional reasoning is a general mode of deduction applicable to rela-
tional information. Most often it is employed with binary relations, in which
case deductions take the following form: from two relations R1 holding between
x and y and R2 holding between y and z, we infer a relation R3 between x and
z. Such reasoning has been found to be very useful when dealing with spatial in-
formation. For instance, in the realm of mereological and topological relations,
one can make compositional inferences such as:

• If x is part of y and y is part of z, then x is part of z.

• If x overlaps y and y is part of z, then x overlaps z.

• If x is part of y and y is disconnected from z, then x is disconnected
from z.

3.4 Reasoning about Transitions

As well as providing a static description of the world, spatial relations may
also be used to describe changes in the state of the world. Such change can be
represented simply by a series of snapshots describing successive spatial config-
urations. For example, at one time a desert region may be disconnected from
a certain province, but later it might externally connect and then overlap that
province.

For many real world situations, the regions involved cannot change arbitrar-
ily but can only deform continuously over time. Moreover, there are strong
constraints on the transitions in spatial relations that can occur during contin-
uous processes. Thus, the analysis of possible transitions can provide a useful
mechanism for spatial reasoning. Given a set of spatial relations, the possible
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continuous transitions among them can be represented as a graph, which is often
called a transition network.

3.5 Reasoning with Ontologies of Spatial Concepts

An ontology represents the meanings of a conceptual vocabulary by expressing
logical relationships between concepts, usually in some kind of formal language.
Such formalisms will typically support inference by means of computational al-
gorithm. A number of standardised formalisms have been devised for expressing
ontologies. In particular, OWL (the Web Ontology Language) is an XML com-
pliant representation based on Description Logic, that is widely used to encode
ontologies for use via the World Wide Web.

One limitation of standard ontology languages, such as OWL, is that they
do not in themselves support distinctively spatial aspects of reasoning. Logical
connections among spatial properties and relations can only be captured in so
far as they can be encoded in terms of the somewhat restricted representation
provided and this may not always be possible.

4 Spatial Reasoning in GIS

The essentially spatial nature of geographic information means that there is
considerable potential for the application of spatial reasoning within geographic
information systems.

Traditionally GIS applications have represented spatial information primar-
ily in a Cartesian form (i.e. as coordinatised points, lines and polygons). Thus,
they do not support representation of partial or general information and cannot
carry out extended chains of inference. However, it is increasingly apparent
that more sophisticated GIS applications require more powerful spatial reason-
ing capabilities. Representation of partial information is particularly needed for
planning and hypothesis testing, where spatial constraints typically occur in a
qualitative form (“the toxic waste dump may not be adjacent to a residential
area”).

Spatial reasoning is also required for flexible query interpretation. Whereas a
traditional GIS requires queries to be framed in a limited number of ways that
are closely aligned to the way that data is actually stored, spatial reasoning
can enable interpretation of queries involving complex combinations of a large
vocabulary of spatial terminology.

Another important use of spatial reasoning in GIS is for data consistency

and integrity checking. A good example of the kind of spatial consistency con-
straint that could be handled is: “a building may not overlap a road.” Clearly
such conditions could be hand coded into a GIS, but spatial reasoning allows
them to be formulated by users in a general spatial constraint language, and
enables automatic inference to detect constraint violations. A spatial constraint
language can be made more powerful by combining it with an ontological theory
of types of geographic object. This would include a specification of sub-type
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relationships such as “a house is a type of building,” which would mean that
house object would satisfy any constraints applicable to buildings.

The use of spatial reasoning in GIS is still (in 2006) at an early stage of
development. But its potential is widely recognised and increasingly sophisti-
cated reasoning components are already appearing in commercial GIS systems.
There are still many challenges to meet in implementing flexible and effective
reasoning algorithms. However, it seems certain that the use of automated spa-
tial reasoning will transform the way that we use computers to interact with
geographic information.
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