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Abstract

The degree of shrinkage of particle stabilised bubbles @u&sizes, in a polydisperse
bubble dispersiorhas been investigated in the light of the finite adsormptimes for the
particles and the disproportionation kinetics of the besldfFor the case where the system
contains an abundance of particles we find a thresholds;aalbove which bubbles are
stabilised without any significant reduction in theize. Bubbles with an initial radius b&lo
this threshold on the other hand, undergo a large degeteinkage prior to stabilisation.
As the ratio of the available particles to the bubblesdsiced, it is shown that the final
bubble size, for the larger bubbles in the distributi@tomes increasingly governed by the
number of particles, rather than their adsorption pierese. For systems withdsorption
controlled” shrinkage ratio, the final bubble distribution is found tonmber than the initial
one, while for a “particle number controlled” case it is actually narrower. Starting from an
unimodal bubble size distribution, we predict that at intefatedimes, prior to the full
stabilisation of all bubbles, the distribution breaks wp ambimodal one. However, the effect
is transient and an unimodal final bubble size distribusaecovered once again, when all

the bubbles are stabilised by the particles.



1 Introduction

One of the major challenges in incorporation of firebk bubblesnto foam systems
involves the problem of overcoming the inherent instabilitthe gas bubbles against
disproportionation. This becomes a particularly imporissie for bubbles of size 1Q0n

or smaller*™ Like its related counterpart Ostwald ripening in oil emulsioins,
disproportionation process is driven by the movement ¢éeates from regions of high
chemical potential to those with a lower value. Foloaad foam system, this means the
migration of gas from small bubbles to larger ones, causgrgdual coarsening of the foam.
For an open system, the same phenomenon resufts loss of gas to the surrounding air
and eventual dissolution and disappearance of the gas bulWlale Ostwald ripening in
emulsions is a relatively slow process, occurring ovee Boales of daysveeks or even
months disproportionation in foams progresses at a considefaslgr rate. This is due to a
combination of several factors: 1) the generally higheriactial tension between gas and
water as compared to that of oil and water 2) higher solpbifigases in water, and most
significanty 3) the much higher molar volume of gases compared to leds example the
molar volumes of typical food fatty acids, such ascade palmitic acids is around 0.3

dm/mol, as compared to 25 dfmol for gasesat room pressure and temperature.

It is often possible to modify the bulk oil phase way that greatly reduces or even arrests
Ostwald ripening. A particularly well known method involves ititeoduction of a small
amount of highly insoluble species into the oil phiasks small oil droplets decrease in size,
the concentration of the impurity increases within th&he osmotic pressure differences,
thus generated between the interior of different sidisd suffices to make the chemical
potential of the oil phase identical in all emulsion drtple® Therefore, the migration of oil
molecules from small to larger droplets is completelieda The same approach is much
harder to achieve in gases, not least of all becausdiffi@ilt to find gases with small
molecules that have very low solubility in water. Oraraple of such low solubility gases
are GFn based perfluorocarbon gasesiten used as ultrasound contrast ag&ritewever,
additional restrictions due to cost and safety issues rhakesmotic pressure approach even
less feasible in food foams and food related bubblesystTherefore, techniques for
stabilising gas bubbles against dissolution have almost exdiusivecentrated on the

modifying interfacial properties on the surface of bubbles.



It is well known that in order to stop disproportionatiorsiheécessary to adsorb a surface
active species onto the surface of the bubbles capafilentihg an interfacial elastic filri.

19 This requirement rules out many small surfactant molscatewell as some widely used
proteins such as caseins in food systems which also a@wkeolecular weight surfactants
Other protein, e.g3-lactoglobulin, can unfold and cross link on the surfaceutibles™
2Zandhence produce an elastic film. But it has been showrettet in such cases, often the
elastic interfacial film tends to wrinkle as bubblesrgh The dissolution of bubbles
continues and eventually only small protein aggregates remtie place of what were once
gas bubbles.A more effective strategy in recent years has beeonsider the stabilisation
of bubbles by small nanoparticlés, “Pickering type bubbl&s*'® These nanoparticles
possess contact angles in a range of values that ntetagreferentially reside at
hydrophobic-hydrophilic interfaces. The adsorption energiss@ated with displacing the
particles from the surface can easily be of the ortians of thousands ogK, even for
relatively small particles with a size of a few tensafiometet®*® HereT denotes the
temperature of the system angtke Boltzmann constant. At sufficient surface coveafge
the bubbles, the particles form a 2-D network, eithexugh direct contact (hard sphere) or
else more specific bonds such as aggregation or evenisin In either case the fibn
formed can sustaialarge amount of interfacial stress without displacenfremh the surface,
due to the magnitude of the particle adsorption energietvevBy taking up the stress, the
networks of particles on the surface of bubbles compefwatiee Laplace pressure
differences and prevent the shrinkage of the bubl8@se demonstrating the feasibility of
the method *° there has been much interest in the study of partitélised bubbleg,** 2%
2> though preparation of Pickering bubbles still remains aerddficult proposition

compared to Pickering emulsioffs.

In achieving the desired bubble stability a number of poens o be considered. In all
cases it is necessary to achieve the correct balarstgfate activity versus the tendency for
bulk aggregation. More hydrophobic particles may be morasidctive, but they also
flocculate more strongly in the bulk. This in itseify actually help to trap bubbles in a
stable network of particles. However, the formatioagdregates also has detrimental
effects on stabilisation of smaller bubbles that atedivectly incorporated in the particle
network.Firstly, finite clusters act as “effective” particles with sizes that are considerably

larger compared to those of the primary nanoparticlesorglly particles that are

incorporated in the spanning networks become immobile and camger ltake part in the
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process of diffusion and adsorption onto the surfaceiolbles. This greatly reduces the
availability of free nanoparticles in the bulk dispensioNe shall discuss below both the
influence of the radius of the nanoparticles and tm@mber density on Pickering
stabilisation of bubbles in greater detail. However, latien to the latter of the two points it
is of interest to mention the experiments carried out bytétwet al.2” comparing the two-
dimensional behaviour of (silica) particle monolayerswveulk foam stability. It was found
that even with the best performing particles, less thavb 13 a given dispersion became
incorporated into a stable foam on shaking. On the othet, Bamks and Murakarfit have
shown how the increasing particle hydrophobicity can cays®ase inversion from ain-
water to wateiin-air powders, the so called "dry water". These powders me&fng some
useful applications in foods and other similar areashe@retical study of phase inversion in
Pickering stabilized systems, investigating the influence ofgatontact angle, particle
concentration and the phase volume ratio has redeediy reported by Jansen and Harting
based on the use of lattice Boltzmann apprdach.

Another principle challenge, particularly in relationRickering stabilisation of bubbles and
emulsions in food systems, is the identificationwfable (i.e., food compatible) particles
that can be exploited for this purpose. Solid saturated fatoeay important natural particle
stabilizef® but health concerns mean that alternatives still nebd spught. Particle-
stabilized systems in foods have been reviewed recentty &yumber of article$1* 3133
Particles of cellulose and/or cellulose derivativespaoenising candidates as Pickering
stabilizers of bubbles. Some form of cellulose partizie seduction is normally necessary
and as cellulose is not expected to be naturally surfaise d@ichas to be made so by the
formation of physical complexes between celluloseethgl cellulose, as for example has
been shown by Murray et 4. Ethyl cellulose can itself be used to stabilize a wide rafige
bubbles sizes, as was demonstrated by Jin“trathe same study it was found that the ethyl
cellulose particles are capable of forming either singlawlti-layers on the surface of the
bubbles. Ethyl cellulose, waxes, etc., can be preogpitahder shear to generate more
anisotropic particles to improve foam stabilization edfiwy*”. In particular, more fibre like
shaped patrticles, if sufficiently flexible to adopt to tevature of the bubbles surface, have
a higher desorption energy per unit particle volume anderloritical particle surface
coverage for stabilization. Intriguingly, another rdogark has suggested that pure cellulose
may itself be a good stabilizer of ail-water emulsiong® This is of some significance given

the large amount of wasted cellulose currently resultiogy the agriculture and food



production activities.

In many practical systems it is important to realize ti@tnterfacial particle contact angle
or 'hydrophobicity’ can be affected by a number of factdrais ostensibly neutral material
such as cellulose may become slightly ionized via hacghor alkali processing used to
fragment the cellulose in the first place, or vassic adsorption of anions asllustrated by
the wok of Jin et &? Ionization decreases the particle hydrophobicity and thietey for
adsorption onto the air-water or oil-water interfacksaddition, in most food systems there
are low molecular surfactants (e.g., monoglyceridesfgtmids) or high molecular weight
amphiphilic macromolecules (e.g., proteins) also presehnese caadsorb to the surface of
the particles changing their surface acti¥ftplternatively they may compete with the
particles for adsorption onto the surface of bubBie¥In some instances there seems to be
some synergy between the these surface active mademndethe nanoparticlés * wheras
the protein hydrophobin seems to behave like a surfaceasnoparticle. Much research
has recently been devoted to the exceptional stabilitylobles stabilized by hydrophobins.
Synergy, or a least compatibility, has also been fouhad®mn hydrophobin and other surface
active proteing” ** The behaviour of mixed particle + surfactant systemsddoid
stabilization and encapsualtion remains a fertile arefufther researctf: “*but here we
return to the situation where the slowest adsorbingyesitithe bubble surface is a surface

active particle.

In stabilizing small droplets or bubblesfinal major issue is the kinetics of adsorption of
nanoparticles to newly created interfaces. Nanopartioéasg much larger than the low
molecular weight surfactants or even individual macronuiées; tend to have relatively
small diffusion coefficients. This makes the time figgglifor particle coverage to reach the
levels necessary to stabilise emulsions sufficidotltg for small emulsions droplets to
collide and coalesce with each other. This is partibulbe case in dense emulsion systems
were the rates of droplet collisions are high. As ro@eti above, in foam systems
disproportionation is also a relatively fast processhécextent that a substantial degree of
shrinkage and dissolution of small bubbles can occur duringated needed for the surface

coverage to reach the necessary values.

In section 2, we examine the equations governing the ewolatibubble size distribution
function. As we shall see in section 3, in certagesaand in particular when the system is

rich in nanoparticles, or where we have a monodispeits& bubble size distribution, the
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equations simplify sufficiently for an analytical solutito be obtained. For the more general
case the equations have to be solved numerically. AlsoctioB8& we present a suitable
numerical scheme for doing so and use this to investigatevolution of an initial Gaussian
distribution of bubble sizes under several differentagions (e.g. different ratio of particle
size to average bubble size, systems with different edrat®n of nanoparticles, etc).

2 M athematical formulation of the problem

2.1 General considerations

Though an interesting problem in its own right, in theenrstudy we shall not discuss the
details of the process of formation of the 2D networgasficles, on the surface of the
bubbles. Nor shall we consider the actual mechanism througi wi@ particles act to stop
the disproportionation of bubbles. However, it sufficesatpthat there exists some critical
particle surface coverage, hereafter denoteld pgit which the network develops an
interfacial yield stress. Furthermore, that this y&less increases rapidly with surface
coverage from this point onwards and becomes capableistirrgshe shrinkage of the
bubble. Clearly the value af will be dependent on the shape, the degree of polydispersity
and the nature of interactions between the nanopartithese have been a number of
theoretical and computer simulation studies in thedlitee specifically concerned with
investigating the formation of such networks and the prabesagh which the interfacial
network counteracts the Laplace pressure inside the buitfdRecently there has even
been some reports highlighting the formation of non sgdidebubbles under the influence of
the stresses in the particle netwdtRhis is a possibility that can clearly have someibgar
on the results of the current work. However, for ribev/formation of such distorted bubbles

will not be included in our model, though one may wish toam duture.

In this workwe focus on dilute bubble systems where the rate of caalesds not so
significant. In such systems disproportionation stilllws@and now becomes the main factor
in limiting the size of bubbles that can be realisticatbbilised by particles. This is
particularly the case at moderate viscosities. Additibthickeners or rheology modifiers
has a large impact in slowing down the Brownian movemgtitecbubbles, thus reducing
their collision rates and the flocculation and coadese that follow as a result. In contrast,

such thickeners neither affect the air-gas interfaeraion nor the diffusion of gas molecules
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to any great extent. That is to say that their influencdewlisproportionation kinetics is
rather minimal (unless tha, the bubbles are of sub-micron size, where the ksingakage
rates and the resulting stresses may perturb thesepoessure in bubbles at high viscosities).
Therefore one may envisage the situation where tlseldtson of bubbles becomes the main
mechanism of their loss and instability. In our prelimiramglysis presented here we will
only focus on such cases and for the present will gtiwe processes of flocculation or
coalescence of bubbles. Extension to cases where suwEspes are also significant may be
possible for coalescing bubbles, though we believe this withdoeh harder for the case of
clustering and flocculation of bubbles. This is due todik®ortion of the neighbouring
bubbles on the diffusion fluxes of incoming particles andj@ing gas molecules for bubble
in such clusters. A further assumption in our calooitais that our bubble dispersion is open
to the air above at all times, a situation that in grads just as likely as having a closed
systemWe shall analyse the effects of the competing kinetick@fidsorption of particles

on one hand and the disproportionation process on tkee iotinore detail in the next
sections We first givearough order of magnitude calculation presenting a clearer oie

the problem, demonstrating the time scales that areviedtah each of the processes that
combine to dictate the evolution of the bubble siz&& then highlight a more detailed
mathematical analysis of the problem in order to examidinhl size distribution of
particle-stabilised bubbles that evolves from a giveraindtistribution. In addition to
disproportion and to the rate of particle adsorptionptiesence of a polydisperse distribution
of bubbles in a system introduces a third factor in deténgnthe final size of the bubbles.
Bubbles of different sizes compete for the adsorptidch@fivailable nanoparticles. The flux
of particles incident on a small bubble is less thanftited larger bubble. Also, small
bubbles shrink at faster rates and have less time tolisktthe required particle surface
coverage. Nevertheless, because the smaller sized budiplér® the adsorption affewer
number of particles to reach the critical valiethese will tend to be stabilised first. This
will have little influence on the shrinkage and subsequabilsiation of larger bubbles,
provided that the bulk concentration of particles is ffilected much by their adsorption onto

the surface of the bubbles.
2.2 Comparison of time scales

It is constructive to compare the order of time scalasdte involved in adsorption of

particles to the surface of bubbles with those chaiattgrthe dissolution times. The



coverageon the surface of bubble has to reach a valuebefore a suitably strong 2D
network of nanoparticle, capable of resisting the shrinkégee bubble, is formedFor a
bubble of radius R the rate of particle numbers arrivimgosurface is AnoRDp, where g is
the number concentration of the particles apdHeir diffusion coefficient. For the time
being if one ignores the shrinkage of the bubble, therstirface coverage of the bubble
increases at a rate mhoRDprz. The dimensionless quantity=rR,/R is the ratio of the radius
of the nanoparticles, Rto that of the bubbleUsing this result, the estimated time for the
bubble to achieve the required coverage by the particlesds by t=1"(znoRDyr?) ™. For
simplicity we have assumed that the contact angle fdicfes at the air-water interface i
90°, making the area occupied by a particle on the surfatmd:iubblezz(Rp)z. As for the
kinetics of the disproportionation process, there hmen several models proposed in the
literature over a number of yedré® *°0One such model was developed by us to investigate
the dissolution of bubbles trapped immediately underneath airrwaerfaces The
predictions of the model were found to provide an acculegeription of the experimentally
observed shrinkage kinetics of such bubbles in a variegglafions, involving different
proteins® 2 The same theory also gives the lifetime of a bubbtadius R residing away
from the interface ag% 7R°. The constant depends on the surface tensigrambient
temperature and pressure, T aggthke Henry’s constant for the gas solubility, S, and the

diffusion coefficient of the gas molecules in watg, It is given by

P

_ 0
" T 6SDRT @)

The universal gas constant, 8.31Ji& denoted by §in the above equation. The same result
can also be obtained from the model of Epstein ande®ffséone ignores the short lived
initial transients and assumes a quasi-stationaryigolidr the diffusion flux of the gas away
from the bubbles throughout the dissolutiprocess. Using typical values for the quantities
appearing in eqn (1), T =298 Ry = 100 kPay = 0.07 Nm", Dg=2x 10’ nfs" and S=7

x 10° mol N"*m™, the value ofris calculated as 6.83210’sm®. For a bubble of size 100
um (i.e. R = 5Qum), the estimated lifetime is 14.3 min, whereasRer5um it is only ¢ =
0.86s. More significantly the ratio of the time required to achieve the necessafgce

coverage by the particles to the lifetime of the bubble i
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where N is Avogadro’s number and the diffusion coefficient of the particles is expressed in
terms of the viscosity of the solution, using the Stokes-Einstein equation
Dp=(keT)/(677Rp). Similarly, we have substituted for the number dgredithe particles in
favour of their volume fractiong, where n= 3¢ (47R- ) ~'. When the dimensionless number
v < 1, the bubbles have sufficient time to gather tiqgired number of particles, thus
stabilising without much shrinkage. On the other hand, large vafuesdicate a
considerable degree of dissolution and loss of gas beferdisproportionation process is
halted. In these latter systems the shrinkage of bubidgseven be so severe so as to rule
out the possibility of achieving stable Pickering bubbles altegefA case in mind is one in
which the radii of the bubbles decrease to sizes not éargegh compared to that of the
particles. In a typical formulatiof? **with a particle volume fraction af= 0.04% (~ 0.1%
w/w) and R =50 nm, the value of =1.1 for bubbles of radius §0m, and 111 when R =5
um, if one assumes a nominal valuelot 0.5 for the critical surface coverage. In
calculating these values we have taken the viscosttyeadolution as that of water. In many
food colloid products, including ice cream during the aergiiocess, whipped cream
mousses and aerated chocolate mixes, the viscosity afiithere is much higher than 0.001
Pas, perhaps by two to three orders of magnitutias is so as to prevent the rapid rise of
the bubbles to the surface during the manufacturing prodéesefore, if anything, the
values ofv given here will tend to be on the rather low side. Thrgk calculation presented

above clearly highlights the issue we wish to address iautrent work.

Before leaving this section, it is worthwhile to briefly cioles the processing conditions and
the type of particle surface chemistries for which tHewations in this work are intended.
We have assumed here that the transport of particles tarfaeesof the bubbles is a
diffusion-limited process. This ne€d always be the case. There are many particles with
more hydrophilic surfaces (i.e. low contact angles) wherattsorption to the gas-water
interface is dominated by the presence of an energyebaodcurring in the particle-bubble
interaction potential. In contrast, for the more loyahobic particles, such as the ones with
contact angles approaching°@@ above, direct measurements of forces using AFMaigve
only a net attractive interaction upon approach of thegiattwards a bubbf&>* Indeed,

one may also infer the lack of an energy barrier ftoerelatively low values of measured
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C—potential for such hydrophobically modified surfaces. Vabfed0 mV to -20 mV are not
uncommort’ A large enough energy barrier in the particle-bublikeraction potential,
sufficient to dominate the attachment of the particlebéartterfaces, is thus not predicted in
such cases. This is particularly true in the presenearafderate to high amount of

background electrolyte in the system.

The issue of whether in a particular process thepoansf particles to the bubble surface is
convective or diffusive is best addressed by considermglithensionless number, the Peclet
number. This is the ratio of the time scale for @mion relative to that for diffusion. For

hard sphere dispersions, it is givehy Pe= (67R%) I kT , wherey is the typical flow
rates involved in the process. For particles of raB@em, at room temperature, this gives

Pe~ 7/1800. In other words, the flow rates have to be in exo€4800 §" before one can

begin to attribute the transport of particles to the sagfas being dominated by convection.
While shear rates of this magnitude are not at all unusunaixing, whisking or during
rigorous shaking, there are also many processes for ¢jagestdute dispersions of bubbles
that do not involve such large flow rates. Examples&ddlare ultrasound generation of
microbubbles through cavitation, pressure drop techniques involutigation and growth

of gas bubbles throughout the body of the liquid and everegaubbling of the gas into the
fluid. It is strictly for these types of processeatttihhe current calculations are expected to
appl. It may well be possible to extend the current analysthimihe same general scheme
presented in the next section, to study the convectivitell cases. However, we shall not

discuss such an extension here and instead defeo thikite work.

2.3 Moredetailed analysis

In the previous section, the effect of shrinkage on theevaf the particle surface coverage,
A, was ignored. Also no account of the depletion of padifiom bulk, due to their
adsorption over time, was taken this section we will include these factors in our
calculations. The process is schematically visualisdig.ii. As before we assume that the
bubble dispersion is sufficiently dilute. This servee purposes. Firstly it means that
disproportionation rather than coalescence is the pyimatability mechanism. Secondly, it
insures that the diffusing flux of particles onto the stefaf a bubble, and that of gas

molecules out and away from it, are not influenced bygores of neighbouring bubbles.
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As a bubble shrinkg increases, even if no further particles are added tsutiace of the
bubble. The rate of increase is givenH§24/R)(dR/dt). Combining this with the rate of

change oft due to the arrival of new particles on to the surfacé@bubblewe have*

di _—22dR 7D nMR] 2
dt R(t) dt R(t) ! ®)

where now both the bulk concentration of nanoparticld, arfd the radius of the bubble,
R(t), also vary themselves with time. For low valogs, the presence of a few particles on
the surface of a bubble will not have much of an effadhe rate of shrinkage of the bubble.
Consequently the kinetic of dissolution of the bubble ballsimilar to that of an uncovered
bubble. As mentioned before, we model this along the $amas that given by the theory
of Epstein and Pless&in absence of short lived initial transiefit®r alternatively through
the identical result obtained from our own model fosalistion of bubbles trapped under an
air-water interface, in the limit where they are migtly far from the surfack? Under such

conditions we have

t 1/3
FQ(t):: FQ(C»(}L—‘;iizaﬁzgj ’ (4)

with parameter given by egn (1). Substituting the above equation intd&qleads to

di 24 7D n(t)R?
= + : (5)
dt  3R(t)° R(t)

As the value ofl approached” the particles start to form stress supporting networks and
their presence begins to slow down the disproportionatio@.ekact manner in which this
happens will depend on the nature of the particles andatiwparticle forces between them
amongst other things. For particles only interactingutpha hard sphere type potential, one
expects a relatively sudden and almost abrupt halt to thelutiss process at’,
corresponding to the point of close packing of the dagtion the surface of the bubbles. For
cases involving formation of open ramified clusters @ngilrface, a more gentle trangitio
and arrest of disproportionation is more likely. Irsthittercases the value oft” will also be
less well defined, as it will depend on the Laplace presesigei and therefore size of the

bubble. For sake of simplicity and to keep the discussion morergknee will assume that
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the bubbles continue to shrink unhindered according to eqn @ xheir particle surface
coverage reaches a well defined critical value At this stage they simply stop to shrink

further.

In dilute systems, the presence of neighbouring bubblesrdmedirectly affect the time i
takes for a particular bubble to become stabilised by th&leart However, there is an
indirect effect which manifest itself through the presesfdde n(t) term in equation (5). The
size distribution and the number of other bubbles irsyiséem determine the rate at which
the particles are removed from bulk. This in turn infesnthe stabilisation time and
therefore the eventual size of any given bublbler diffusion limited adsorption of particles,
the rate of adsorption is given by

dn

—- =—47D,n(r) [ Nyp(R\)Rdr = —47D n(r)N, < R(t) >

dt - ®

where N is the total number density of the bubbles in the syskgp(R,t)dR the number
density of bubbles in the radius size range R to R+dR afi)b<tRe average radius of
bubbles at time t. Strictly speaking the integral in @)rshould only extend to bubbles that
have not reached the maximum possible surface packingt@l@&ma, Whereimax may or
may not be identical td" , though almost certainly it will not be smalldn fact, in some
cases multi-layers of particles can accumulate ardudbbles and the value #f.x can be
well above oné! It is suggested that such layers can eventually connecivenidp to form

a three dimensional network of particléed with bubbles’* The same can also occurs in
Pickering emulsion In this analysis we consider such systems where the @il may is
large and bubbles continue to gather particles even aftghtive stopped shrinking. The
extension to particle types where this is not the casee whiblving some added complexity
is not too difficult to include in the numerical calcutets. Equation (6) can be used to yield

the following result for n(t)

n(t) =n, exy{— 47D ,N, [< R(t) > dtj .
0

where the initial number concentration of particles(3) = n. Equations 5 and 7 can nd&
solved in conjunction with eqn (3) for bubble sizes where ™ , or dRdt = 0 wherel > 4,

to determine the temporal changes in the size distribofitime bubbles. Eventually, when
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the particle surface coverage of all bubbles is aboveriteal value, the final stabilised
bubble size distribution is obtained.

In the next section we shall first consider some limgittases where an analytical solution to
the problem becomes possible. We then examine the nuhsarlicgons to the above set of

equations more generally and discuss their implications.

3 Results and Discussion

3.1 Final bubble sizesfor systemswith large excess of particles

In systems where the number of particles is far rtimae that required to stabilise the
bubbles, the adsorption of particles onto the surfateilobles has little effect on the number
density of the nanoparticles. To clarify what we mieaexcessive number of particles, let

us define the dimensionless parameter

_ R,
4N, <R(0)>* 1 : 8)

B

Roughly speaking? is a measure of the ratio of the surface area tingpagentially be
covered and stabilised by the nanoparticles to the initiaater interface. For a system with
a large excess of particle®,>> 1. It is much more convenient to expresssd),(5) and

(7) in terms of the dimensionless parameterSR,/<R(0)>, 5, andv as defined in eqn (2).
Also from nowon, unless stated otherwise, we shall take the unit of lengdtteasitial
average radius of the bubbles, <R(0)>, and the unit ofasneR(0)>*. In these new units

eguation 7 now reads

nit) 1
K_exp( Vﬂ£<R(t)>dtj

where <R(0)> = 1 by definition, while egns (4) and (5) become

: (9)

R(t) = (R©)® —t)"" (10)

and
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*

di_ 24 A n()
dt 3R(t)> VR() n,

; (11)
respectively, for a bubble of original radius R(0).

For a system with a moderate valuevpbut a large excess of particles such that> 1, we

can approximate eqgn (9) by )i{b = 1 over the time period needed for the bubbles to become
stable. This implies that bubbles of different sizeuichsa system shrink, gather particles

and eventually stabilise independent of each other. Therefm (11) for the variation of the
particle surface coverage of each bubble can now bedsflveach bubble irrespective of
others. Substituting this result together with eqn (10) m(&éd) and solving the resulting

differential equation fol with the boundary conditio4(0) = 0, we have

At) =

31 [ R(0)* - R(t)“j 1)

4v R(t)?

valid for 1< 1. In fig. 2 we have plotted the variation of the surfaceecage with time (in
secondson a semi-logarithmic scale for three bubbles with indiaés, 5, 15 and 50m. We
have taken the volume fraction of the nanoparticlé®t6.04 %A = 0.5 and assumed the
number of bubbles to be small enoughfior> 1. As mentioned before, in such a system the
variation of4 with time or the degree of shrinkage for each bubbledsizenot depend on
the presence of other bubbles. The results will beaime srrespective of the degree of
polydispersity of the bubble size distribution or theuatvalue of <R(0)>. Comparison of
graphs in fig. 2 demonstrates the large contrast in theititakes the bubbles of varying
sizes to become stigbWhile it takes a much shorter period for smaller bubtaesabilize
(i.e. reach a coverage #), this is comparable to the life time of the bubbles. Smaller
bubbles only ever manage to gather a small number of patrtidlhe steep increase in the
particle surface coverage, seen in the graph of figr the 5um bubble, comes about as a
result ofarapid decrease in the surface area of the bubble, whags ghrank to only a small
fraction of its original size. For moderately sized bubltles arrival of new particles on the
surface and the decrease in the surface area, bothgqulafyeimportant roles in the increas
of the surface coverage. This is evident from the moadual change in with time, seen

fromthe corresponding graph for the @t bubble (fig. 2). Obviously, for even larger
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bubbles, the dominant mechanism contributing to the increasshifts towards the

gathering of the particles by the bubble.

The final size of a bubble, where the particle surfaceiage reaches the critical value
needed to prevent further shrinkage, is obtained by settimigtiiehand side of the eqn (12)
to A* and solving the corresponding quadratic equation irf R(Bor a bubble with initial
radius of R(0), we find the final stabilised radiusidRbe

1/2

. RO)*
r - | 14RO w

where we have defined a characteristic radius (in un&f¢d)>) such that

R = \/% . (14)

It is seen that when R(0) >> Ehen R~ R(0) and bubble shows little sign of shrinkage prior

to becoming stabilised. On the other hand, if R(0) <w&have

R: / R(0) ~ R(0) /(\/§R*)<<1 anda substantial decrease in the size of the bubble is teghec
In many applications it is the amount of gas retainetl@rsistem that is of primary interest.
In fig. 3 we have plotted the ratio (fR(0))’ against R(0), for the same system as that in fig.
2. For initial bubbles of siz&(0) = V2R (~ 60 um in the case considered here) the fraction

of retained gas is only around 50 % of its original amo&ot:R(0) = R, this drops to 256
and decreases very rapidly as the initial size of titdbles is made even smaller. From a
practical point of view we conclude that for any giveneiystsmall bubbles witlR(0) < R

cannot realistically be stabilised using nanoparticles. ekisence of a limiting lower size
for stabilisation of bubbles using nanoparticles was aledigtied and experimentally

verified in our previous work} >°
3.2 Monodisperse bubble size distribution

When the initial size distributioof bubbles is highly monodisperse, one can approximate
£ (R,0)~ {R-Ry), where R(0) = Ris now the initial size of all the bubbles. Thus, in our
normalised unit of length <R(0)>, the initial radiusaofy bubble is 1 Furthermore, for a

dilute bubble system, where the local environment ofiddbles remains more or less
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identical, the bubbles continue to maintain the same ragitisey shrink. In such cases the
average radius in eqn (9) can be replaced with thagdak just one of the bubbles.
Substituting for the term n(ho in egn (11) using this result, we have

di 22
dt  3@1—t)

*

A 1 1/3
pEvmE ex{—ﬁjo 1-t) dtj

: (15)

where the time dependence of the bubble radiysRftade explicit using egn (10), with

2/3

R(0) = 1 Multiplying both sides of the above equation @iy- t)** and integrating with

respect to t, one arrives at the required result

At) = %{1— exr{— % @- R(t)“)ﬂ : (16)

For large values gf, the exponential term can be expanded leading to the esquagion, eqn
(12) for A(t), with a bubble of average size R(0) =a&might be expectedHowever, note
that eqn (12) also applies to bubbles in a polydispersed bukbibution, as long ag>> 1,
whereas eqn (16) is strictly valid for a monodispersediloigton of bubble sizes, but for any
value of . Once again the final stabilised bubble radius can be obtainsettingi(t)=4"

and solving the resulting equation for R(t) & R

3
R = ﬁ{l— exy{— — (- Rf)ﬂ
wp . an

It is clear that for bubbles of any initial size the firedius R< \/ﬁ In particular, for
bubbles where Ras defined by egn (14)) is small of.and \/E << 1, the exponential term

in eqn (17) is negligible and therefore R/A (i.e. (R:nd/(4NoA*)) % in S units). The fact

that the final size of the bubbles is now independerttef tnitial size is not all that

surprising in such circumstances. In systems starvadffafisnt number of nanoparticles, it
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is not the bubble shrinkage kinetics that is the maitofan determining R Rather, it is the
maximum surface area of gas-water interface that cant@ikgbe stabilised by the particles
that decides the final bubble size. The total amount ofci(faer unit volume) that can be

stabilised by particles isszzno//I*). This has to be the final surface area of bubbles

(47R:*Ny), when all the particles are adsorbed. Equatinggtiveo terms gives the predéd
result R=,/3.

In fig. 4 we have shown the numerical solutions to(@d, displaying the values of for
bubbles of initial radii 5075, 100 and 120m in four different monodispersed bubble
systems The radius of the particles is once again taken to be 5@uintheir volume
fraction is now set to a much lower value of 0.004 %. fElselts are plotted as a function of
parametes. For a constant concentration of particles, and imaaadispersed bubble system,
s inversely proportional to the specific surface aregasfwater interface. The lowest
value of for each graph corresponds to the highest volume fraofibubbles (~ 40 %),
beyond which the bubbles can no longer be consideredisuffy isolated.The dotted line
in fig. 4 is the predicted ratio of the final to thetimliradius, assuming that all the particles
adsorb to the surface instantaneously. Bubbles then shdnkiaoreases until the critical
particle surface coverage is obtained. In such a situti®final size ratio is dominated by

the number of particles present and the initial gas-veatdace area, as discussed above.
Consequently, for bubbles of any size, the final size miproache#ﬁ independent of the

initial size. This is clearly seen to be the casdtermore concentrated bubble systems with
low values off. Various graphs in fig. 4, representing different initial bettaldii, all

approach the same limiting result indicated by the dotteddimeilar situations also occur in
coalescence-controlled particle stabilised emul§foarsd during the arrest of phase
separation of immiscible fluids by particles in thecstied “Bijels” systems.®® In these cases
alsqg it is the stabilised interfacial area dictated by thelper of available particles, which
ultimately determines the final structural length scalese the system is fully evolved.
Behaviour of the final size ratio at logis to be contrasted withahat higher valuesit low
bubble concentrations (i.e., largg the final size ratio becomes independeng,ajoverned
now by the adsorption rate of the particles as given by(¥8). The graphs in fig. 4 are seen

to plateau out at higher values/f once this limit is reachedeflecting this point.
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The effect of the number of particles on the fracbbretained gas is displayed in the graphs
of fig. 5. The two graphs are for systems with 0.04 %ddime) and 0.004 % (dashed line)
particle volume fractions. Unlike the graph of fig. 3 whizds obtained in the very dilute
bubble limit, the initial volume fraction of bubbles iath cases shown is somewhat higher at
25 %. The results are presented as a function ohitiiedl bubble radius.The difference
between the two graphs is relatively small for very ldngigbles, R(0) > 0.8 mm, but very
significant as the initial bubble size is reduced. At R(6Dum andg¢ = 0.04 % the fraction

of retained gas is already lower at 0.25 instead of 0.3%foufig. 2. When the nanoparticle
volume fraction is reduced to 0.004 %, only 1 % of the ingé&d is retained following the
shrinkage of the bubbled’he corresponding values are 0.92at0.04 % and 0.55 ai=

0.004 % when the initial bubble size is 20, instead of 0.98 predicted from eqn (13). For
a fixed volume fraction of gas, the small bubbles not o ass time to gather the
required number of particles, but the total air-water saréaeao stabilise is also higher.

Both these factors contribute to a rapid drop in the final gibubbles and therefore the

fraction of remaining gas in the system.
3.3 Evolution of bubble size distribution: The general case

For a bubble system with neither a monodisperse initaaldistribution and nor a large
excess of stabilising nanoparticles, the set of equatiorerigiog the evolution and the final
distribution of bubble sizes, i.e. equations (9)-(11), saged numerically. The scheme
implemented for this purpose is as follow&/e divide the polydispersed distribution into
narrow size intervals\R. To start with the number of bubbles in each intesvgpecified by
the initial size distributiow (R,0), with all bubbles having(0)=0 and n(0)/anset to 1. The
upper and lower limits for each intervaR and R.,, are updated over a short time periid

according to equation (10):

1/3
R (t+A1) = [R¥(t) - At] R

At the same time the value pffor each interval is scaled by

[Ris1(t+At)—Ri(t+A1)]/[(Ri+1(t)-Ri(t)] to account for the change in the size of the itkerv

Similarly, the value of the particle surface coveragéva t+4t, for all the bubbles in each

Size range, is calculated using a finite differenecenfof eqn (11):
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;L(t+At):/1(t)+[ 240 4 ”(t)}m
3RM° VR N

(19)

The radiuRR in the above equation is taken as the average vajueHR )/2 for any given

size interval As bubbles shrink, intervals move downwatalsards lower size values.
However, bubbles in the lower end of each size range absiightly faster than those at the
upper end. As a result the intervals also begin todemaut. When the width of any size
range exceeds one and half times its original sizesphtethe interval into two new size
ranges each half as wide. The bubbles in the origitexival are divided equally between
thesetwo, with the number distribution functignremaining the same as that for the original
size interval at this stagdHowever, from this point onwards the upper and the lower size
limits, as well asi(t+At) values, are calculated separately for the two nevdgted size
ranges. As soon as the value of the particle surfacaage for the bubbles in a particular
size interval reaches the critical valiie these bubbles stop shrinking. The upper and the
lower radii for this interval now remain the same tlgbout the rest of the calculation and
are no longer updated. Such bubbles nevertheless cantstdt garticles, as discussed
below. When a bubble stops shrinking the only remainimgribution to any further
increases in the particle surface coverage arisey $ajeh the arrival of new patrticles.

Consequently, for these bubbles, eqn (19) has to be nibtiifie

_ A n()
A(t+ At) = A(t) + [V§ © n, }At

(20)

At each step in the calculation we also renew theamtnation of the remaining particles in

the bulk solution, with the integral in egn (9) at &éinye t given b;Zp(R ,DRAR . We

check to make sure that the initial width of the size watisrand the time step used are both
adequately small by halving these and repeating the wholedum@cagain. A suitable value
is taken as one for whichighhalving of the time step or the size intervals produces no
appreciable difference in the final bubbize distribution obtained by the method. Also, at
regular intervals throughout the calculation, we obtlaénarea under the size distribution
function, p(R,t), to ensure that this too always remains very close taittal value (relative
error < 10°).
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In many practical systems the maximum particle surfagerege achieved by the bubbles
can exceed the value needed to stabilise the bubbles. Inasehthe bubbles continue to
gather particles up to a valigax > 4. As discussed in the introduction, for some
particles °® *°the adsorption can lead to the formation of multetay For these systems
Amax > 1. In principle,t is possible to incorporate any valuedgfx into the model presented
here bya suitable modification of egn (9). This involves ensurirgg the integral appearing
in this equation is only taken over the bubble size ramgefiich the bubbles have not as yet
reached the maximum surface coverage. In our preliminacyleéibns presented here, we
asume thatlmaxis large and therefore bubbles continue to contribute tdepketion of
particles from the bulk, well after they have stoppedh&img. This case is chosen here as
we feel it provides the most interesting situation. Esailts for smaller, finite values of the

maximum surface coverage will be reported elsewherdutuee publication.

The time evolution of the bubble size distributiorr, dsystem starting withnormal
distribution, is displayed in figure 6. The initial aage radius by definition is 1 and the
standard deviation is set to 0.15 (in units of <R(0)>, heseimed to be 50m). The radius

of nanoparticles in the same unit is 0.01, with their eatration taken as 0.04 % by volume
This fixes the parameter=1.1 Similarly, the initial number density of bubbles is takaoh
that g is 1.0. The starting size distribution of the bubblesh@mwn by the dotted line for
reference. As expected, the distribution shifts towardel size values with time, until all
bubbles reach a surface coveragd ofThe final stable size distribution is represented by the
solid line. It is interesting to note that at intermediate stages fwristabilisation of all
bubbles, the size distribution broadens at first but ttetsso become narrower later on.
The broadening is understandable as the smaller bubbles shaiféster rate than the larger
ones. However, as these small bubbles stabilise eartiee process the large bubbles start
to catch up and the width of the distribution decreases again. The final width of the size
distribution function is crucially dependent on the valfithe parametef, as will be shown
below. Another interesting feature of the distributionction at the intermediate times is its
breakup into two distinct parts, producing a bimodal type ss&tahiition. This is most
clearly seen for the dashed-dotted line in fig 6, showhiegdistribution function at time 0.3
(in units of 7 <R(0)>® ~ 14.3 min ). The two distinct parts of the size disttibn correspond
to those bubbles that are still shrinking and the ones évat &iready stabilised. Due to the

nature of our model and the way that we assume the dispiooy@bion process is halted by
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the particles, a sharp discontinuity in the distribatiunction develops between these two
separate parts.

As discussed in section 2.2, in our model, the preserite @harticles on the surface of the
bubbles has no effect on the shrinkage rate of bubblasistof course until the surface
coverage reaches the critical thresholdAt this point, a bubble stops shrinking suddenly
and abruptly. While this is an idealised model, it nevertBedaptures some of the essential
features of the particle netwaformed on the interfaces. This is particularly theector
systems where the interfacial yield stress of thevowl, beyond a given threshold, is a
rapidly increasing function of the surface coverage. Hewewen in such systems the
shrinkage kinetics of the bubbles is expected to show someedefislowing down, at some
stage before the cigal surface coverage is reached. In other words, thelparstart to
make their presence felt ahead of the full stabilisatiagheobubble Thus, in practice, one
may expect the sharp discontinuity in the bubble sizelalision function, seen in fig.,60

be rounded off to some extent. Nevertheless, one skollilde able to observe the
development of a bimodal distribution at intermediatesinprior to the complete arrest of

disproportionation for all the bubbles.

The discontinuity in the distribution function occatsa radius at which the bubbles dditth
size have just reached a particle surface coverage dfhis s most clearly illustrated by
considering the graphef fig. 6 in conjunction with those in fig.. 7The curves in figure 7
show the value of, for different sized bubbles, at the same stages as thdig. 6. The
horizontal dotted line in the figure indicates the thrégshalue 4™ = 0.5, with all bubble sizes
for whichA > 1" already having been stabilised by the particles. It & ¢hat the bubble
radii at which the graphs of the surface coverage chesgalue 0.5 are the same ones as
those for which the discontinuities in the distribatfanction, at the same time t, also occur
in fig. 6. The cross over radius shifts to higher values with timéaseasingly bigger

bubbles in the dispersion are stabilised by the particles.

We have plotted the fraction of retained gas as aitumoff time in fig. 8 for the above
system together with two others, one having a higher@.25) and the other a lowef €

5.0) number of bubbles. The initial size distributiod &éme total concentration of the
nanoparticles are kept the same in all three cases stuntiadly there is no difference in the
amount of gas lost in these systems, with all threphgraverlapping at short times. This is

because a bubble of a given size finds itself in prigcibe same initial environment,
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irrespective of the presence of other bubbles, givenltibdiulk concentration of the particles
is identical in all three systems. Thus, the bubblesdh aystem shrink and gather particles
in exactly the same manner to begin with. Howevegragdr times, the difference in the
number of bubbles begins to manifest itself as the cwteesto diverge from each other.
The bulk concentration of particles is depleted muchengoiickly for a system with a larger
number of bubbles. This has a pronounced effect onrthksize of the bigger bubbles,
which tend to stabilise later on in the process, in sustscaWithout many particles left in
the bulk, these larger bubbles will shrink much further titerwise suggested by the
calculations in section 3.1, where a large abundannarafparticles was assumed.
Consequently the amount of retained gas is much lower faradewiths = 0.25, as can be

seen in fig. 8.

We also considered several other situations involving sadig larger than 5. The
corresponding graphs for these are not shown here, aarthegarly indistinguishable from

the one in fig. 8 for the case with= 5. Once there is an excess of nanopatrticles, eachebubbl
size shrinks to a final size given by egn (13). Therefiwefinal stabilised size distribution

and the fraction of the retained gas both become independithe value of.

The influence of the ratio of the number of partide®ubbles on the final bubble size
distribution is displayed in figure 9. The final sizstdbutions are shown for each of the
three systems considered above, together with the siitiging one for comparison. As well
as the expected differences in the mean values, thksaadithe final distributions are also
seen to be quite different. Once again this can bewtdlio a transition from an
“adsorption controlled” to a “number of particle controlled” shrinkage of the larger bubbles.
With arelative abundance of particles, as is the casééosystem withs = 5 (the
dash-dotted line in fig. 9), the shrinkag€&asisorption controlleéd as discussed in section
3.1. In such cases, the final size ratio is not smathi® bigger bubbles, unlike the sneall
ones. Thus, we have a final distribution that is shgitoader than the starting one, with
standard deviation of 0.164, as oppose to 0.15 initially. Vidlise drops to 0.145 wheh= 1
(dashed line). But when the system is starved of patittie to a much larger number of
bubbles g = 0.25, then the shrinkage becorfipaticle number controlled”. The small

bubbles are not affected as much and shrink to approximately the sadii as before. On the

other hand, te bigger bubbles stabilising later on, find themselves leftauta sufficient
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number of particles. As a result they shrink to a maiger extent than that expected from
an “adsorption controlled” process. This means that the final bubble size distoibuti
becomes much narrower. Indeed the standard deviationefeystem with3 = 0.25 (solid

line in fig. 9) is only 0.07, about half its initial va&ult is seen that the presence of a large
number of small bubbles may be quite detrimental iftihéslarger bubbles that one really
wishes to stabilise. Nevertheless, the same result@sos that, by a careful control of the
number of nanoparticles in the system, it may be plesg produce a much more
monodispersed final bubble size distribution in certgie$ of applications that require
them. The final distribution of bubbles sizes 6= 0.25 is also shown in the inset in fig. 9
in greater detail. This shows the distortion of theritistion function away from its initial

Gaussian symmetrical form.

Some tentative experimental results supporting the prexgdi figure 9 can be found in the
recent work by Stocco et . In this study a combination of X-ray tomography and light
scattering was used to monitor the evolution of bubbledisteibution, stabilised by
hydrophobically modified silica particles. Rather than giramnthe volume fraction of gas
bubbles while keeping the particle number fixed, as has beenrgwe, in the study of
Stocco et al it was more convenient to alter the coretgom of silica nanoparticlesDespite
this difference and the fact that the initial bubble sizériigtions is unlikely to be the same
as the normal distribution considered by us, somedstielg similarities are nevertheless
found. The bubble systems considered by Stocco’®ae also relatively concentrated and a
closed system. However the authors do report the exéstdracfew very large bubbles that
in some sense play the same role as the infinitel $imbbles (the open air-water interface) in
our calculations. Indeed, with time these large bubbileseen to get bigger; an observation
that we believe was correctly attributed to disproportionatiarparticular, it is observed

that the average size of the smaller bubbles decreasedumyg the concentration of silica
particles, in agreement with our predictions. More &g#ng, it is noticed that the plotted
distribution of bubble sizeis as broad, if not more so, for a system with 0.5 witdesi
compared to one with 0.9 wt%. Yet, the narrowest distribusiambtained for 0.3 wt% silica.
This is much as we find in the results of fig. 9, wheeertiative width of distribution
increases at first but then decreases as the numpartimies in the system is made smaller.
Extension of the present work to more concentrated bdystems and foams, through the
inclusion of bubble coalescence, should provide an evenaxoueate description of the

systems studies by Stocco efZlyhere the effects of coalescence are not negligible.
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4 Conclusions and Summary

Pickering stabilisation of bubbles against disproportionagguires the formation of
networks of nanoparticles on the surface of the bubldlesse networks need to have a
sufficient interfacial yield stress to compensate and tevact the excess Laplace pressure
inside the bubbles. We argue that, due to the finite adsongtie of particles onto the
surface of the bubbles, such networks takertain given period to develop, during which
time the bubbles can undergo a large degree of shrinkdygs.is particularly the case for the
smaller bubbles with faster dissolution rates. A sinplarblem does not occur in Pickering
stabilised oil emulsions because Ostwald ripening is a nloaleisprocess than particle
adsorption in these systemAdditionally, in bubble dispersions with polydispersed size
distributions, bubbles of varying sizes compete with edlbér for the adsorption of the
stabilizing particles, as the bulk concentration ofipled is gradually depletedn the

current study, we have investigated the interplay betwespnagiortionation kinetics on the
one hand and rate of adsorption and finite number ofablaiparticles on the other hand, to
determine the extent of shrinkage, the degree of gasrdsshanges occurring in the bubble

size distributiondr an initially polydisperse dispersion of gas bubbles.

When the concentration of particles is much highen that required to stabilises the initial
gas-water interfaces on the surface of bubbles, thekstge is adsorption rate limited.
Bubbles of different sizes shrink and eventually becontdestadependent of others in the
distribution. For such a case, we have derived an acalgxpression for the extent of
shrinkage. This shows the existence of a threshold budndiest We find that those
bubbles, with an initial radius much larger than thisigabre stabilised by the nanopatrticles
without undergoing any appreciable degree of reduction inghlz&r In contrast, for bubbles
starting with a radius below the threshold, the finze satio decreases very rapidly as the
bubbles become smaller. As the number of nanopartilesve to the total surface area of
bubbles requiring coverage is decreased, the behaviole ef/stem alters. This is
particularly the case for the larger bubbles with raddve the threshold value. We have
shown that the shrinkage ratio is now determined by théauof particles rather than their
adsorption rate, i.e., the final stabilised radius appreathe value one would expect if all
the particles were to be placed on the surface of the ésibblm the very onset. The

transition from an “adsorption controlled” to a “particle number controllé” final size iS
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demonstrated analytically for monodispersed bubble disiisiand by numerical solutions
for the more general case. For thdsorption controlled” system, where there is an excess
of particles, the final stable bubble distribution is fowm be slightly broader than the
starting distribution. However, when the system is st@of particles in théparticle number
controlled” casesthe width of the final distribution is considerably smatlean the initial
value. These results can be rationalised in terrtiseobehaviour of different sized bubbles
in the two distinct regimes discussed above. In the ptisorcontrolled situation, the small
bubbles suffea considerable degree of shrinkage, while the larger onesadmiésstd with
almost no change to their initial radius. Thus, not ssirgyly, the bubble size distribution
broadens. In the particle number controlled casehitiger bubbles, which will tend to
stabilise much later in the process than the small @melsup in a situation where very few
nanoparticles remain in the bulk solution. Therefbsg/talso shrink to a much greater
extent, producing a final distribution that is now nareothan the initial one.

It is interesting to note that, while the small bubbles colytain a small fraction of the initial
total gas, due to the surface to volume ratio effect, taayhave a disproportionate influence
on the total fraction of the gas that is retained instfgtem, via their removal of particles
from the bulk. However, it should be noted that, theeniranalysis was performed for
bubble systems open to the air above. A similar invesiig&ir closed systems would
require combining this approach with the classigtshitz-Slyozov-Wagnetheory® ®* of
Ostwald ripening.lt may be possible to extend the model to more concedtbaifgble
dispersions, where the collision rates and coalesa@mgbbles is equally important as
disproportionation, if not the primary mode of bubbleabdity. These should prove an
intriguing but mathematically more challenging problems diture study, whilst it would be
interesting to compare in more detail the predictiorthefpresent analysis with curr&rand

future experimental observations in real systems.
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