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Abstract  
 
This paper develops a method for detection and removal of outlier images from digital Particle Image Velocimetry data using 
Proper Orthogonal De-composition (POD). The outlier is isolated in the leading POD modes, removed and a replacement value re-
estimated. The method is used to estimate and replace whole images within the sequence. This is particularly useful, if a single 
PIV image is suddenly heavily contaminated with background noise, or to estimate a dropped frame within a sequence. The 
technique is tested on a synthetic dataset that permits the effective acquisition frequency to be varied systematically, before 
application to flow field frames obtained from a large-eddy simulation. As expected, outlier re-estimation becomes more difficult 
when the integral time scale for the flow is long relative to the sampling period. However, the method provides a systematic 
improvement in predicting frames compared to interpolating from neighbouring frames. 
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1. INTRODUCTION  
Obtaining high quality experimental data for turbulent flows 
is a difficult task. Instrument noise, and seeding variation 
between frames can result in outlier data being generated at 
particular time instants. These problems are discussed for 
the case Particle Image Velocimetry (PIV) by [1] Outliers are 
defined in this paper to be singular frames within a data 
series that do not correlate to the value anticipated based 
on the properties of the neighbouring data. PIV is a non-
intrusive measurement technique, typically employed for 
detailed laboratory investigations of fluid mechanical 
processes [1]. It is based on the acquisition of images of the 
movement of tracer particles (normally neutrally buoyant 
particles). The temporal acquisition of these images should 
be such that the correlation between particles patterns 
between two sequential images is high enough to estimate 
their average displacement typically using Fourier methods 
to estimate the velocity vectors. 
Because of unexpected experimental issues and flow 
nonlinearity, data obtained at particular times may be 
significantly less well seeded than at other times, despite the 
best attempts to minimise experimental error. A lack of 
seeding, and a low temporal acquisition may lead to the de-
correlations of pairs of images and consequently outlier 
frames. Naturally, outlier detection and removal has been an 
area of some research interest. However, the majority of 
work has focused on the treatment of spurious outlier 
vectors, rather than the statistical properties of the whole 
frame [5, 7]. 
 
2. POD 
Proper Orthogonal Decomposition (POD) is a commonly 
used, linear method, for the extraction and analysis of 
turbulent structures [2, 3] and for forming low order 
representations of the dynamics of fluid flows for modelling 
and control purposes [8]. POD extracts energy relevant 
structures from a stochastic, statistically steady-state 
turbulent field, within a finite time domain, and orders them 
by their contribution to the total variance or, equivalently, 
by their specific energy (Kostas et al., 2005). We can define 

the singular value decomposition in terms of the 
eigenvalues, ߣ௡, as well as spatial ߶௡(ݔ), and temporal ߙ௡(ݐ) 
modes: as:  

࢜ = ෍ߣ௡߶௡(ݔ)ߙ௡(ݐ)
ே

௡ିଵ

 

where ݐ is time and  ݊ =  1, . . . , ܰ number of modes, but is 
structured in terms of the descending rank order of the ߣ௡ . 

3. METHOD 
Our method works by decomposing an ensemble of frames 
containing an outlier frame into three products using the 
POD method, producing sets of eigenvalues ߣ௡; eigenvectors 
߶௡ and coefficients ߙ௡. The ߣ௡ give the energy contribution 
per mode, the eigenvectors, ߶௡ the orientation of the mode 
in the variable space and these eigenfunctions are related 
temporally using the coefficients αn. It is these coefficients 
αnߙ௡ which our method exploits to estimate outlier frames. 
If there is an outlier frame within the time domain, a spike is 
depicted in the αn values. As the “outlier” frames can be seen 
as a spike within the ߙ௡ , it is possible to detect them quite 
easily. By removing and replacing this spike, it is possible to 
re-estimate the outlier frame using an interpolation method. 
Inverting the POD with the cleaned data permits the 
ensemble of frames to be reconstructed with the outlier 
replaced.   

4. RESULTS 
For this study two cases were selected the first being the 
“Lena Söderberg” image, which was circularly shifted to 
simulate the passive advection of a non-diffusive tracer 
distributed spatially in a complex fashion. The increment 
steps in the circular rotation were varied to simulate 
different sampling frequencies. The second dataset was a 
subset of Large Eddy Simulation (LES) of turbulent flow 
through a groyne field [4]. For both cases a sample length of 
100 frames were used, of which frame 30 was replaced with 
a Gaussian white noise with a magnitude equal to that of the 
average of all of the frame minus the missing frame. Our 
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method is compared to a linear interpolation method 
defined as (Vs (n−1) + Vs (n+1) )/2 where Vs (n) is the “outlier” 
frame, in the termed spurious data. 

.  

Figure 1. Lena data: (a). Shifted original image; (b). Noise added over image; 
(c). Linearly estimated image; (d). Our method. 

It can be seen visually that our method has managed to 
produce an image that visually represents that of the original 
image better than the linear interpolation method. Fig. 1d 
has a Root-Mean Square Error (RMSE) of 21% defined as the 
RMSE normalised by the RMS of the original image. The error 
in Fig. 1(c) is much greater at 58%.   

The error from our method in Fig. 1(d) is 24%, which is an 
improvement on the 31% error for the linear interpolated 
method. More importantly, our method has retained 
structures that were lost using linear interpolation. These 
are marked in green in Fig. 2d and can also be seen in the 
second Lena face in Fig. 1(c). 

 

 

Figure 2. Groyne flow image: (a). Original Image; (b). Noise added over 
image; (c). Linearly estimated image; (d). Our method. 

5. CONCLUSIONS 
Our work so far indicates that our method offers a regular 
increase in accuracy to that of linear interpolation. Such a 
tool could be used in a variety of experimental situations 
where a hardware or experimental fault has led to an 
“outlier” or missing frame. Although the method does not 
offer a perfect solution, it does offer a means to increase the 
accuracy of prediction of an “outlier” frame. 
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