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Abstract 
 
System identification is a challenging and interesting engineering problem that has been studied for decades. In particular, the 
NARMAX methodology has been extensively used with interesting results. Such methodology identifies a deterministic 
parsimonious model by ranking a set of candidate terms using a linear dependency metric with respect to the output. Other 
metrics have been used that identify nonlinear dependencies, like the mutual information, but they are hard to interpret. In this 
work, the distance correlation metric is implemented together with the bagging method. These two implementations enhance 
the performance of the NARMAX methodology providing interpretability of nonlinear dependencies and uncertainty measures in 
the model identified. A comparison of the new BOFR-dCor (Bagging Orthogonal Forward Regression using distance Correlation) 
algorithm is done with respect to the traditional OFR (Orthogonal Forward Regression) algorithm and the OFR-MI (Orthogonal 
Forward Regression using Mutual Information) algorithm showing interesting results that improve interpretability and uncertainty 
analysis. 
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1. INTRODUCTION 
System identification consists on identifying a mathematical 
model that describes the behaviour of a system based on 
recorded input-output data. One of the most popular 
approaches is the NARMAX (Nonlinear AutoRegressive 
Moving Average with eXogenous inputs) methodology [1]. 
This approach ranks a set of candidate terms based on their 
non-centralised squared correlation with the output data 
and identifies a deterministic parsimonious model. The non-
centralised squared correlation only identifies linear 
dependencies therefore, new metrics, like the mutual 
information [2] have been implemented recently to identify 
nonlinear dependencies. The mutual information is hard to 
interpret and there is still a need to extend the deterministic 
notion of the NARMAX methodology to deal with 
uncertainties. In this work, the distance correlation metric 
[3] is implemented together with the bagging (bootstrap 
aggregating) method [4]. These two implementations 
enhance the performance of the NARMAX methodology 
providing interpretability of nonlinear dependencies and 
uncertainty measures in the model identified. 
 
This work is organised as follows. In section 2 a brief 
summary of nonlinear system identification, that includes 
the NARX model and Orthogonal Forward Regression 
algorithm, is discussed. Section 3 reviews the bootstrap and 
bagging method. In section 4 the distance correlation metric 
is described. Our new BOFR-dCor (Bagging Orthogonal 
Forward Regression using distance Correlation) algorithm is 
proposed in section 5. A comparison with the traditional OFR 
(Orthogonal Forward Regression) algorithm and the OFR-MI 
(Orthogonal Forward Regression using Mutual Information) 
algorithm is presented in section 6. The work is concluded in 
section 7 and section 8 mentions the acknowledgements. 

 
2. NONLINEAR SYSTEM IDENTIFICATION 
System Identification is an experimental approach where a 
mathematical equation is identified based on recorded data 
obtained from the system of study [5]. Since 1940s, the 
identification of nonlinear systems has been developed 

considerably. In particular, the NARMAX has been used in a 
diverse set of scenarios [1]. In general, the process of system 
identification requires three steps [5]: 

a) Model Structure Selection 
b) Parameter Estimation 
c) Model Validation 

 
2.1. THE NARX MODEL 
The NARX (Nonlinear AutoRegressive with eXogenous 
inputs) model is a nonlinear recursive difference equation 
with the following general form: (ݐ)ݕ = ݂ ቀݐ)ݕ −

1), … , ݐ൫ݕ − ݊௬൯,ݐ)ݑ − 1), … ݐ)ݑ, − ݊௨)ቁ+  where ,(ݐ)݁
݂(∙) represents a unknown nonlinear function, (ݐ)ݑ ,(ݐ)ݕ 
and ݁(ݐ) are the output, input and prediction error signals, 
݊௬ and ݊௨ are the maximum lags for the output and input 
signals [2]. If the function ݂(∙) is a polynomial model, then 
the general form can be expressed in a Linear-In-The-
Parameters (LITP) form: (ݐ)ݕ = ∑ ൯ெ(ݐ)࣐߶൫ߠ

ୀଵ , where 
 ൯ are the(ݐ)࣐ are the coefficients of the polynomial, ߶൫ߠ
multivariable polynomial terms that are function of the 
regressor vector (ݐ)࣐ = ݐ)ݕൣ − 1), … ݐ൫ݕ, − ݊௬൯,ݐ)ݑ −
1), … , ݐ)ݑ − ݊௨)൧் of past outputs and inputs, and ܯ is the 
number of polynomial terms [1], [2].  
 
2.2. ORTHOGONAL FORWARD REGRESSION ALGORITHM 
The OFR (Orthogonal Forward Regression) algorithm was 
developed in the late 1980s by Billings, et al. [1]. It is a greedy 
algorithm that performs parameter estimation of NARMAX 
models that can be expressed in a LITP form [2]. 
 
3. BOOTSTRAP AND BAGGING 
The bootstrap is a computer-based method that computes 
measures of accuracy to statistical estimates. Considering 
that observations at a given time may depend on previously 
measured observations, the data set is divided in 
overlapping blocks of fixed length, ܤ. The first and last 
observations appear in fewer blocks than the rest; therefore 
the data set is wrapped around a circle to make all data 
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points participate equally. Then the blocks are sampled with 
replacement until a new data set is created with the same 
length as the original one. This procedure is repeated ܴ 
times; therefore, ܴ outputs are generated and all of them 
can be used to predict a numerical value via averaging (for 
regression problems) or via voting (for classification 
problems). This procedure is known as bagging (bootstrap 
aggregating) [4]. 
 
4. DISTANCE CORRELATION 
The distance correlation provides a new approach to 
measure all types of nonlinear dependences between 
random vectors with finite first moments and arbitrary, not 
necessarily equal dimension. The distance correlation 
requires the computation of centred pairwise distance 
matrices. The procedure is described in [3]. 
 
5. THE NEW BOFR-DCOR ALGORITHM 
The bagging method and sample distance correlation are 
combined with the OFR algorithm to produce the BOFR-dCor 
(Bagging Orthogonal Forward Regression using distance 
Correlation) algorithm. The main steps of the algorithm are 
the following: 

a) Orthogonalise all the regressors in a model so that 
the correlations between all the terms are 
removed.  

b) Determine significant terms using the distance 
correlation metric between each regressor and the 
system output.  

c) Estimate the corresponding parameters of the 
selected terms. 

d) Repeat ܴ times. 
 
6. COMPARISON WITH OFR AND OFR-MI 
The following model is taken from [2]: 
 
(ݐ)ݕ = ݐ)ݕ0.5− − 2) + ݐ)ݕ0.7 − ݐ)ݑ(1 − 1) + ݐ)ଶݑ0.6 −
2) + ݐ)ଷݕ0.2 − 1) − ݐ)ݕ0.7 − ݐ)ଶݑ(2 − 2) +  (3)           (ݐ)݁
 
where the input (ݐ)ݑ follows a uniform distribution ࣯ (−1,1) 
and the error ݁(ݐ) follows a normal distribution 
ࣨ(0, 0.02ଶ). The parameter values proposed in [2] are used 
as well in this work. The maximum lags for the input and 
output are ݊௬ = ݊௨ = 4 and the nonlinear degree is ℓ = 3. 
The stop criterion for the algorithms is when the error-to-
signal ratio (ESR) is less than 0.05. A total of 500 input-output 

data points were generated. The best model found by the 
OFR algorithm is: (ݐ)ݕ = ݐ)ݕ0.33 − ݐ)ଶݑ(4 − 2) +
ݐ)ଶݑ0.50 − 2)− ݐ)ݕ0.64 − 2) + ݐ)ݕ0.70 − ݐ)ݑ(1 − 1) +
ݐ)ଷݕ0.19 − 1). The best model found by the OFR-MI 
algorithm is: (ݐ)ݕ = ݐ)ݕ0.49− − 2) + ݐ)ଶݑ0.62 − 2) +
ݐ)ݕ0.62 − ݐ)ݑ(1 − 1) − ݐ)ݕ0.64 − ݐ)ଶݑ(2 − 2). The BOFR-
dCor algorithm is applied using a total of 1000 bootstrap 
samples and a block length of 5. Three top model structures 
are identified with 775, 150 and 21 votes, respectively. The 
second most-voted model is (ݐ)ݕ = ݐ)ݕ0.50− − 2) +
ݐ)ଶݑ0.60 − 2) + ݐ)ݕ0.71 − ݐ)ݑ(1 − 1)− ݐ)ݕ0.69 −
ݐ)ଶݑ(2 − 2) + ݐ)ଷݕ0.20 − 1). The method also provides 
the standard deviation of each parameter. It can be seen 
that the new algorithm’s solution outperforms its 
predecessors.  
 
7. CONCLUSIONS 
A new algorithm under the NARMAX methodology that 
provides interpretability of nonlinear dependencies and 
uncertainty measures in the model identified is proposed. 
The algorithm produces results that outperform its 
predecessors. Extensions and enhancements are being 
investigated. 
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