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Abstract: A multi-input/multi-output (MIMO) repetitive control problem of tracking and
disturbance rejection is considered when both reference and disturbance signals are finite
linear combinations of periodic but not necessarily sinusoidal signals. Lyapunov stability
analyses under a positive real condition (and a natural relaxation) and exponential stability
under a strict positive real condition are provided together with bounds on the induced L,
and RMS gains of the closed loop system. It is shown that similar Lyapunov stability results
apply when the plant is a positive real state-delay system. Extension of the analyses to a
class of nonlinear systems is discussed and indicates a good degree of robustness in the

design.
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1. Introduction

Signals associated with repetitive or rotating actions are often of periodic nature or are subjected to
forms of periodic disturbances. In order to track exactly or/and reject perfectly this kind of signal, an
internal model that generates the corresponding periodic signals should be included in the closed-
loop (Francis and Wonham, 1975). This system is called a repetitive control system and has been
widely used in control problems with robotics (Kaneko and Horowitz, 1997), motor (Kobayashi et.
al.. 1999), rolling process (Garimella and Srinivasan, 1996), rotating mechanisms (Fung, et. al.,
2000), and many more (Tzou, et. al., 1999; Moon, 1998; Manayathara, et. al., 1996).

If the signal to be tracked or rejected contains only a finite number of sinusoidal frequencies, a finite-
dimensional model can serve as internal model (Bai and Wu, 1998). More generally a periodic signal
contains infinitely many relevant frequencies ie. the fundamental frequency and its Fourier
harmonics. Within a certain bandwidth, a (higher order) compensator is required but an infinite-
dimensional internal model is more appropriate and more accurately reflects the internal model
requirements. The one proposed for periodic (and multi-periodic) situations is buili on (infinite
dimensional) time-delays. Perhaps the first infinite-dimensional repetitive controller was proposed by
Inoue et al (1981). The infinitely many poles of the delay system on the imaginary axis are
ikv,k =0.+1,., where v=2x/ris the fundamental frequency. This pole content makes the system

capable of generating signals containing frequency components of any periodic reference/disturbance
of period . Hara et al (1988) proposed a modified MIMO infinite-dimensional repetitive controller
by introducing a low-pass filter aiming at improving the system stability and robustness, at a cost of

losing tracking accuracy at high frequencies.

In many practical situations the reference and/or disturbance signals may consist of a superposition of
signals of different fundamental periods. The overall signal may not be periodic as the ratio of these
frequencies may be irrational. The analysis of this more complex situation leads to the idea of the so-
called multi-periodic repetitive control, which has received very little attention (Weiss, 1997; Owens
et al., 2001) although there is a known He stability condition available based on input-output
transfer function for linear MIMO single/muiti-periodic systems (Weiss, 1997). In contrast, this
paper presents a ‘Lyapunov condition’ providing a state-space characterisation of closed-loop
stability. This approach provides insight into dynamics and permits some extensions to the nonlinear

case using a quadratic Lyapunov function and clearly defined sector-bounded nonlinearities.

The paper is organized as follows. In section 2, multi-periodic repetitive control is introduced and
results for Lyapunov stability for constant filters is proposed based on positive real lemma. In section

3, Lyapunov stability for dynamical filters based on bounded real lemma is studied. Some relaxation
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of system positive-realness is indicated in section 4 and the possibility of exponential stability is
~ proved under a strict positive real condition in section 5. In section 6, Lyapunov stability analysis is
extended to state-delay systems and Section 7 presents a simulation example. Section 8 discusses the
possible extension of the Lyapunov analysis to a class of nonlinear systems. Finally in section 9,

conclusions are provided.

2. Lyapunov Stability Analysis for MIMO Linear System

The stability of typical single-periodic repetitive control has been studied by many authors (Hara et
al, 1988, Weiss, 1997). Weiss also gave a proof of stability for two period repetitive systems. In this
section, the basic problem is formulated and Lyapunov’s second method is used for stability analysis
of arbitrary multi-repetitive multi-input-multi-output (MIMO) systems using a natural form of

mternal model.

A MIMO multi-periodic repetitive control system considered in this paper is shown in Figure 1. The
plant ¥ - to be controlled is p-input/p-output, finite-dimensional, linear time-invariant, and its
transfer function G(s) = C(sl-4)" B is a px p transfer function matrix. The plant can be assumed to

contain other feedback and series control elements but this possibility does not affect the following

analysis although it may have impact on control design decisions. The periods of the components of

both the external reference r and disturbance ¢ are denoted by 7;,# =I,...qn. They are assumed

known.
M(s)
. Y1
Re) . E6| . ), )
'Q_ . x G(s)
? *%2-5% 220
i + EV!—
! Ee_”" )

Fig 1. MIMO multi-periodic repetitive control system
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The signals R, D, ¥, U, E are the reference r, disturbance d, output y, control # and error e

respectively.

A multi-periodic repetitive controller containing the required internal model is denoted by the

formula

m a.l
MO S e

(The Internal Model Controller)

It is a linear combination of single-periodic repetitive control elements with each subsystem Wis)a
stable “filter” (or compensator) introduced to filter out noise and/or trade off tracking accuracy

against closed-loop robustness. The “gains” o represent the relative weights given to each internal

model. It is assumed that f:a',- =a,a; >0 but, without loss of generality, @& can be set as unity by

=
absorbing the overall “gain” o into the plant gain. If all filters W,(s) =1, then the poles of M(s) are

precisely the infinite set of frequencies of the Fourier components of the reference and disturbance
signals. In this case M(s) is an (exact) internal model and marginally stable. In all other cases it can
be regarded as an approximate internal model included to achieve a balance between robustness and

tracking accuracy (Weiss, 1997).

To illustrate the effect of the filters on the stability of M{s) consider a single filter W with

7 (s)| <1, VRes=0. As a consequence, for Resz 0, il —W(s)e™”
1

>1 —|W(s)||e‘" | >0 so that

1-W(s)e ™" #0 in the closed right-half complex plane. Equivalently, the poles of M (s) lie in the

open LHP, as illustrated in Fig 2 and the controller is open loop stable. This stability contributes to

robustness but this benefit is obtained (see later results) at the price of tracking accuracy.

—(r .

i o
b i >
..%-.

]

g

A

e—S‘I - W(S}

Fig 2. A single-period repetitive controller and a typical pole distribution due to filter action
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Thus paper concentrates on the issue of closed loop stability. Intuitively, the inclusion of delays in the
control system will increase the complexity of the stability analysis and may place constraints on the
character of system’s dynamics. This is supported by the H.. condition derived by Weiss (1997)
which requires that the plant be positive real or approximately so. To aid the analysis, it is therefore
natural to focus attention on positive real systems and constant or strictly bounded real filters. To this

end, the following definitions and results are needed.

Definition 1 (Anderson and Vongpanitherd, 1973): The system ¥ ; is said to be positive real (PR)
if
1). All elements of its transfer function matrix G(s) are analytic in Re[s] >0,

2). G(s) is real for real positive s, and

2). G(s)+G (s)20 for Re[s]>0.

(Note: the superscript * denotes complex conjugate transposition.)

The following are the well-known positive real lemma and bounded real lemma.

Lemma 1(Positive Real Lemma) (Anderson and V ongpanitherd, 1973):
Assume that the state space model

x= Ax+ Bu
_ _ (1)
y=Cx+Du, x(0)=x0

is a minimum realisation of ¥ 5 . Then G(s)is positive real if and only if there exist matrices

0<P=P eR™0<0=0" eR™, HeR"*® and L <R such that

PA+A"P=—-Q =-LL" )
D+D" =H'H 3)
PB=C"~LH 4)

(Note: Here the superscript © denotes transposition and both A and L are assumed to be of full rank.)

It is obvious that if G(s) is strictly proper, thatis, =0, and hence H =0 , then (2)~(4) become
PA+A"P=-Q (5)

T

PB=C (6)

This result can be applied to closed loop stability as described in the following result:
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Proposition 1 (An equality for the case of constant filters):

Suppose that the plant 3  is positive real and strictly proper and that each “filter” W,(s)=W, is
constant with |W, |<1. Suppose that both the reference rand the disturbance d are identically zero.

Then the following equality holds for all fime:

+o0> VOV D200+ [ O00de+ (o di Y (1) [l t-) P20

i=1

where the functional V is defined by the equation

V(30 20,0) = 5T OP(0) + Sa | . O d6

and ||.|| denotes the Euclidean norm (i.e. ||fl|=ff).

Proof: As r=0, e=-y and v, =W,v,(t-7,)- ¥(t). The system ¥  has the form

x=Ax+By y=Cx, x0)=x
Write u(f) = gafvf ®, gai =1 and differentiate " along solutions. Using the positive real lemma
yields (where the argument of a function is (f) unless stated otherwise)

V=-x"0x+2y"u+ i a,vi(twv,(&)-v](t- T )v,(t—17,)]

i=1
This can be written as
14 =—x"0x-y" y+> a, [y y+ 2y v,(O) + Vv, =WV (t —7,)v,(t - 7,)]
i=]
_Zaf(l'Wsz)V? -7 )v(-1,)
i=|

Noting that the third term is identically zero, this reduces to the form

. 74 2z B 2
V=-x'0x|) _Ela"(l_W Wt=7)| <o (14)
Integrating and using positivity conditions yields the desired result. E
6
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The proposition provides a quantity F that is constant over the chosen solution curve of the closed
loop system. It 1s valid for all “t” and hence represents a form of conservation law. By letting t — +c0

in the above, the following result follows easily by noting that all terms are positive with sum
bounded by F(0):

Theorem 1 (Stability with Constant Filters):

With the assumptions of Proposition 1, the closed loop system is asympiotically stable in the sense

that Lx()) e L[0,0) and the output signal y(-)e L2[0,00). If, in addition, the constant filter W,

satisfies |W: |<1 then the resultant control (sub)signal v, () € L£[0,0).

It is a simple matter to convert this stability result into a disturbance rejection and tracking stability
result although it is useful to distinguish between the two cases of Wi =1 and | Wi |<1.

1. If all gains W, =1, consider firstly the case of r=0. It is only necessary to write

d= Z a.d,; (where the component d, has period 7,). Noting that the map u > u +d is just
=]

>

the map v, = v, +d, for all indices “i” and that the this transformation leaves the internal

model equations unchanged, it follows that the output y remains y(-) € L£[0,o0) and hence the

disturbance is rejected asymptotically. Without loss of generality assume therefore that d=0

but that » = 0. The next step is to write 7 = Za,.r,. and to use Fourier analysis to create

i=l
locally L, periodic inputs u, and corresponding state trajectories that generate the
component 7, exactly from some unique initial condition (dependent on 7). This is
essentially a smoothness condition on 7, that has no practical impact. Superposition then
trivially yields the existence of an initial condition x_(0), a state trajectory x.(t) and a
multi-periodic input #,(¢) such that 7(7) = y(f) = Cx_(?) i.e. this is the exact multi-periodic

solution sought by the feedback scheme! This input has the multi-periodic representation

m
U, :Zoc;.umu so that writing u=Yav, it can be seen that the map ut>u—u, is

equivalent to the maps v, Vv, —u, and y+> y—r =—e. Noting the invariance of the
control equations v, () =v,(f—7,)— y(¢) under these maps and taking differences between

actual signals and the signals associated with the exact multi-periodic solution indicates that
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the state space mapping relating the mput difference u-u. to y-r=-e is equivalent to setting
¥=0. As a consequence the problem reduces to the case when both d=0 and r=0. Using
Theorem 1 then proves that the “pseudo-output™ (error) signal —e(-) € L2[0,0).

2. Ifthe W, are constant but at least one has modulus | [<1, then perfect asymptotic tracking

of # is not possible. It is still however possible to use the analysis above by constructing a

multi-periodic solution of the state equation corresponding to the reference r(¢)and reducing

the analysis to a stability problem by using differences. This procedure is summarised in the

Appendix 1 to the paper for the case of positive real plant and where every | W [<1.

The stability properties in case 2 can be further underlined by the following Proposition:

Proposition 2 (Gain Bounds and L,(0,0) and RMS BIBO Stability):

If the plant is positive real, the disturbance d=0, r € L}(0,T) and all filters Wiare constant gains
satisfying |W: |<1 then the resultant closed loop system is stable in the bounded-input/bounded-
output (BIBO) sense that My ||r|| 2 I|y|| in L;(0,T) (for any value of T including T=co and any
reference signal ¥ € L1(0,T)). The induced gain of the system is bounded from above by

2 \1/2

m

-—| I+ Za

J'l W2

This gain also applies to signals measured by their root mean square (RMS) values defined by

‘o

)T:Gfﬂ(ﬂr(r)dz} andr), =lm((£), )"

/
\r T—w
(Note: The use of RMS measures permits the application of the bound to Multi-periodic signals even

if they do not have the periods used in the construction of the internal model.)

Proof: The proof is deduced from Appendix 2 with the choice of A=0. =

The gain bound M, is conservative but easy to compute. It does however give useful insight into the

effect of changes in reference signals on outputs (from zero initial conditions) via the relation
<y2 =¥ )T <M, <r2 — ¥ >T for all T>0 bounding the change in output due to the change in reference

from r, to r,. The effect of the choice of weights can be illustrated here by examining the case of
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m=1 and looking at the dependence of M, on . Typical values of the pairs (W,M,) are as follows:
(0.999.22.3), (0.99,7.0), (0.98,5.0), (0.9,2.3), (0.7.1.4).

Note: The result is extended in Proposition 3 in Section 4 with the possibility of improved estimates

of gain bounds obtained using measures of the degree to which the plant is positive real.
3. The Inclusion of Dynamical Filters/Compensators

The use of constant filters is of both theoretical and practical value as it demonstrates the success of

the exact internal model in achieving perfect tracking accuracy when all W, =1and boundedness

when | [<1. It is recognised however that the use of dynamic filters is of more general practical

interest in representing real control elements more faithfully and/or in addressing issues of robustness
(particularly with respect to high frequency dynamics). To address this issue for the case of greatest
practical interest, it is advantageous to use the following theoretical construct, namely the situation

when the gains of the filters are less than unity at all frequencies:

Definition 2 (Anderson and Vongpanitherd, 1973): The system Z w 1s strictly bounded real
(SBR)} if

1). All elements of 1ts transfer function matrix I (s) are analytic in Re[s] >0,

2). I-W (jo)W(jo)>0 VoeR

Note: In classical terms, the transfer function is stable and has a gain that is less than unity at all

frequencies. The important background result for this case is as follows:

Lemma 2 (Strictly Bounded Real Lemma) (Anderson and Vongpanitherd, 1973)

Assume that

Xp = Apxy +Bpv

z=Cyrx,
is a minimum realisation of a filter W. Then W (s)is strictly bounded real (SBR) if and only if there

exists matrices 0 < P, = P} such that the following Riccatti inequality holds

BoAy + Ao Py + BB, BL By 4+ CEC, %0

Note: The equivalent linear matrix inequality (LA7]) formulation requires that the block matrix
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Q| Brde +A0B +CLC, BBy g
L BB -1

4

™)

It is valuable to introduce a measure v of how much the filter gains drop below unity. This is
achieved as follows by using y as a measure of the degree to which (7) is negative definite. More

precisely:

Corollary 1. If W(s) is given as in Lemma 2. Then W (s)is strictly bounded real if and only if there

exist matrices 0 <F, = Bl and a constant y e (0.1) such that the following LMI holds
B

O =

a

B, A, +4LP, +CIC, P,,,B,,,}SO @)

L (Fy By )T "?’ZI

Proof: From Definition 2, we have /-W'W >0 Ywe R. As a consequence, 3 0<y <1 such that

I-[y"'Wy'W1>0 VoeR . Thatis, 3 0<PB, =F, such that

i o EFPWAW +ALB, +CLC, 7'ByBy |

a i -1 T <0
L ¥ (ByBy) -1

\
As A= [I OJ > 0, then this implies that
0 ¥

Noa=q, | B B +CiCy BBy J <6
L (ByBy) -y°L

which proves the result by keeping Py fixed and reducing y until semi-definiteness is achieved. gy

The first result of this paper (Theorem 1) examined the case when the “filters” are constant.
Extension of the Lyapunov theory to include SBR filters uses the following illustrative construction

based on the above corollary.

Let 7, =[x, v']" be solutions of typical filter dynamics (subscripts omitted for ease of presentation).
From (8) it follows that
02 175, Qg
T T TRT T T T 3
=X (g By + By Ay )3y +V By By Xy + X5 By Bpv+ x5 CoCpxp —y V' v

= Z(x;PWxW Y+zlz=y Ty

which can be expressed as the differential incquality

10
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i(xTP x)<yVv -2z 10)
dt {2l et

The main result of stability analysis can now be stated below.

Theorem 2 (Stability with SBR filters):

Suppose that the plant 3,  is positive real and strictly proper and that each filter is SBR. Suppose

that both reference r and disturbance d are zero. Then, defining the functional

1

. m " 5
V=x Px+ ga,xé PW; Xy + 2 a,—L{i “z,(@)” ae (11)
leads to the inequality
00> V(0) 2V + [x" Oxat + [ |y de +fa,.(1-yf)£ ] dt =0
0 0 i=1

on all trajectories of the closed-loop systems. The mulfi-periodic repetitive system in Figure 1 is, as a

consequence, globally asymptotically stable.

(Notes:
1. The parameters y; seem to play a similar role to the W; in theorem 2 although the equality is
replaced by the inequality above.
2. Using similar arguments to those following theorem 1, the result also impiies that the closed
loop system is stable in multi-periodic tracking mode and rejects all muiti-periodic

disturbances of the specified periods.)

Proof: Introducing a positive definite Lyapunov function V¥ for the problem of the form of (11)
where the familiar Lyapunov term for the plant is augmented by appropriate quadratic terms for each
SBR filter plus an integral term involving variables in the internal model control. Differentiating
I along solutions and using the positive real lemma yields (where the argument of a function is (t)
unless siated otherwise)
V<-x0x+2y"u +i a(yviv,—z'z) +iaflz:fr Oz;(t) - zF (t=7)z,(t - 1,)]
(12)
= —xTQx—yTyﬂriai[-_vT_v + ZyTz,(z =) +vf"vf —zf (t—17)z(f - Ti)]—iai(l-yf)vf"vj

i=1 i=l

The relation vi(t)=zi(t-1;)-y(t) is used to prove that the third term in (12) is identically zero, so that

11
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V<= 0x~pff = > e (-2 <0 (13)

i=1

Integrating and using (12) and the positivity of I yields (where ||.|| denotes the Euclidean norm)
! 4 m
2 9 t 2
o> V(0) 2V + [x" Oxdt + [ |y dt+z, a,(1-y))[ [ de=0 (14)
0 0 =

The proof of stability is can now completed in a similar manner to Proposition 2.

4. Relaxing the Positive Real Condition

The positive real condition is sufficient for stability and can be relaxed to provide more generally

applicable results. The idea behind this is to note that G(s) is positive real if and only if its inverse is
positive real. It is possible therefore to consider processes where G~ (s)+K(s) is positive real or

equivalently the feedback system (I +G(s)K(s))™ G(s) is positive real where G(s)is in the form

of (1) and K(s) is some minor loop compensation element.

For simplicity of presentation and to underline the importance of the “gain” of K in the analysis, K(s)
is now assumed to be of the form K(s)= AI where Ais some scalar gain and I is the unit matrix.
Under the conditions explained above, the corresponding relations of (5)-(6) can be stated as the
existence of matrices P and Q as before such that

PA+ATP=-0 +2AC7C (15)

PB=CT (16)

Theorem 3 (A Illustrative Relaxed Positive Real Condition):

Suppose that the plant is ¥ 5 has the property that (I +AG)" G(s) is positive real for some

A<1/2 and strictly proper. Suppose that both reference » and disturbance d are multi-periodic with
components of period ti,i =1,.,m . Then the multi-periodic repetitive system in Figure 1 is globally

asymptotically stable in the sense stated in Theorem |.

Proof: The proof is similar to that of Theorem 1. Consider the positive definite Lyapunov function

V=¥ PxtY e B, +3a, [ () de (17)
i=l i=1 .
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By differentiating /” along solutions and noting that the analysis of Theorem 2 remains unchanged if

Q is replaced by 0-2ACC" gives

v s—xTQx—(l—Zit)lIyI]z-Z0@-(1 -7 W v <0 (18)

1=]
and all terms are negative if the stated condition A < ) i1s used. The proof now follows that of

Theorem 1.9

The theorem extends the applicability of the ideas to a broader class of systems although it is still
necessary that the underlying state space model satisfies a minimum-phase assumption and CB is
non-singular. It also suggests that minor(or inner) loop-compensation may be a useful tool in the
control of multi-repetitive systems. This in turn suggest that a combination of output feedback with

state feedback may be of great value. These issue aare the subject of current work at Sheffield.

The estimate of gain bounds can be improved in this situation. The details are as follows:

Proposition 3 (Gain Bounds and L,(0,0) and RMS BIBO Stability):

With the assumptions of Theorem 3 but with constant filters |Wi|<1, the results of proposition 2 hold

true with M, replaced by the gain bound

( 1 r m 2 \'I”2
M,=|——|1+Za,—_
) U—u =W

This gain also applies to signals measured by their root mean square (RMS) values.

Proof: The proof is provided in Appendix 2. -

The choice of A is non-unique but there is an optimal choice: if A* is the smallest value of A for
which (/ +AG)" G(s) is positive real for all 0.5>2A>A*, then M ,, <M o if A¥<0. This indicates

that the bound provided by Proposition 3 can be better than that of Proposition 2 for strictly positive

real systems.
5. Exponential Stability

It has been shown above that a form of asymptotic stability of multi-periodic repetitive control

system can be guaranteed if the plant 3 -, is positive real (or satisfies a relaxed positive real
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condition). This L,(0.0) stability result can be refined when the plant satisfies a strict positive
. realness condition i.e. G(s)+G"(s)=0whenever Re(s)=-g,& >0 Under this condition, the results

in this section show that the tracking error decays in an exponential manner. For simplicity of

presentation, the filtering factor W (s)is chosen as constant, i.e., |[¥,(s)| = #,| <1. The strict inequality

is central to the proof of the following result.

Theorem 4 (Exponential Asymptotic Stability):

The Multi-periodic repetifive system in Figure [, with constant weightings W,,i=1,...,m, is

exponentially asymptotically stable if plant 5. ; is strictly positive real and ]W,[ <Ll<ism.

Proof: The definition of strict positive real can be rephrased as Re(G(s' —&)) = 0 whenever Re(s) =0,
by defining s'=s+¢. By denoting ]?(2‘) =e” f(7)for any signal f, assuming r=0and 4=0 and
noticing the fact that C((s'— &)/ —A4)™ B=C(s'I - (¢ I + A))"' B, equations (3)~(4) become

¥=(A+e)¥+B¥

19
T=lF (19)
L= Zm:aiﬁ., > a=1
i=1 1=1
B (0) = Wie™)Z,(t-7,) +E() (20)

Vi

That is the exponential weighting of signals (with r=0and d=0) is equivalent to the map

(. }1 gy ({Wie“" }1 ciem>A+€1). The transformed system is now positive real. Previous

<1

. 5 £T
results can now be used as, without loss of generality, we can choose &> 0so that mja)%W,.e

As X(f) is then uniformly bounded there exists an A > 0 such that Fo)|<i ie. ”x(t)” <Me™

v¢>0. This indicates exponential stability of the state, and hence the tracking error. 5

6. A Note on Lyapunov Stability Analysis for State-delay System

The above analysis relies heavily on positive real concepts and strict bounded real properties. In this
context it can be extended to infinite-dimensional, linear time-invariant, positive real state-delay

systems. To illustrate this possibility another known Lemma needs to be introduced.

Consider the following state delay system:

14
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_ {J’::A’x+Adx(rkrd)—L—Bu

26,

21

where xeR”,yeR”,ucR” are the state, the output and the input of the system, <« is the state time

delay.

Lemma 3(Niculescu and Lozano, 2000): Assuming that A(4)eC~, then 5, G 1s strictly positive real

if and only if there exist matrices 0 <P =P’ e R"" and 0 <Q = Q" € R™" such that
PA+A"P+PA,07ATP+0 <0 (22)
C=B"P 23)

Remark: The Algebraic Riccaiti Inequality (ARI) (22) can be equivalently expressed as LMI

r T 1
P PA+AT P+(Q PAq lﬁo 24)
Aa P —QJ:?;

Theorem 5 (Stability of Multi-periodic State Delay Systems):

Suppose that he same conditions as given in Theorem 2 hold except that ¥, g is a state delay system
as in (21). Suppose that 3, G is positive real. Then the multi-periodic repetitive system in Figure 1 is

globally asymptotically stable.

Proof: Introduce a positive definite Lyapunov-like functional ¥ of the form

V=x"Pc+| x"Ox + i e oy P X i aijn:_r “21.(6’)”20’6' (25)
=] i=1 !

t—ty
By differentiating I along solutions and by using (10) and (22)-(24),
V<x (PA+ A" Pyx+x" (t—7,) AL Px +x" PA,x(t—7,)x" Ox

X ((=7,)0x(1-7,) + 2y u+ Y &, (¥ Vv, - 2 2))

=1

+iai[zf‘zi —Zf(l‘—Ti)Zi(t“Ti)]

:"grAéb_yTy"'Zaf[yTy'!'zyva +V;Tv:' _Zf‘(t_ff)zi(t_"Ti)]_zai(l—yjz)vgvi

i=| i=1

=& AE - - Sy,
i=]
<0
(26)

15
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where £” =[x" x” (t—14)] . The methods used earlier in this paper complete the proof of the result.

7. Simulation Example

The following examples are chosen to illustrate the theory and the effect of the choice of parameters.
For the sake of simplicity, a SISO system is examined to iilustrate the control system performance.

Wi(s) is set to be a constant close to 1(i.¢., 0.999) throughout the simulations. The positive real plant

’ -15 0 -4 0] 15 ; ;
is a state delay system where 4 =[ o 20-‘, Ad = [_ " —SJ’ B =[7 5-|, C=[t 0]. The reference signal is

chosen to be a mix of harmonics of two fundamental frequencies, @, = 2.6z rad/ sec ,

@, = 67 rad / sec , combined in the form # =7, +7,, where # = ZSina)!t + 1.58iﬂ3a)11 - 0.7sin5a)]t
and 7, =sinw,? +3sin2w,7 . The two fundamental periods are 7, =1/1.3, 7, =1/3 . For simplicity,
equal weights a; =0.5anda, =0.5 are chosen, which means equal weighting in the controller on the

two components of reference signal. A gain K =10 is also put into the feedforward path with the

intention of improving response speeds. This does not affect the positive-real nature of the process.

h

et

Trameit process

2l 12

Steadsyr state

~0.005.

-0.01

~0.015 f‘ B
F2 125 13 135 14 145
4-5] L
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Fig 3. Error e(:)when (1). Disturbance d(:)=0 (solid) and (2). Disturbance 4()=0 (dotted)

Simulations show that this repetitive controller is also capable of effectively rejecting a periodic
disturbance. More precisely, suppose in the followings that the disturbance is a square wave at a
frequency of 14x rad / secand at peak value +2. A square wave is chosen to indicate that the scheme
can cope with signals with infinite frequency content. A third repetitive sub-controller is added to
M(s)at a fundamental period of 7, =1/7. with weightings replaced by a =04.a, =04 and
ay =0.2. The asymptotic part of the tracking error (for t>12) is also demonstrated in Figure 3 (dotted)

and is almost identical to that of disturbance-free case (Figure 3, solid). The result suggests that the
influence of the disturbance signal is negligible and ultimately rejected.

8. Effect of Nonlinear Perturbations to Plant Dynamics

In this section, extension of the above Lyapunov stability to a certain class of nonlinear system is

briefly discussed. The plant ¥ G is now a nonlinear system, described by
x=Ax+Bu+ f(x)
y=Cx, x(0)=x, @n

where f{0)=0 and the linear part of the system (4.B.C) is positive real. Let P=P7 >0 and

O =0" =0 be the associated Lyapunov matrices. Suppose also that, for all x; and x,, the nonlinearity
satisfies the inequality

(% = %) P(f(x,) = f(x)) <0 (28)
A simple example of this could be f{x)=Bg(y) when (28) reduces to 0> (y;)" (2(y2)-g(y1)) for ali

output values y, and y,. This is just a familiar sector constraint used, for example, in absolute

stability problems.

The stability analysis is stated below. For simplicity, the filtering factor w(s)is chosen again as

constant, i.e, [¥i(s)| =[#i|<1.

Theorem 6: (Stability in the Presence of Nonlinear Perturbations)

Suppose that both reference r and disturbance d are identically zero and that Wi|<1,1<i<m. Then

the multi-periodic nonlinear repetitive system in Figure 1 with 3G a nonlinear system governed by

eqn (27)-(28) is globally asymptotically stable. In addition, Propositions 2 and 3 remain true.

17
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Proof: The proof is similar to that in section 2. Let »=d=0. Introduce a positive definite function

V=xTPx + Z ajji “1/,-((9)"2(29 . Differentiating V along solutions and using the condition in
=i I—T,

(28)-(30) vields

v,(t =7, +2x" Pf(x)

V== 0x - -3 0, (1- W)
= (29)

2

<" Ox |y -2 @ (1-W )t~ 7,)
i=]
which, replaces the equality if Proposition 1 with the inequality

+o0 >V (0) 2V (x(1),20),0) + [ *" ()@= ()t + [ |v(o)]" at + i a,(L-WH[llv, -7y lPdez0 (G
[i 0 i=1 0

Replacing equality with inequality does not negate the conclusions obtained by using arguments
similar to those for the linear case of /=0.. The proofs that Propositions 2 and 3 remain valid follow a

similar argument. o

The feedback scheme hence has a degree of robustness to nonlinear perturbations. The proof of the
above result indicates that the ideas also apply to the analysis of section 3 where dynamic filters are
mcluded. It also indicates that Propositions 2 and 3 remain valid so that the gain estimates also apply

to this class of nonlinear systems.
9. Conclusions

MIMO multi-periodic repetitive control systems have been studied and a number of stability
conditions derived using Lyapunov-type analyses. The potential power of the approach has been
illustrated. In particular it has been shown that asymptotic L(0,00) stability and perfect disturbance
rejection is guaranteed if the plant is positive real and that this can be extended to prove exponential
stability if it is strictly positive real. The positive real condition seems to be central to both frequency
domain {(Weiss, 1997) and the analyses in this paper It can however be partially relaxed by
demanding that a feedback version of the plant is positive real. In all cases, the theory provides

simple estimates of L, and RMS induced gains of the closed loop system.
It has also been shown that positive real conditions make it possible to extend the ideas to a class of

nonlinear systems and a class of linear differential delay systems. A feature of the analysis is the

possibility of including strictly bounded real filters in the delay loops to improve robustness.

18
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The paper has made a clear statement about the potential of Lyapunov analysis for multi-periodic
systems in the presence of positive real or “almost positive real” processes. Although some systems
are positive real in nature, like large space structures (Benhabib, et. al., 1981), typical plants met in
practice are not necessarily positive real. This problem, together with issues of design of
compensators and inner loop feedback will be addressed in future papers as will issues associated

with systematic design of stable high performance loops.
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APPENDIX 1:

The purpose of this appendix is to indicate the proof of the assertion that stability analysis can be

transformed into a tracking theory. Suppose that the “filters” W, are constant. If W;|<1, 1<i<m,
write the multi-periodic reference signal as a absolutely convergent complex Fourier series:
I [
r(t)=R, + ZZRrkejmrt
r=1 k=0
and search for a steady state solution

y) =1, +izyrkejkwrl

r=l &=0

A simple calculation then yields the formula, 1<i<m .

2 (1) = (R, =Y ek
( ) 1. Z] kzxo 1 W — jhw,; Tic rk)
with a corresponding formula for v(r) . This then gives the corresponding multi-periodic output
tktz) 1
HO=2 TGO, T+ 3 a3 T e CUkD )Ry ~1,)

For consistency with the assumed construction of y(/) . choose

m a. _ ni a:
i=] - =1 i

i
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%
] = a .
and ¥, =(J+P,)" PR, where P, = ZWG(JIW,-)-
i=] - ;€ !

Note that ¥, is well-defined if |W,[ <land G(s)is positive real (a sufficient condition). A simple

calculation then indicates that all signals lie in Z, (0.7) in any interval [0,T7].

A similar analysis yields an infinite multi-periodic series for the state vector and hence the initial

condition that generates the multi-periodic solution.

Finally, if the subscript » now denotes the multi-periodic solution constructed above, it is easily seen

that, by construction,
%[xr () =x()] = Alx, () — x(t)] + B[v, (£) —v(®)]
X, ()= x(0)|,_, = %0 %

¥, () = () = Clx,(t) = x(1)]

M
v () =v(t) =D e[z, (1) - z,(1))

1=1

Z”—(f)—Z‘-(f)z Wﬂ;‘{zri(r_’[r)-‘Zi'(.l_f{)]n!’_yr(t)"y(t)]

These equations have the same structure as the equations used in the proof of Proposition 1 and

Theorem 1. As a consequence, the stability proof can be applied directly to prove stability properties
with

V= (x,(0)-x0) TP(x,(0)-x0) + X @[\ [,(0)-2,(0)[} 6

APPENDIX 2:

The proof of Propositions 2 and 3 are given below, the proof of Proposition 2 being obtained by

setting A=0. From Proposition 1, examine the functional
m 2
V(x(t), z( ) E) =x" (r)PA(r)+§o:i [ G

in the general case where 70 but d=0. and differentiate }" along solutions of the closed-loop system

from zero initial conditions on x(0) and the delayed variables v,(#),-z, <t <0,1<i <m. Using the

positive real lemma and the construction of Theorem 3 vields (where the argument of a function is (3]

unless stated otherwise)
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V=c-x"Ox +2AyTy+2yTu+ Z a v ()y-vi -z v, (t-7,)]

Write u(f) = S av, (). Ya, =1 and use the identity v  (7) + y()y=r@)+Wyv (i-7;) to
i=1 i=i -
give

P = Qx—(1-22)y y+ Dl y+ 25 v, () ], ~V] (=5 Wit =7)]
i=1

- X Ox—(1-24)y y+ Yl W, =7 |F = Ivile=7)IF]
i=]

—xTQx—(l—?./l)yTy+Zai[||r+ijj.(r—rj)||2 —HVf(f"Tf)“Z]

I

—x"Qx—(1-24)y" y+ > a7 |F +2W 7w, (1= 7)) - A-W)) ||v,(t -7,) 1”1
1=l

-

—(1_2'2')_););"‘” ¥ HZ +Zial 1_IiV];V2 || 7

1

IA

| -
i

where the terms in the summation have been replaced by their maximum values over all possible
values of delayed variables. Integrating and using the zero initial conditions on the state and delayed

variables, then gives, for all t>0,

20N

; m
0<—(1-2)y @y +7" (f)r(r)! 1+ > 1—?;“?—2 ‘

i

Integrating yields the desired inequality, which proves the proposition. =
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