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Abstract

Recently it was explored by the authors whether or not a Genetic Algorithm (GA)
based approach can be used in the context of norm-optimal Iterative Learning Control
(ILC). It turnes out the answer is positive for both linear and nonlinear plant models.
The strength of this method is that it can cope with nonlinearities and hard constraints
in the problem definition whereas most of the existing algorithms would fail. Sim-
ulations are used to illustrate the performance of this new approach, and give good
results in terms of convergence speed and tracking of the reference signal regardless
the nature of the plant under investigation. It is in fact shown in this paper that un-
der suitable assumptions, the proposed GA-ILC approach will result in monotonic
exponential convergence, which is a very strong property of an ILC algorithm. The
proposed approach also involves the design of a low-pass FIR filter which success-
fully smoothes the noisy input signal naturally generated by the GA method.

1 Introduction

Over the last two decades, intelligent control (IC) methods have been heavily investigated
by the researchers in many engineering problems with varying degrees of success. Some
of the most known IC theories are Neural Networks, Genetic Algorithms, Fuzzy control
and Learning control. The key characteristic that makes these techniques substantial dif-
ferent from most analytical control methods is the fact that they use human, animal or
biologically motivated procedures to develop or implement a controller for a dynamical
system. This significant diversity offers them numerous advantages over traditional meth-
ods in terms of applicability on different classes of dynamical systems. Furthermore, the
idea of combining two or more IC methods for implementing more advanced algorithms
has been introduced by many scientists with really significant results. In this paper the
Iterative Learning Control (ILC) technique will be discussed.




Iterative learning control is a technique to control systems operating in a repetitive
mode with the additional requirement that a specified output trajectory r(¢) in a finite time
interval [0, T is to be followed with high precision. Motivated by human learning, the
fundamental idea of ILC is to use information from previous executions of the task in order

to improve performance from trial to trial in the sense that the tracking error is sequentially
reduced [4]. Typical examples of systems that work in this kind of repetitive mode are
robotic manipulators in manufacturing industry and chemical batch processes. It can be in
fact stated that the repetitive processes comprise a very large group of industrial processes,
ranging from robotics and semiconductors to steels and chemical process industries.

Most of the ILC laws construct the input into the plant on a given trial from the input
used during previous trials plus an additive incremental, which is typically a function of
the past observed output error, that is, the difference between the achieved output y(t)
and the specified output trajectory r(t). According to the value of the error the dynamical
system ic said to ’learn’ by remembering the effectiveness of previously tried inputs and
using information on their success or failure to construct new trial control input functions.
Hence in contrast with adaptive schemes, IL.C does not attempt to identify the plant but
changes only the control input. Furthermore, this adaptation or updating takes place after
each trial and not after each time step as in adaptive control.

The goal of minimising the tracking error during each trial can be easily formulated into
a suitable optimisation problem. In fact, over the years many researchers have proposed
optimisation based ILC algorithms providing good convergence properties [10], [6], [2]. A
more detailed description of these algorithms will be given in the next section. However,
most of the algorithms with guaranteed convergence properties work only for linear plants.
This is a severe limitation because the dynamics of repetitive systems can be highly non-
linear. For this reason it is necessary to derive a new class of ILC algorithms that are
able to cope with nonlinearities. Furthermore, in practise process variables are subject to
constraints that are set by safety considerations or physical limitations. Hence there is a
real need for algorithms that can handle these hard constraints in a straightforward manner.

Recently, the possibility of using evolutionary based strategies in solving optimisation
problems in ILC was investigated in [12]. In the proposed idea a preliminary study sug-
gested that Genetic Algorithms (GAs) can be used into an optimisation based ILC scheme
in order to overcoime the limitations analysed above. This approach appeared to be compu-
tationally realistic. Furthermore, a significant point is that while GAs has been shown to be
able to solve a variety of different optimisation problems in engineering, to our knowledge
the idea to use the GAs to implement optimality based ILC algorithm has not been reported
before. In addition, according to [8], the advantages of a GA in such environments are free-




dom from the need to possess an explicit model of behaviour and the intrinsically parallel
search diversity, which in redundant environments has the additional effect of distinguish-
ing the important from the irrelevant, thus further simplifying the problem. Also, GAs are
not limited by typical control problem attributes such as ill-behaved objective functions,
the existence of constraints, and variations in the nature of control variables.

In this paper, we propose a Genetic Algorithm based optimisation method for Iterative
Learning Control (GA-ILC). Our main contribution is the fact that the proposed GA-ILC
framework has the ability to successfully produce optimal solutions for various control
systems under mild assumptions on the plant model. The obtained results indicate that
the proposed scheme performs satisfactory for any class of dynamical systems (i.e linear
or nonlinear, continuous or discrete, minimum or nonminimum) whereas the more tradi-
tional optimisation based algorithms work only for specific classes of linear systems. Also
the proposed algorithm result in monotonic exponential convergence of the cost function
which is 2 very strong property for ILC systems. Furthermore, the proposed procedure
includes also the design of a low-pass FIR filter which successfully smoothes any ’noisy’
part of the selected input signal.

The rest of the paper is organised as follows: in the next section we have the problem
definition. In section 3 a small historical review of some of the most interesting optimi-
sation based IL.C methods is provided In section 4 convergence properties for nonlinear
optimal I LC' applications are explored. In section 5 the proposed GA — ILC framework
is described and in section 6 GA implementation is provided. In section 7 the filtering
process is provided. Section 8 includes the simulation examples followed by conclusions
and recommendation for further work.

2 ILC Problem definition

Consider the following possibly non-linear discrete-time dynamical system defined over
finite time interval, € [0, T, 2T ..., Tf):

2(t+Ts) = f(a(t)u(t), )
y(t) = g(x(t), u(t), t)

with a suitable initial condition #(0) = zo. In addition, a reference signal r(£) is speci-
fied and the control objective is to design an learning algorithm that will drive the output
variable y(t) to track this reference signal as closely as possible by manipulating the input
variable u(t). The special feature of the problem is that when the system (1) has reached
the final time point ¢ = T, the state of the system is reset back to xg, and after the resetting
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the system is supposed to follow the same reference signal r(¢) again. This repetitive na-
ture of the problem opens up possibilities for modifying iteratively the input function u(t)
so that as the number of repetitions or trials increases, the system learns the input function

that gives perfect tracking. To be more precise, the idea is to find a control law

u‘k+1 = f(ukfuk-‘-l'T'"’T’ul‘k—f"fe'k'l‘l‘?ekﬁ'""Te‘k—.‘i)' (2‘)

so that
limp oo llex)] = 0 and limg o0 |t — )] = 0 3)

where
Y = [Y(0), yr(To ), y(2Ty), - - -y (Tp))T @
gy = fuge(0), uge(To), wn (2T, - . . e (Tp)]T )

ek = [r(0) = yi(0), r(Ts) — yn(T5), m(2T2) — w(2Ty), - .., 7(Ty) — i (TH)]"  (6)

and »* is the input function that gives perfect tracking (i.e. we are assuming the reference
signal belongs to the range of the plant). Note that if the original plant model is a linear

time-invariant model
z(t + Ty) = Ax(t) + Bu(t)

@)
y(t) = Cu(t)
it can be represented equivalently with a matrix equation y;, = Gy, where
[ o 0 0 ... 0]
CB 0 0 ... 0
G, = CAB CB Do B4, - (8)
CAT1B cAT?B ... ... 0|

where T; = Ty /T,. This equivalent representation can typically simplify considerably the
convergence analysis of ILC algorithms. In the next section we will describe in details the
proposed Genetic Algorithm based method for Iterative Learning control systems (GA-
ILC).

3 Optimisation based ILC algorithms

The ILC theory was introduced independently by several researchers in the beginning of
the 1980s. Most important of all was [4] who defined the principles that underlie *learning
control’. After that the number of published papers has increased significantly. Some of




the most popular methodologies include the design of D-type learning update laws (time
derivative of the error signal) as [4], [16] while others implemented PID-type compensation
strategies as [5]. Model-based algorithms have also been implemented by [13], [3] offering
good performance results regarding good tracking of the reference signal.

However, algorithms based on optimality have been proved to be the most popular ones
amongst the researchers. This is because firstly in most cases the implementation process
involves the completion of some straightforward steps which is the introduction of a cost
criterion that needs to be minimised or maximised depended on the nature of the problem
and the establishment of a search algorithm that will achieve that. Secondly, they can be
easily coded into programming languages as MATLAB for simulation purposes providing
very accurate performance results. Some of the most essential optimisation based method
for ILC systems will be discussed in this section.

The first researchers to introduce optimality into ILC were [10]. They introduced a
steepest-descent approach to minimise the norm of ||e;||?. The input update law that was
used

Upp1 = U + EkG*.[e;,,] )

where G is the adjoint operator of the plant G and ¢ is the scalar determining the step
length. The optimal value of ¢, is calculated from

_ G ell?

R TeTeZP e ¢

In general the above algorithm gives good convergence results for stable, controllable
and observable linear systems. Furthermore, the computation of G*¢;, requires the precise
knowledge of the plant model. However this is theoretically impossible to achieve since
there is always some uncertainty between the actual plant and the nominal plant that is
used for simulation purposes. Also the learning law 9 is quite complicated since it requires
to solve a. differential equation of the same order as the plant model between trials to find
G*[er)-

Another advanced optimisation based procedure for ILC systems with good perfor-
mance results was proposed by [6]. A Newton-Raphson search technique is used at each
trial in order to find an ideal input that minimises the cost criterion described by equation
11. The plant data changes from trial to trial while the cost criterion stays the same. Con-
vergence speed for various systems is not formally examined but on the other hand the
proposed scheme is applied into a real system with satisfactory performance results.

, 1 7 -
Je1 = & f (ler+a] + edpyy)dt (1D
0




Also many optimisation based algorithms have been proposed for purpose of reducing
the noise sensitivity. [17] proposed a discrete-time IL.C algorithm based on the following
least-squares objective function with an input penalty term

Frbur) = el + Horl? (12)

The introduction of this quadratic penalty term resulted in noise reduction but also resulied
in poor convergence speed of the cost function. Additionally the use of an input weight
matrix which could improve convergence speed was not comprehensively investigated. A
similar approach for continuous-time systems has also been considered by [15].

Finally, [2] designed a more advanced optimisation based method for ILC systems.
This particular approach is the so-called Norm-Optimal IL.C method. The basic idea behind
this method is to solve the following optimisation problem on-line during each iteration:

Tit1 = |lersall + |lwrgr — ug))® (13)

with the constraint equation

Yrt1(t) = [Gurs1](2), (14)

where G is the plant in question. The advantages of this approach are immediate from the
simple interlacing result (16) which is a consequence of optimality (it is assumed that (14)
has at least one optimal solution) and furthermore from the fact that the choice of

U1 = U (15)
would lead to the relation Ji. 1 (uz) = |lex||® and hence
llersill? < Tegr(as) < flex)? (16)

in other words the algorithm results in monotonic decrease of the error norm. If the plant
G in the constraint equation vy = [Gug41](#) is a linear time-invariant (LTT) system, it
is straightforward to show that the optimising solution is given by

Uppa(t) = up(t) + [.G*e](t). an

where G+ is the adjoint operator of G. This is a non-causal implementation of algorithm
but it can be shown that with LIT systems there exists an equivalent causal feedback-law
[2]. Furthermore, in the case of invertible discrete-time L'TT systems one can show [1] that

1
| | <
llex1ll < e

llexll (18)
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where o > 0 is the smallest singular value of the plant G. Therefore (18) shows that the
convergence is in fact geometric for this particular class of plants. However, with nonlinear
plants it is not clear how to use the adjoint of the plant to implement the algorithm (the
adjoint does not exist or it is not clear how to find an equivalent causal implementation).

Hence in this paper it is suggested that for nonlinear plants the optimisation problem
(13) is to be solved numerically between trials by using the GA — ILC approach. It is
important to understand that if the optimisation problem (13) has at least one optimising
solution with the given nonlinear plant, and the chosen GA method is able to find one
of the optimising solutions, then the interlacing result (31) still holds. In addition, the
performance of the proposed G A — I LC approach is also evaluated using linear dynamical
systems.

4 A note on convergence for Nonlinear Optimal IL.C

For the application of G As to nonlinear optimal IL.C' some indication of the potential for
convergence is valuable. Convergence may depend on the reference signal r(¢) and the
initial control choice. To formalize this idea, consider the ILC problem with performance
index, (eq 13), and the nonlinear model in (eq 1) written in matrix form as

y = Gw) , k>0 (19)

or
er =71 — G(ug) (20)

where G is a continuous differentiable nonlinear mapping ®Y — RV, According to [1],
minimization of the performance index yields the equation
0G\*

Upy1 = Up + (%) B (21)
u +1

where (%g) " is the adjoint of the Jacobean (%fi) . This simple analysis can be turned into
a geometric convergence theory as follows: substitute (eq21) into the performance index
to obtain the relationship (at the optimal value)

OGN * =
| H2 4 M- 42 _ goptimal _
lewsalf +11(5),,, el = T < Heut? @

which again implies (eql6) i.e the norm of the error is non-increasing. This (eq22), is
difficult to analyse as there is no explicit formula for ;4. It is clear however that

wisn € Sler) == {u € RY : Jlef| < llexll,e =7 — G(w)} (23)
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and that

S{eo) D S(e1) D -+ D S(er) D -.. 24)
(which is hence true for any closed ball containing S (ey,)).

Suppose now that

o =inf e8P ((%g) (?ag) ) =4B4, ueS(eo)Ez(%) o @)

where p denotes the spectral radious and ¢ denotes smallest singular value. This condition
is equivalent to the invertibility of the linearisation of G close to the point e = 0.
It then follows that (eq22) implies

llexll? > (1 + o®)llerall® , k>0 (26)

and hence geometric convergence of the error to zero is guaranteed i.e.

llewsall” < s llesl® » k>0 @)
Jim flex|| =0 (28)

The above discusion can be stated as a theorem as follows:

Theorem 1 With ihe above hotation, the nonlinear optimal ILC' algorithm converges ge-
ometrically to a zero tracking error if the initial error eq is sufficiently small and the lin-
earisation of the system dynamics about the point ¢ = 0 is invertible.

The practical outcome of the above analysis is to point out the potential for convergence
but also that plant invertibility and the need for a good initial guess wug (e.g by a well-
defined feedback controller) are also important factors. For the remainder of this paper, the
possibility of convergence is assumed as the technical conditions derived above cannot be
easily checked in practice.

S The proposed GA-ILC frameweork

As mentioned earlier, the main motivation in this paper is to propose an aptimisation based
method which could be applied to any class of dynamical systems regardless if the system




under investigation is linear or nonlinear, continuous or discrete, minimum or nonmini-
mum phase and also if there exist some hard constraints. Most of the created optimality
based approaches cannot cope with this demand. On the other hand GAs capability to
overcome limitations in the current algorithms has been indicated by many researchers [8],
[9]. This is mainly due to the fact that GAs differ substantially from more traditional search
and optimisation methods. First, GAs use probabilistic transition rules, not deterministic
ones. Secondly, they do not require derivative information or other auxiliary knowledge,
ie. nonlinearities and external disturbances do not affect the search algorithm; only the
objective function and the corresponding fitness levels influence the directions of search.
Finally, GAs work on an encoding of the parameter set rather than the parameter set itself
which allows adjusting the boundaries of the search space as appropriate.

A block diagram representing the proposed GA-ILC structure can be seen in Figure 1.
The idea is to solve the optimisation problem introduced in equation (30)

min J(ugpq) (29)
Ug 41
Tt = Hersrll? + eflunsr — wlf? (30)

with the constraint equation yy+1 = Gup4, between trial k and k£ + 1, « is a weight
factor and G is the equivalent input-output mapping. Also, |lex,1|| = eF' Qe where Q is
a symmetric positive-definite weighting matrix and in a similar fashion [juz,; — us|| =
(urt1 — uk)TR(ugss — ug). In general, Q and R can be used to balance the relative
importance of accurate tracking. The GAs are used in order to search for the optimal Ugyq
that minimises (30) between trials using a simulation model of the plant G. Also the GAs
needs to be able to satisfy the following inequality based on (29) and (30)
s sl < Jrra(uig) < lell® €8]
If the optimisation pfoblem in (29) has at least one solution for k¥ = 1,2,..., the
approach results in monotonic convergence of the cost criterion value (see Propositionl).

The optimisation procedure is implemented in Matlab. A simulation model for the
given dynamical system can be constructed in Matlab's Simulink environment while the
G A optimization procedure can be coded in Matlab's workspace. These two working areas
are connected by the cost function. In each iteration a new input uy ; is introduced into
the Simulink model by the GA.

Some of the advantages provided by Matlab is that it has a variety of functions useful
for the GA practitioner. Given the versatility of Matlab's high-level language, problems can

9
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Figure 1: the proposed GA-TLC structure.

be coded in m-files in a fraction of time that it would take to create C or Pascal programs
for the same purpose. Also the G A toolbox [7] in Matlab is a collection of routines, written
mostly in m-files, which implement the most important functions in GAs.

As mentioned above, a simulation model for a given system can be designed in Matlabs
Simulink. More specific, for each iteration the data of the cost function can be collected.
It's then passed into the workspace and the optimisation procedure takes place. Then a
new input is initialized into the Simulink model by the G A. For real life plants this kind
of process is a so-called on-line optimisation [9]. The operation of the system is directly
influenced by the GA. Overall, GA based on-line optimisation tend to be quite rare in
engineering problems mainly due to difficulties associated with computation burdexn.

6 The Genetic Algorithm process

Overall, GAs is search algorithms based on the mechanics of natural selection and natu-
ral genetics. Typically a GA work on binary string of a fixed length L, i.e I = [0,1],
which is referred to as chromosomes. It starts with a population of potential solutions
(chromosomes) applying the principle of survival of the fittest to produce better and better
approximations to a solution. In every generation, a new set of chromosomes is created us-
ing bits and pieces of the fittest of the old; an occasional new part is tried for good measure.

10




For more information about the GA method the reader is referred in [11], [14], [7].

The block diagram of the proposed GA procedure is shown in Fig. 2. The procedure
starts by generating a population P of functions S (possible solutions to the optimisation
problem)

P(O) = [SI(O)"I by Sﬂ(ﬁ)] e.I* (32)

The space of chromosomes is then converted to actual search space M by a decoding
function I' : I — M and the objective function f : M — R is calculated. A more detailed
description of the GA operators can be found in [18]. Based on the objective function in-
formation the algorithm evaluates the fitness function F(S;) : I — R of each chromosome
in the population which is a measure of the chromosomes performance in the problem do-
main. After that, the selection of the fittest chromosome takes place. This chromosome is
the initial input 19, which is imported into the Simulink model. The chromosomes are then
reproduced using the genetic operators (crossover and mutation) according to their fitness
value. This means that fittest ones have better change of being chosen for reproduction.
More specific, for crossover whose local operator is [p.] : I> — I? where probability
of crossover is p. € [0.8,0.9] select bits from the selected chromosomes and creates new
offsprings i.e multiple point crossover

r(s1) = (311*--'51p7's2(p+'1) === 52(ptn)s S1(ptnt1) - -~ S1(k)> S2(k+1) +a58L)

(33)
7(s2) = (s21- = 82py 81(p+1) -+~ S1(p+n)r S2(ptnt1) -+ 82(k)s S1{k+1) - - - s11)

Then with a probability p,, = 0.001 the mutation operator is applied to the selected
chromosomes m(py,) : I — I i.e it alters a bit of the chromosome. Finally, the devel-
oped offsprings are reinserted into the population replacing the old chromosomes using an
elitist strategy (generation gap). This means that the fittest chromosomes from the old
will always propagate into the next population resulting in monotonic convergence of the
objective function.

Proposition 1 Suppose thatfork = 1,2, ... the optimisation problem min,,, +1 Jrgr(upg1)
has at least one optimal solution uy -y, Jor each k, and implementing an elitist strategy
the GA is able to find u} y, then || Jpy 1] < || 3]

Proof. Using the proposed GA-ILC structure (see figure 2) we can measure the perfor-
mance of each chromosome in the current population according to their fitness value. So
let 1*, be the fittest chromosome in k population which means that

.'u,*,k - -J*'k > F*.k (34)

11




where .J*}, is the corresponding objective value when the selected w.*, is imported into
the plant under investigation and F™*}, is the fitness value of the input. Then the GA pro-
ceeds to the production of the next k + 1 population by reproducing the old chromosomes.
However using the generation gap mechanism the u*; will propagate into this generation.
[ ug1(0) |
ug1(1)
upy1(2) (35)

| Waln) |
If non of the new offsprings w1 (n) performs better than the u*;(n) then the fittest
chromosome of the k + 1 population will be u*;(n) = u*31(n). Which means that

.Ik+1 = Jk (36)

So monotonic convergence is achieved since J;. ., < J} is always true.
O

For this particular paper, this loop is repeated 100 times (generations) before selecting
the next input to be introduced into the real model. The algorithm ends when the norm of
the error of the system is minimized to an optimal solution. Note that in this implementa-
tion it is straightforward to include hard constraints in the input variable u;.,; by adjusting
the boundaries of the GAs search space within the appropriate values.

Generally the GA-ILC structure appears to be very robust and capable of given good
tracking performance for various classes of dynamical systems. However the proposed
GA mechanism seems to have the tendency of producing what appears to be noisy inputs.
This is due to the fact that the GA creates randomly an initial population of sampled input
function values at each sample time from a large search space without having any infor-
mation about the plant or correlation. The proposed solution to this computationalnoise
problem is to filter the optimal input, produced from the GA before applying it into the real
plant between sample instants.

7 Design of a low-pass FIR filter

The filtering process involves the design of a low-pass filter for removing the unwanted
noisy parts of the selected input signal. As mentioned above, this is due to the fact that the
search space in the GA process is not restricted and sample instants are not correlated, and

12
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Figure 2: the proposed GA-TLC structure.

hence the algorithm does not necessarily produce sm.ooth. input functions. Also, numerical
experience and statistical intuition indicate that the noise will typically be high frequency.
So, filtering of the input signal using a low-pass filter with a bandwidth greater than that
of the plant will hence smooth the input and have little effect on the output (and hence
tracking error) as in practice, the plant itself is a low pass filter. To be more precise, in each
iteration the idea is to filter the input chosen by the GA using the formula 37 to reshape the
input signal within each time instance.

bru'' (n) = Flamu* (n+2)+ e’ (n+1)+asu’ (n)+asu’ (n—1)+asu’ (n—2)} (37)

where u* is the obtained *smooth” input signal, u* is the selected *noisy’ signal and

a = [ay,@,...,as) is the coefficients matrix which is used for the filtering procedure. It
can be seen that (eq 37) is a so called non-causal equation which cannot be directly applied
into dynamical systems. The solution to this problem is quite straightforward. The filtering
process can take place offline between trials while the proposed GA-ILC algorithm can be
- applied online into the system under investigation. The only disadvantage of the proposed




approach is a possible increase in the simulation time.

w0 ] [ v w (1) u*1(0)  w'2(0)  w's(0) | [ ey
u* (1) u*(3) u*(2) w1 u*1(0) u*2(0) as
w(@2) | = | w() wi(3)  wf(2)  wr(l) w0 || es |,
: : : : : : o
i u* (n) ] [v(r+2) u'(n+1) uw'(n) v (n-1) u'(n-2) | Loas
(38)

where «* (0) are the filter’s preselected initial conditions, they can be described by equation

39 and they are calculated from the initial values of the *noisy’ input signal for the first three
time instances.

U*(0) = [43(0) w3(0) u3(0)]} (39)

In conclusion, it can be said that filtering on the selected input signal has little effect

on the error value since all ILC dynamical systems are by nature low-pass devices. That is
way the technique of trial and error was used for the selection of the «'s values.

Filtering
Procedure

Is the input
Function smooth?

e

Figure 3: A block diagram representing filtering process

8 Simulation results

To demonstrate the effectiveness of the proposed GA-ILC method simulation results are
provided in this section. The GA-ILC algorithm is applied to three different types of
dynamical systems and the obtained results are analysed in terms of convergence speed
and tracking of the reference signal.

14




8.1 Simulation example 1

The selected dynamical system is a typical continuous time minimum phase linear system
described by the following transfer function

1

.. S 40
s24+55+6 (40)

G(s)

where the system is defined over the time interval ¢ € [0, 6] with a sampling rate T, = 0.1.
The output of the system needs to track the reference signal r(t) = sin(¢). The free
parameters of the GA used for this particular example are shown in Table 2. The settings
of the genetic operators was done according to guidelines in [7].

SGA parameter Setting
Population size 100
“Total Generations 100
Number of iterations | 6
Coding Binary representation,
30 bits per decision variable
Selection Low-level stochastic universal
sampling routine
Recombination Shuffle crossover with reduced
' | surrogate, probability=0.7
Mutation Bit-flipping, random probability
Generation gap 0.95
Elitism Best five chromosomes of previous |
population forward to next one

Table 1: Algorithm parameters for the linear case

The cost function was chosen to be

J(up1) = llersall® + 0.1 |lugss — ur)?, (41)

Using the above settings, the obtained results were satisfactory. Fig. (4) shows the
value of the objective function as a function of the iteration round. It indicates that the
GA-ILC framework is able to find the optimal solution after only a few iterations and the
convergence is monotonic which is a very strong property for ILC. Also the tracking of the
reference signal is extremely accurate see Fig. (5) .
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Figure 5: Tracking of the reference signal after iteration k = 6.

The performance of the FIR filter is indicated in Fig. 6, where it can be obtained that
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the filter successfully removes the unwanted noise from the selected input signal. For this
particular simulation example the following low-pass filter was used:

o 1 0.25u], . {n) +0.2u]_, {(n —1)4+0.2u},  (n—2)+... -
i k—i—l(n) o [ k-}-l{ ) k-{-l‘( ) k+1( ) } (42)

0.2uz;(n+1) +0.15u;_, (n + 2)
with initial conditions
u(0) = [ wWig1(0) 06 uppy(1) +0.4% u'p(0). ..

' 43)
0.4 ﬂ*k+1 (2) + 0.3%24_1 (1) +'0-3'“'Z+1'(0) ]

Fitering of the input sigaal

Figure 6: Filtering the selected noisy input signal.

8.2 Simulation example 2

In this simulation example the proposed GA-ILC algorithmSs performance is evaluated
using a discrete time nonminimum phase dynamical system. The equations describing the
dynamical model are:

z1(i + 1) = —0.1z3(3) + u(s)
zo(t + 1) = z;
z3(t + 1) = z5(z)
y(i) = 21(3) + 2.5 * z2(3) + 23(4)

(44)
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The GA-ILC algorithm needs to be able to find the input that tracks the following
desired output.

fals) =104 =0,1
yd(3) = 51n(0.057 (i — 2)),2 <1 < 22

The GA specifications used for simulation purpose are shown in Table 2.

(45)

| SGA parameter Setting
Population size 100
Total Generations 100
Number of iterations. | 4
Coding | Binary representation,
40 bits per decision variable
~ Selection Low-level stochastic universal
sampling routine
Recombination | Shuffle crossover with reduced
surrogate, probability=0.8
Mutation Bit-flipping, random probability
Generation gap 0.95
Elitism Best five chromosomes of previous
population forward to next one

Table 2: Algorithm parameters for the linear case

Once again the algorithms performance is satisfactory, figure (7). Objective function
is minimized after a few iterations and the convergence is monotonic while tracking of the
reference signal is ideally (see Figure 8).

The noisy input signal is successfully transformed into a ’smooth’ one by the use of
a low-pass FIR filter as shown in in Fig. 9. For this particular simulation example the
following o values where used:

'"‘*'k.[..l('n,) _ l- 0.3 % u"gp1{n) +0.25* hpiln —1) + 01 v utpp(n—2) +...
0.25  u*pypr(n + 1) + 0.1 % ujpy (n + 2)
46)
with initial conditions
U*(0) = [ 41(0) 0.4u, (1) +0.4u7, {0) +0.2ul,,(2)... ] =
0.3u; 1 (2) + 0.25uf (1) + 0.25u; ; (0) +0.2u}, ,(3)
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8.3 Simulation example 3

As a next simulation consider the following nonlinear model of a one-joint manipulator

L 00y = Liutt) - Phor L(Em + Mgl sina(s) “8)
az =g ot F{zm + Mgl inb(




Filtering of the input signal
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Figure 9: Filtering the selected noisy input signal.

where @(t) is the angular position of the manipulator, u(¢) is the applied joint torque, F'(t)
is the friction torque; m, ! are the mass and length of the manipulator respectively, M is
the mass of the tip load, g is the gravitational acceleration and .J is the moment of inertia
with respect to joint and is given by J = MI? 4+ ml? /3. The reference signal is chosen to
be

0-(2) =6y + (6, — 07)(157* — 67° — 107%) (49)
where 7 = t/(t; — tp). The numerical parameters used in the simulation are ty = 0, ¢; =
1, 6y = 0, 8y = 90°. Furthermore, the sampling interval used in the simulations is T =

0.01 and the friction F'(¢) = 0.n this simulation. The cost function in this case was chosen
to be

Fupir) = llexsall® + 0.01furyr — wglf? (50)

The parameter values used in the simulation for the model (48) are shown in Table 3.

Parameter | m |1 g M
‘Value 2 05|98 4
| Unit Kg | M | m/sec? | Kg

Table 3: Numerical values for the nonlinear model
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BFGA parameter Setting
Population size 300
Total Generations 100
Number of iterations | 9

Coding Binary-value representation

Selection Low-level stochastic universal
sampling routine

Recombination Shuffle crossover with reduced
surrogate, probability=0.9

Mutation Bit-flipping, random probability

Generation gap 0.98

Elitism Best six chromosomes of previous

population forward to nex one

Table 4: Algorithm parameters for the nonlinear case

Table 4 shows the parameter values used in the GA algorithm.

Performance criterion n logarithmic form

---------------------

log 10( T . M

¢
Trial index £
Figure 10: ||&(k)|| as a function of iteration round k with the nonlinear example..

Fig. 10 shows the corresponding error behaviour. It is clear that the Norm-Optimal al-
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gorithm is able to produce the input function that gives ideal tracking even with this highly
nonlinear simulation example. This input function is also smooth, as Fig. 11 illustrates.
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Figure 11: Input function after nine iteration rounds.

Finally the following low-pass filter was used:

s ) = 0.3up, 1 (n) +0.2uf ;(n — 1) + 0.15u}  (n—2) +... | 1)
* 0.2u} 1 (n + 1) + 0.15uf ., (n + 2)

with initial conditions

1 (0) 0407 4 (1) + 0305, (2) +0.3uf_,(0)...

u'(0) =
(©) 0.4uz 1 (2) + 0.3ug, (1) + 0.3uf,  (0)

] (52)

9 Conclusions

In this paper the possibility of using GAs in the context of Norm-Optimal ILC algorithms
were investigated. The basic idea behind the GA approach is that it can be used to imple-
ment Norm-Optimal ILC for any kind of plant models unlike other traditional optimisation
based IL.C methods which work only for specific classes of linear plant models. This new
approach was tried on two linear and a nonlinear example. These three examples showed
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Figure 12: Filtering the selected naoisy input signal.

that the proposed GA-ILC algorithm can find the optimal solution, and the convergence is
monotonic, just as theory suggests. Furthermore, a low-pass FIR filter was also designed
for reducing the unwanted noise from the selected input signal.

As a future work it should be investigated how modelling uncertainty can be taken
into account in the proposed algorithm. Another interesting possibility is to extend the
proposed GA approach to cover the Predictive Norm-Optimal IL.C-algorithm presented in
[31.
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APPENDIX

An Introduction to the Genetic Algorithm Toolbox in
Matlab

V. Hatzikos*, D. H. Owens*

1 Introduction

Over the years, Matlabs capabilities of implementing various control engineering meth-
ods and theories into dynamical systems have been explored with high degrees of success.
Some of these traditional methods, as Root-locus design, Nyquist plots analysis and, Bode
diagrams, can be coded in Matlab using m-files or even implemented by graphical user
interfaces procedures. However lately, more advanced techniques became available for
execution in Matlab mainly due to the fact that toolboxes can be added to extend the de-
signed system, providing, for example, signal processing facilities, fuzzy logic option, or
even genetic algorithm optimisation solutions.

In this report, the Genetic Algorithm G A toolbox in Matlab will be described. At
first, an introduction to the basic GA operators will be presented. Then, the procedure of
how the GA toolbox uses MATLAB's matrix functions to build a set of versatile tools for
implementing a wide range of genetic algorithms methods will be discussed. Finally, GAs
performance will be evaluated using simulation approaches.

2 Tuterial

Matlab has a wide variety of functions useful to the genetic algorithm practitioner and
those wishing to experiment with the genetic algorithm for the first time. Furthermore,
it is a modern programming language and problem solving environment: it has sophisti-
cated data structures, contains built-in debugging and profiling tools, and supports object
oriented programming. These factors make Matlab an excellent language with which the
user is able to explore the potential of GAs. The different versions of Matlab are presented
in chronological order in Table 1.




Year | Version | Characteristics

1983 | Matlab 1 || Capable on solving mathematical equations.

1985 | Matlab 2 || Extended number of commands and functions.

1987 | Matlab 3 || Improved graphics analysis(colour), faster interpreter.

1992 | Matlab 4 || Graphical user interface control, animation and visualisation

tools, Microsoft Windows support and debugger options.
1997 | Matlab 5 || Object-oriented programming, extended number of toolboxes,
profiler. cell arrays, new ordinary differential equation solver,
structures, improved Simulink environment.

2000 | Matlab 6 || Tmproved GUI design, Real-time toolbox, Matlab desktop
includes help browser options, graphics object transparency,
Java support.

Table 1: Different versions of Matlab

3 Installation in Matlab

The GA toolbox is a collection of m-files (about 40). (In this report we will work with the
GA toolbox provided by the University of Sheffield [5]. For more details the reader is re-
ferred to the references section where more information are available). It is recommended
that all these files should be stored in a directory named Genetic of the main Matlab/toolbox
directory. In each m-file a genetic operator function is implemented.

Also a number of demonstrations are accessible. Both binary or real value coded GA
structures can be implemented using functions from the GA toolbox. Additionally, a set
of test functions is also available, in a separate directory from the GA toolbox functions,
called test f,5.

4 Introduction to Genetic Algorithms

The Genetic Algorithms (GAs) is a stochastic global search method that mimics, as the rest
E'A do, the metaphor of natural biological evolution. They were invented by John Holland
in the 1960s and were developed by Holland and his students and colleagues at the Univer-
sity of Michigan in the 1960s and the 1970s [13]. In contrast with evolution strategies and
evolutionary programming, Hollands original idea was not to design algorithms to solve
specific problems, but rather to formally study the phenomenon of adaptation as it occurs
in-nature and to develop ways in which the mechanisms of natural adaptation might be




imported into computer systems.

Thereafter, a series of literature and reports became available. Some of the most in-
teresting books about GAs are [11], [17], [4], [22], [16], [6]. GAs is inspired by the
mechanism of natural selection where stronger individuals are likely the winners in a com-
peting environment. They combine survival of the fittest among string formations with
a structured yet randomised information exchange to form a search algorithm with some
of the innovative flair of human search. Even though rigorous mathematical analysis- of
the GAs is difficult and is still incomplete, GAs has been applied in a variety of areas
(e.g. robot path-planning, stability analysis, fault diagnosis, combinatorial problems, and
optimisation problems) with high degrees of success within each.

5 Major Elements of a simple GA

Genetic Algorithms are search algorithms based on the mechanics of natural selection and
natural genetics. It starts with a population of strings (potential solutions) applying the
principle of survival of the fittest to produce better and better approximations to a solution.
In every generation, a new set of artificial creatures (chromosomes, strings) is created using
bits and pieces of the fittest of the old; an occasional new part is tried for good measure.

5.1 Population representation

Individuals are encoded as strings, chromosomes, composed over some alphabets, so that
the genotypes (chromosomes values) are uniquely mapped onto the decision variable (phe-
notypic) domain, table 2. Each chromosome can be thought of as a point in the search
space of candidate solutions.

| genotypic domain || phenotypic domain l

001 :101 :110 (1,5,6)

Table 2: Example mapping between chromosomes and decision variables

The coding of the chromosome representation may vary according to the nature of the
problem itself. In general the binary alphabet 0, 1 bit encoding is the most classic method
used by GA researchers because of its simplicity and trace ability. Here, each decision
variable in the parameter set is encoded as a binary string and these are concatenated to
form a chromosome. An initial population of chromosomes might look like this:




|§o. ” Population of Chromosomes

1 010011101010110
2 101000011010001
3 010001011111000
4 111101100010101

Table 3: Population of Chromosomes

Other chromosomes representations have also been introduced. [23] initialised real-
valued genes of chromosomes. According to him this kind of approach offers significant
advantages over the traditional binary encoding in terms of computational time, i.e.

1. No need to convert chromosomes to phenotypes before each chromosome evaluation
2. Less computer memory is required

3. Freedom to use different genetic operators

4. Easier incorporation of domain-specific knowledge

The use of real-valued encoding is described in detail by [17]. Also, integer representation
of the chomosome’s genotype have been used by [15] providing improved results compared
to binary encoding.

5.2 The Objective and Fitness functions

Each chromosome in the G A population is assigned an objective function value which
describes the chromosomes performance in the problem domain. However, during the re-
production phase an additional fimess value is required by the G A, i.e each chromosome is
assigned a fitness value f derived from its raw performance measure given by the objective
function. Intuitively, we can think of the function f as some measure of profit, utility, or
goodness that we want to maximize [11]. Selecting strings according to their fitness val-
ues means that strings with a higher value have a higher probability of contributing one or
more offspring in the next generation.

5.3 Selection phase

Selection mechanism is the process of determining the number of times a particular chro-
mosome is chosen for reproduction and thus the number of offsprings that a chromosome




will produce for the next population. In theory, the fittest chromosomes of the old pop-
ulation will be the ideal choice for the reproduction phase. However, this may lead to
premature convergence into specific unwanted areas of the search space (local minimum).
Thus, it is essentially important that most of the existence chromosomes of the current
population will contribute in the production of new offsprings.

A scheme called Roulette Wheel Selection is one of the most common techniques being
used for such a proportionate selection mechanism (see equation 1). Each chromosome
occupies an interval space within the roulette wheel according to the fimess value. In
general, the probability of a string to be selected for reproduction is given by

fi

pi= =3 )
j=1 J .

where f; is the fitness value of the ¢ — th chromosome and N is the population size [8].
Thus the fittest chromosome occupies the largest interval. For example, lets consider the

population in table 3. From Figure 1 it can been seen that chromosome No.3 is the fittest
one.

a1
u2
03
04

Figure 1: Roulette wheel selection




Also a tournament selection mechanism has been introduced by [12]. Tournaments
are played between two chromosomes and the better one is selected for reproduction. All
the chromosomes in the population are eventually picked to participate in the tournament.
In fact, it was shown that the tournament selection mechanism has better or equivalent
convergence and computational time complexity properties when compared to any other
reproduction operator that exists in the literature.

Selected Chromosomes

Chrom. No3 (hrom. Nol

| Chiom 303 Choom. Nod f—
(hrom, Nol— —{hrom. Nod

Chrom. Nol— (hrom, Nod
y Chom ol Chirom, Nod —

(hrom. No! Chrom, Nod

Figure 2: Tournament selection

[1] proposed a stochastic universal sampling (SU S) technique. In this version, chro-
mosomes are placed into a roulette wheel according to their fitness value. However, only
one random number n is selected for the whole selection procedure and a set of N equi-

spaced numbers is created (see equation 2). Thereafter, a solution corresponding to each
member of S is chosen from the roulette wheel.

§=[nn+1/N,s+2/N,...,s+ (N —1)/N] (2)

From figure 3 it can be seen that Chrom. No3 is the fittest one and will be selected
three times while the rest chromosomes will be selected only one time.




B1
|z
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Figure 3: Stochastic universal sampling mechanism

The ranking of the chromosomes can provide some robustess to the selection mech-
anism. The chromosomes are sorted according to their fitness value, from worst (rank 1)
to the best (rank 4). Each chromosome in the sorted list is then assigned a new fitness
value according to the rank of the chromosome in the list. Thereafter, one of the selection
operators described above i.e roulette wheel, tournament, stochastic universal sampling, is
applied to the ranked chromosomes and N chromosomes are selected for the reproduction
phase,

54 Genetic Operators

Affer reproduction, two fundamental operators: Crossover and Mutation are required.
Crossover selects genes (bits) from parent chromosomes and creates a new offspring. The
simplest way to do this, is to choose randomly some crossover point, at random between
1 and the chromosome length less one [1,] — 1] and everything before this point copy
from a first parent and then everything after a crossover point copy from the second par-
ent. For example, consider strings No.1 and No.4 from the initial population in table 3 to




be selected for single point crossover. This process is illustrated in Table 7. It needs to
be mentioned that according to famous biologists and evolutionists [7] and [10], simple
crossover of chromosomes it is the mechanism used for the creation of complex life forms
from simple ones.

LSelected Chromosomes || ‘Simple crossover mechanism |

Chrom. Nol , 0100111 :01010110
Chrom. No4 - 1111011 :00010101
Offspring 1 0100111 : 00010101
Offspring 2 ‘ 1111011:01010110

Table 4: Crossover mechanism during evolution process

Other crossover mechanisms have also been introduced. The multi-point crossover
select m crossover positions, m € (1,2,...,! — 1) sorted into ascending order. Then the
bits between successive crossover points are exchanged between the two pairs to produce
two new offsprings (see Table 5). According to [20] the disruptive nature of multi-point
crossover appears to encourage the exploration of the search space, rather than favoring
the convergence to highly fit individuals early in the search, thus making the search more
robust.

| Selected Chromosomes ” Multiple point crossover mechanism

Chrom. No2 101 :000011 :01 :0001
Chrom. No3 010 :001011 :11 :1000
Offspring 1 101 :001011 :01 :1000
Offspring 2 010 :000011 :11 :0001

Table 5: Multiple point Crossover mechanism during evolution process

More complicated crossover operators are:

¢ Uniform Crossover which was introduced by [21]. This crossover mechanism
makes every gene in the chromosome a potential crossover point. In order to achieve
that a crossover mask is created, having the same length as the chromosome, see Ta-
ble 6. Each gene in the mask indicates which parent will supply the offspring with
which bits. For example in table 6 the first offspring is produced by taking the bit
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from Chrom. Nol if the corresponding mask gene is 1 or the bit from Chrom. No4
if the corresponding mask gene is 0. Offspring 2 is created using the inverse of the

mask.
f Selected Chromosomes ” Uniform crossover mechanism ]
Chrom. Nol 010011101010110
Chrom. No4 111101100010101
[ Facade 010111011000010
Offspring 1 111011101010111
Offspring 2 0 10101100010100

Table 6: Uniform crossover mechanism during evolution process

* shuffle crossover where the selected parents are randomly shuffled before the crossover
operator takes place [3].

* reduced surrogate crossover where crossover points occur only where gene values
of the selected parents differ [2].

e furthermore, a special crossover operators have been introduced for recombination of
real-valued chromosomes. Intermediate Crossover which is a method of producing
new offsprings whose genes are around and between of parent genes [19]. To be
more specific, the offspring's genes are calculated from the equation:

01 = Pl * a(Pz == P1) (3)

where o € R and is usually in the range [—0.25 1.25]. A new value of  is introduced
for each pair of parent genes. According to [19] using this crossover operator we can
avoid premature convergence thus satisfactory explore the search space.

In general, the crossover operation is not necessarily performed on all strings in the
population. Instead it is applied with a probability rate P,, typical value between 0.6 and
1.0. After a crossover is performed, mutation takes place. This is to prevent falling all
solutions in population into a local optimum of solved problem. It alters each bit of a
chromosome randomly with a small probability P, with a typical value less than 0.1. For
binary encoding, a few randomly chosen bits can be switched from 1 to 0 or from 0 to 1.

For real-valued chromosomes the mutation operator is achieved by either flipping the
selected gene values of the parent chromosomes or by selecting new values which replace




Selected Chromosomes || Mutation mechanism

Chrom. Nol 01001110 :1 :010110
Chrom. No4 11110110 :0 :010101
Offspring 1 01001110 :0 :010110
Offspring 2 11110110:1 :010101

Table 7: Crossover mechanism during evolution process

some genes in the selected parents. However, it has been suggested by many researchers
[14], [23] that a higher mutation rate P,,, should be used for real-valued mutation than for
binary-valued mutation. Overall, the choice of Pc and Pm can be a complex nonlinear
optimisation problem to solve. Furthermore, their settings are critically dependent upon
the nature of the objective function. According to [16] some guidelines can be introduced:
For large population size (100)

» Crossover rate Pc: 0.6

* Mutation rate Pm: 0. 001
For small population size (30)

* Crossover rate Pc: 0.9

e Mutation rate Pm: 0.01

5.5 Reinsertion

After crossover and mutation, the new chromosomes are then decoded, the objective func-
tion evaluated, a fitness value assigned to each chromosome and the fittest ones selected
for mating and so on the process through subsequent generations ( this approach is also
known as simple genetic algorithm (SGA) figure 4). This is motivated by a hope, that the
new population will be better than the old one.

It is usually required that the algorithm follows an elitist strategy. This means that
fittest chromosomes of the old population always propagate through successive genera-
tions. However, care must be taken when this approach is used because the new popula-
tion should not be dominated by old chromosomes i.e premature convergence. The whole
process is terminated when the fitness of a population remain static for a number of gener-
ations. In this case the fittest chromosomes of the last generation are possibly solutions to
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Figure 4: A genaral description of a simple genetic algorithm

the problem. If however these chromosomes are not acceptable solutions for the simulated
problem, the GA may be restarted or a fresh search initiated.

6 Simple Genetic Algorithm

As mentioned earlier, the simple genetic algorithm approach was initially introduced by
[11]. Since then, many variations of the original SG A have been proposed and applied to
a variety of search and optimisation problems with high degrees of success. Overall, SGA
has proved to be a robust evolutionary based algorithm in terms of performance results and
adaptation to particular problems domain. Most SG A methodologies have some elements
in common, see table 8.

This pseudo-code structure can easily be coded in Matlab using functions from the GA
toolbox. Some of the available functions can be seen in table 9. As previously mentioned
these functions are written in m-files and implement the most important routines in genetic
algorithms. This is the main reason why Matlab is preferred for the implementation of
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1. Start. Generate random population of chromosomes
2. Fitness. Evaluate the fitness f(x) of each chromosome in the population
3. New population. Create a new population by repeating following steps
until the new population is complete

3.1 Selection. Select two parent chromosomes from a population

according to their fitness

3.2 Crossover. With a crossover probability cross over the parents

to form a new offspring

3.3 Mutation. With a mutation probability mutate new offspring

at each locus

3.4 Reinsert. Place new offspring in a new population
4. Replace. Use new generated population for a further run of algorithm
5. Test. If the end condition is satisfied, stop, and return the best solution
in current population
6. Loop. Goto step 2

Table 8: A pseudo-code description of a SGA

G As rather than other computer languages. However, other GA coding structures have
been proposed over the years. [11] implemented G A using Pascal while [18] preferred C

computer language.
1.[Start] crtbp (create binary population), crtrp (real-value population)
2.[fitness] ranking (most popular one), scaling

3.1[selection] | rws (roulette wheel selection), sus (stohastic universal sampling)
select (high level selection)

3.2[crossover] | xovsp (single-point crossover), xovdp, xovsh (shuffle crossover)
xovshrs (shuffle reduced surrogate crossover) etc.
3.3[mutation] | mut (discrete mutation), mutate, mutbga(real-value mutation)
3.4[reinsert] | reins (reinsertion of new offsprings)

Table 9: m-files of the GA toolbox in Matlab
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7 GAs versus traditional methods

Generally speaking, it can be seen that GAs differs substantially from more traditional
search and optimisation methods. According to [4] the four most significant differences
are:

* GAs searches a population of points in parallel, not a single point.

* GAs does not require derivative information or other auxiliary knowledge; only the
objective function and the corresponding fitness levels influence the directions of
search.

* GAs use probabilistic transition rules, not deterministic ones.

* GAs work on an encoding of the parameter set rather than the parameter set itself

8 Simulation

To demonstrate the effectiveness of the GAs in Matlab, a simple optimisation problem is
used for the simulation study. This example reveals how a SG A can be constructed using
routines from the G'A Toolbox to solve an optimisation problem. The objective function to
be minimised is an extended version of De Jongs [20] first test function:

k
fl@)=) a?, —500 < z; < 500 (4)
i=1

where the search space is between [—500 500] and k& € [1,2,...,20] . The minimum
of this function is, of course, located at z; = 0. In reality, we can think of x; being the
etror of a system that is needed to be minimised to zero as soon as possible.

The SG A used to the optimisation of the cost function was developed to the specifica-
tions described in table 10. Overall, the G A structure is very similar to the one described
in Figure 4. To make life easier, binary representation of the chromosomes was introduced.
The precision of each decision variable was set to 20 binary values:

Chrom1: 01010100100111100011 ...01111000101000110001 .........
Y 4

I 2

The population size was decided to be 40 (number of chromosomes in each popula-
tion). Furthermore, a generally popular, select function is used for the selection of the
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chromosomes which are gone be recombined in order to produce the new offsprings. In
addition, the recombination (crossover) procedure includes multiple point crossover of the
selected chromosomes with a probability rate of 0.7. Finally the algorithm is set to imple-
ment an elitist strategy whereby the four most fit individuals (generation gap arranged to
0.9) always propagate through to successive generations. These settings may vary accord-
ing to the nature of the problem.

SGA parameter | Setting
Population size 40
Total Generations | 400

Coding Binary-value representation,
30 bits per decision variable

Selection Low-level stochastic universal
sampling routine

Recombination Shuffle crossover with reduced
surrogate, probability=0.7
Mutation Bit-flipping, random probability
Generation gap 0.9

Elitism Best 4 chromosomes of previous

population forward to nex one

Table 10: Algorithm parameters

Using the above specifications the SGA is able to minimize the cost function with satis-
factory convergence rate. Different settings of the SGA may be proven capable to improve
the performance of the algorithm. However, the algorithm performs reasonably well ac-
cording to the following Figure. The initial value of the cost function is around 10000. The
SGA needs 400 generations for the minimization of this enormous cost function. After the
400th generation the value is reduced to 0.45, an almost ideally solution.

As mentioned above the GA is able to minimize f(z) to a very small value, almost
optimum, of about 0.45. Overall, analysis of the convergence speed indicates that the al-
gorithm needs around 2 minutes for the execution of the procedure, which is reasonably
good. Most of others traditional optimisation methods require the computation of compli-
cate mathematical formulas, which take lot of time and are very difficult to be implemented
in software languages as M ATLAB.

Finally, the reader is referred to a number of simulations approaches that will help
him to further understanding of the GA procedure. More specific, [9] constructed a test
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Figure 5: Convergence speed of f(z)

environment of five problems in function minimisation. He took care to include functions
with the following characteristics:

1. Continuous/discontinuous

2. Convex/nonconvex

3. Unimodal/multimodal

4. Quadratic/nonguadratic

5. Deterministic/stochastic

The functions and their coding characteristics are presented in Table 11. Each can be
implemented using approaches similar to Figure 4 structure.
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Number Function search space

1 Flad) = T3l 512 < x; < 5.12

2 flz:) =100(22 — 25)? + (1 — 1) | 2.048 < z; < 2.048

3 fz:) = 3% int(;) 512 < z; < 5.12

4 flzi = 13zt + Gauss(0,1) ~1.28 < z; <1.28

5 fz:) = 0.002 + 28 | m —65.536 < z; < 65.536

Table 11: Algorithm parameters

9 Conclusions

Over the years, GA toolbox in M AT LAB has been developed to a very useful tool for
optimisation procedures. Several GA toolboxes are available for the technical computing
package M AT LAB. In this chapter, the one developed by the University of Sheffield is
described. This toolbox provides a wide-range of GA tools and is easily extensible.

Also, two Math works (company that created MATLAB) GA toolboxes are avail-
able. Flextool (GA), developed by RK Sites.com is a modular user-interface driven
tool. The alternative is the Genetic Search Toolbox, developed by Optimal Synthesis
Incorporated. This toolbox features a graphical code writer and has apparently been
tested at United States government research laboratories.

10 GA software

The GA toolbox, developed at the University Of Sheffield, provides a wide-range of GA
tools and is easily extensible. For more information visit:
http://www.shef .ac.uk/uni/projects/gaipp/gatbx.html.
Also visit: http://www.geatbx.com.

The GA toolbox, developed by RKSites.com for Mathworks company. For more in-
formation about this FlexTool (GA) toolbox visit:
http://www.flextool.com.

The Genetic Search Toolbox, developed by Optimal Synthesis Incorporated can be
found in the following address: http://www.optsyn.com.

A freeware toolbox, GAQT, developed by North Carolina State University provides
several selection, crossover and mutation choices. GAOT is available for download at
http://www.ie.ncsu.edu/mirage/GAToolbox/gaot/.
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