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The geomagnetic activity of the Dst index is analyzed using wavelet transforms and it is shown that the Dst index
possesses properties associated with self-affine fractals. For example, the power speciral density obeys a power-law
dependence on frequency, and therefore Dst can be viewed as a self-affine fractal dynamic process. It is shown that
the wavelet covariance exponent, which is based on wavelet variance analysis, is identical to the power-law exponent
for a time series with a power spectral density which obeys a power-law dependence on frequency. Therefore the
wavelet covariance exponent provides a direct measure of the strength of persistence of the Ds¢ indices. One of the

advantages of wavelet analysis is that many inherent problems encountered in Fourier transform methods, such as

windowing and detrending, are not necessary.
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1. Imtroduction

The magnetosphere can be considered as a complex input-output system. For such a system, the solar wind
plays the role of the input and the geomagnetic indexes can be considered as outputs. Properties of the output
data sets can be used to analyse and to understand properties of the dynamical system itself. In the present paper,
properties of the Dst index are studied to aid the understanding of properties of the complex magnetospheric
dynamical system.

Several approaches have been proposed to analyse the Dst and other geomagnetic activity indices. These
include autonomous data analysis, analogue modelling, and input-output observational data-based modelling
approaches, see for example, the review by Klimas et al. (1996). Auto-correlation and spectral analysis, phase-
space reconstruction and invariant property analysis of chaotic behaviours in these indices are often based on
autonomous data analysis (Baker et al. 1990, Vassiliadis 1990, Shan et al 1991, Roberts et al 1991, Takalo et al.
1993, Takalo and Timonen 1994a, 1994b, Zotov 2000). The analogue modelling approach which aims to build
low-dimensional dynamic analogue systems that can be used to interpret the physical interactions in the
magnetosphere and to forecast the geomagnetic indices, has been successfully applied by Goertz et al. (1993)
and Klimas et al. (1997,1998,1999). Existing input-output observational data-based modelling approaches which
haven been applied to these indices include ARMA models (see McPherron 1999, Vassiliadis 2000 and the
references therein), neural networks (Hernandez et al 1993, Wu and Lundsted 1997), and NARMAX models
(Boaghe et al 2001).

In this study the fractal invariance of the Dst index is analyzed using wavelet transforms. It is shown that the

Dst index possesses properties of self-affine fractals, for example, the power spectral density obeys a power-law
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dependence on frequency, and therefore the Dsz index can be viewed as a self-affine fractal dynamic process.
Fractal invariance studies alone do not generally reveal the underlying physics. However, the fractal structure of
the Dst index does add to the information needed to find the physical mechanism responsible for this
phenomenon. The fractal dimension estimated from the power exponent also provides information regarding the

choice of an appropriate embedding dimension for the dynamic modelling and forecasting of this index.

2. The Dst index as a self-affine dynamic process

The term fractal, introduced by Mandelbrot (1983), involves three related contexts: geometric, temporal
(dynamic) and statistical fractals. Generally, the concept of a fractal is defined in terms of self-similarity. A great
number of natural phenomena in physics, geometry, ecology, physiology and topography have been shown to
exhibit self-similarity (Goldberger 1992, Turcotte 1997, Li 2000, Sahimi 2000, Xiong et al 2001).

2.1 Self-affine fractals

A self-affine set is statistically invariant under an affine transformation. An n-dimensional super-surface

described by a function f (X;,X,, -, X, ) is a self-affine fractal, if there exists a number H such that

Flx,xg,0,%,) = C(j,lH,,‘{;",-..,ﬂf)f(j,lxi,Azxz,...,,lnxn) 6]

where C (ﬂlH ,Zf , -,ﬂf) is a deterministic function of /1;? ,and A, (i=L12,---,n) are positive numbers. &
is called the Hurst exponent or Hausdorff exponent or self-affine exponent, with a value generally falling into the

interval [0,1]. In one-dimensions, a self-affine fractal (Mandelbrot 1983, Turcotte 1997) is defined as f(x)

=" f(Ax). In this case, X and f(x) are often interpreted as the time and the corresponding trajectory
(position), respectively. Voss (1988) proved that the Hurst exponent, H, and the self-affine fractal dimension, or
the box-counting dimension, D, are related by the equation H=2-D. Therefore 1 < D <2 corresponds to
0< H <1 for a self-affine fractal. If H=1, the self-affine fractal becomes self-similar.

Following Turcotte (1997) and Turcotte and Malamud (1999), the basic definition of a self-affine time series

is that the power spectral density of the time series has a power-law dependence on frequency.

2.2 Spectral analysis for the Dst index

The physical features of a dynamic system can be easily detected and revealed using frequency domain
analysis, which is often implemented by means of Fourier transforms of the covariance functions. The main
point of this section is to show that the power spectral density of the Dst indices obeys a power-law dependence

on frequency
P(w) < |a| @

As an example, the Dst indices for the years from 1981 to 2000 were considered and the power spectra for the
Dst indices of each year were calculated separately and are shown in Figure 1, where the sampling period for

each yearly index is 1 hour and the frequency has been normalised. The average of the 20 power spectral density
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functions is plotted in Figure 2(the solid line). The Dst indices over the 20 years can also be considered as a
single signal s(¢) consisting of 175800 points. The power spectrum of this signal was estimated and is also

shown in Figure 2, where again the frequency has been normalised. Figures 1 and 2 clearly show that the power
spectra of the Dst indices obey a power-law in the sense that P( f) o< ]f[_ﬂ, where 5 = 2. This suggests that

the Dst indices can be considered as a self-affine time series and the power exponent /3>1 here indicates that

the process of the Dst indices is strongly persistent. The broadband spectra of the Dst indices also indicates that a

potential chaotic behaviour may exist in the dynamic process.

3. Analysis of the Dst index using wavelet transforms and wavelet decompositions

Just as Fourier series can be used to superimpose sines and cosines to represent other functions, wavelets are
functions that possess certain properties that can be used to represent complex signals. However, wavelets differ
greatly from Fourier series. Unlike the Fourier basis functions, wavelet basis functions have the property of
localisation both in time and frequency. Due to this inherent property, wavelet approximation provides the
foundation for representing arbitrary signals economically, using just a small number of wavelets. In wavelet

analysis, the scale that is used to analyse the data plays a special role.

log, [P(O]

Fig. 1 The power spectra of the Dst indices for the years from 1981 to 2000 with a sampling period of 1 hour for each yearly index.
The slope of the spectral lines is approximately 2.

Fig. 2 The average of the power spectral density functions of the Dy; indices for the years from 1981 to 2000(the solid line) and the overall
power spectral density function of the Dst indices of 20 years (the dashed line). The average slope of the spectral line is approximately 2.




The wavelet analysis procedure consists of adopting a wavelet prototype function, called the analysing
wavelet or mother wavelet or simply wavelet. Temporal analysis is performed with a contracted, high-frequency
version of the same function. Because the signal to be analysed can be represented in terms of a wavelet
expansion, data operations can be performed using only the corresponding wavelet coefficients.

Wavelets have an excellent approximation capability, that is why wavelet theory has so many applications in
many diverse fields, namely signal and image processing, speech analysis, fault detection, fractals, system
identification and so on. The wavelet transform also possesses a property of self-similarity. This makes wavelets
particularly useful for dealing with nonperiodic and nonstationary multiscaled time series, including signals with

self-similarity (Wornell 1996) and fractional Brownian motion (Malanmud and Turcotte 1999).

3.1 Wavelet transforms
Let f be a function defined in L?(R) . The continuous wavelet transform (CWT) with respect to the mother

wavelet I/ is defined as (Chui 1992, Daubechies 1992).

Wy o, a)— 3 f(t)u{t b}i ©

with the dilation (scale) parameter @ € R and the shift (translation) parameter b € R . The over-bar above the
function ¥/ (-) indicates complex conjugate. The continuous wavelet transform (3) is invertable subject to a mild

restriction imposed on the wavelet (0, in the sense that

1 da I t-b
f@o)= I o ;-;f; W7 @, a)]ﬁv(TJdb @

with

G J.de < oo (5)

where /(-) is the Fourier transform of the function /(-). The inverse transform (4) guarantees that the
function f(x) can be reconstructed from the CWT and it can be interpreted in at least two different ways. On
the one hand, this shows how to reconstruct the function f from the wavelet transform and, on the other hand,
the inverse transform gives a recipe showing how to write any arbitrary f as a superposition of wavelet
functions y((t —=b)/ a) .

It is easy to verify that the continuous wavelet transform (3) possesses the following basic properties:
(i) Shift property. Let f € L*(R)and g(t) = f(t—1,), t, € R, then

W/ (b,a) =W/} (b~1,,a) (6)
(if) Scale property. Let f € I’ (R)and g(t) = f(Af), A >0, then

W;” (b,a) = LW}”’ (Ab, Aa) (7)

N A
(iii) Self-similarity property. Let f € I*(R), satisfying f(Af) = /le(I) for similarity parameter H >0

and any real number A >0 | then

4l
WY ba)=A' 2WY (b, ia) ®




Figure 3 is a 3-D plot showing the wavelet transform (3) of the Dst index from 1st July to 30th September,

2000, consisting of 2202 data points with a sampling interval of 1 hour, where the second order Daubechies

becomes

wavelet (Daub2) was adopted. It can be seen from the Figure 3 that the wavelet amplitude ]ﬂ/fw (b,a)

stronger when the frequency becomes lower (which corresponds to a large scale factor a). This is an important

property of a self-affine process (Malamud and Turcotte 1999) with the power exponent ﬁ >1. The image of

the wavelet coefficients for the scale level 1 < a <128 is shown in Figure 4.

3.2 Wavelet decompositions

Under some assumptions and considerations, an orthogonal wavelet system can be constructed using
multiresolution analysis (MRA)(Mallat 1989, Chui 1992). Assume that the waveletl/ and associated scaling
function@ constitute an orthogonal wavelet system, then any function f € L?(R)can be expressed as a

multiresolution wavelet decomposition

a[scale] - 1000
500 b[time or space]

Fig. 3 The continuous wavelet transform of the Dst index from 1st July to 30th September, 2000, consisting of 2202 data points with a
sampling interval of 1 hour. The 2nd order Daubechies wavelet (Daub2) was used and the range for the scale parameter a is 0.5 <a<lie.
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Fig. 4 The image of the wavelet transform of the Dst index from 1st July to 30th September, 2000, consisting of 2202 data points with a
sampling interval of 1 hour. The 2nd order Daubechies wavelet (Daub2) was used and the range for the scale parameterais 1 <a < 128.
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f(x)= Zajo,k¢jo,k (x) + szj,kw_f,k (x) ®)

where ¥/, (x) =220/ x-k) and @, , (x) =229 x~k), jke€Z, and the wavelet
approximation coefficient @ Joik and the wavelet detail coefficient d j can be calculated in theory by the inner
products:
a5 =< f8;,, >= [ ()0, , (x)dx (10)
dyy =< Fo¥,0 >= [ F W, (e an

and j, is an arbitrary integer representing the lowest resolution or scaling level.

The Dst index of the year 2000 consisting of 8808 data points with a sampling interval of 1 hour was

decomposed into the multiresolution wavelet decomposition (9), where the second order Daubechies wavelet
(Daub2) was used. The wavelet approximation coefficients a ik and the detail coefficients d i are shown in
Figures 5 and 6. Again, it can be clearly seen from Figures 5 and 6 that the amplitudes of the wavelet coefficients
become stronger when the frequency becomes lower (which corresponds to a large minus j). This is an important

property of a self-affine process with the power exponent 5 > 1.
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Fig. 5 The wavelet approximations at scale 2! computed with Daub2 for the Dst index of the year 2000, consisting of 8808 data points with
a sampling interval of 1 hour.
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Fig. 6 The wavelet details at scale 2 computed with Daub2 for the Dst index of the year 2000, consisting of 8808 data points with a
sampling interval of 1 hour.

3.3 Wavelet transform covariance
Following Flandrin (1989), the covariance of the wavelet transform (3) of a signal x(¢) at a given scale a can

be defined as
RY(t,s;0) = EW;} (t, @)W/ (5,a)] (12)
It can be shown by means of the convolution theory and Parseval’s identity that
Vi o ar- 2 2 -itt-s)w
RY(1,5;a) = z—j P, (@) (aw)| e ™ dw (13)
T I

where P, () is the power spectrum of the signal x(r). If x(#) is a self-affine signal obeying the power-law (2)

with a power exponent [ then the auto-covariance of the wavelet transform also obeys a power-law in the

sense that

- _[ Mm)' = Ca’ (14)

R (0) = EWY (@, aW? )] = [V 2 g, -
(t;a (t,a a 5 j |aJ|ﬁ

7L Jaff

where C = —

T (@)
J|’/’wﬁ|

. Eq (14) suggests that for a self-affine signal x(¢), the covariance of the wavelet

transform of signal x(z) also obeys the power-law with a positive power . The property of the wavelet

transform covariance of Brownian motion has been studied in detail by Malamud and Turcotte (1999).
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Fig. 7 The auto-variance of the wavelet transform of the Dst indices for the years from 1981 to 2000, the sampling period for the Dst indices
of each year is 1 hour. The slope of the auto-covariance is approximately ' = 2.

Figure 7 shows the auto-covariance of the wavelet transform of the Ds¢ indices for the years from 1981 to
2000. The slope of the auto-covariance function with respect to the scale factor 10g, @ is about 2, which is

identical with the power exponent estimated from the power spectral density where the value of the slope is

approximately -2. This indicates that the auto-covariance function of the wavelet transform of the Dst indices

obeys a power-law in the sense that Rgst (t:a) e !al ” with Yy =2

4. Conclusions and discussions

The broadband and power-law dependence of the spectrum of the Dst index, identified in this study, clearly
show that the Dst index possesses properties associated with self-affine fractals. The wavelet transform behaves
like a microscope and decomposes a signal into amplitudes depending on dilations (scale) and translation
(position). Multi-resolution decomposition enables a signal to be “observed” at higher and higher resolutions at
different locations. These features of the wavelet transform along with the property of self-similarity, make
wavelets particularly useful for dealing with nonperiodic and nonstationary multiscaled time series, including
signals associated with self-affine and self-similar fractals. The power exponent of the Dst index obtained from —
the wavelet transform covariance is the same as that estimated from the traditional power spectral density. This
means that, both the wavelet covariance method and the Fourier transform based power spectral approach give
almost the same results for a long data set. However, numerous experiments show that for a short-time signal the
wavelet covariance outperforms the Fourier transform based approach. Understanding the mechanisms of the
self-affine fractal of the Dst index is helpful for building either an analogue model or an observational input-
output data based model. Wavelet-based input-output nonlinear models can also be estimated and used to predict
the Dsr index (Wei et al 2002, Billings and Wei 2003).
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