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Abstract 

Although not laying claim to being the inventor of the light microscope, Antonj van 

Leeuwenhoek, (1632 –1723) was arguably the first person to bring this new technological 

wonder of the age properly to the attention of natural scientists interested in the study of 

living things (people we might now term ‘biologists’). He was a Dutch draper with no formal 

scientific training. From using magnifying glasses to observe threads in cloth, he went on to 

develop over 500 simple single lens microscopes1 with which he used to observe many 

different biological samples. He communicated his finding to the Royal Society in a series of 

letters2 including the one republished in this edition of Open Biology. Our review here 

begins with the work of van Leeuwenhoek before summarising the key developments over 

the last ca. 300 years which has seen the light microscope evolve from a simple single lens 

device of van Leeuwenhoek’s day into an instrument capable of observing the dynamics of 

single biological molecules inside living cells, and to tracking every cell nucleus in the 

development of whole embryos and plants. 

1.� Antonj van Leeuwenhoek and invention of the microscope 

Prior to van Leeuwenhoek, lenses had existed for hundreds of years but it was not until the 

17th century that their scientific potential was realized with the invention of the light 

microscope. The word ‘microscope’ was first coined by Giovanni Faber in 1625 to describe 

an instrument invented by Galileo in 1609. Gailieo’s design was a compound microscope - it 

used an objective lens to collect light from a specimen and a second lens to magnify the 

image, but this was not the first microscope invented. In around 1590 Hans and Zacharias 

Janssen had created a microscope based on lenses in a tube3. No observations from these 
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microscopes were published and it was not until Robert Hooke and Antonj van 

Leeuwenhoek that the microscope, as a scientific instrument, was born. 

Robert Hooke was a contemporary of van Leeuwenhoek. He used a compound microscope, 

in some ways very similar to those used today with a stage, light source and three lenses. He 

made many observations which he published in his Micrographia in 1665.4 These included 

seeds, plants, the eye of a fly and the structure of cork. He described the pores inside the 

cork as ‘cells’, the origin of the current use of the word in biology today.  

Unlike Hooke, van Leeuwenhoek did not use compound optics but single lenses. Using only 

one lens dramatically reduced problems of optical aberration in lenses at the time, and in 

fact van Leeuwenhoek’s instruments for this reason generated a superior quality of image to 

those of his contemporaries. His equipment was all handmade, from the spherical glass 

lenses to their bespoke fittings. His many microscopes consisted mainly of a solid base, to 

hold the single spherical lens in place, along with adjusting screws which were mounted and 

glued in place to adjust the sample holding pin, and sometimes an aperture placed before 

the sample to control illumination1 (see Figure 1 for an illustration). These simple 

instruments could be held up to the sun or other light source such as a candle and did not 

themselves have any light sources inbuilt. His microscopes were very lightweight and 

portable, however, allowing them to be taken into the field to view samples as they were 

collected. Imaging consisted of often painstaking mounting of samples, focussing and then 

sketching, with sometimes intriguing levels of imagination, or documenting observations. 

Van Leeuwenhoek’s studies included the microbiology and microscopic structure of seeds, 

bones, skin, fish scales, oyster shell, tongue, the white matter upon the tongues of feverish 

persons, nerves, muscle fibres, fish circulatory system, insect eyes, parasitic worms, spider 

physiology, mite reproduction, sheep foetuses, aquatic plants and the ‘animalcula’ – the 

microorganisms described in his letter.2 As he created the microscopes with the greatest 

magnification of his time he pioneered research into many areas of biology. He can arguably 

be credited with the discovery of protists, bacteria, cell vacuoles and spermatozoa. 

 

2.� The development of the microscope and its theoretical underpinnings 
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It was not until the 19th century that the theoretical and technical underpinnings of the 

modern light microscope were developed. Most notably diffraction-limit theory, but also 

aberration-corrected lenses and an optimized illumination mode called Köhler illumination. 

There is a fundamental limit to the resolving power of the standard light microscope; these 

operate by projecting an image of the sample a distance of several wavelengths of light 

from the sample itself, known as the ‘far-field’ regime. In this regime the diffraction of light 

becomes significant, for example through the circular aperture of the objective lens. This 

diffraction causes ‘point sources’ in the sample which scatter the light to become blurred 

spots when viewed through a microscope, with the level of blurring determined by the 

imaging properties of the microscope known as the point spread function (PSF). Through a 

circular aperture, such as those of lenses in a light microscope, the PSF can be described by 

a mathematical pattern called an Airy disk, which contains a central peak of light intensity 

surrounded by dimmer rings moving away from the centre (see Figure 2a). This 

phenomenon was first theoretically characterized by George Airy in 1835.5 Later, Ernst Abbe 

would state that the limit on the size of the Airy disk was roughly half the wavelength of the 

imaging light6 which agrees with the so-called Raleigh criterion for the optical resolution 

limit7, which determines the minimum distance between resolvable objects (see Figure 2b). 

This became the canonical limit in microscopy for over a hundred years, with the only 

attempts to improve spatial resolution through the use of lower wavelength light or using 

electrons rather than photons, as in electron microscopy, which have a smaller effective 

wavelength by ~4 orders of magnitude. 

Ernst Abbe also helped solve the problem of chromatic aberration. A normal lens focuses 

light to different points depending on its wavelength. In the 18th century, Chester Moore 

Hall invented the achromatic lens which used two lenses of different materials fused 

together to focus light of different wavelengths to the same point. In 1868 Abbe invented 

the apochromatic lens, using more fused lenses, which better corrected chromatic and 

spherical aberrations.8 Abbe also created the world's first refractometer and we still use the 

‘Abbe Number’ to quantify how diffraction varies with wavelength.9 He also collaborated 

with Otto Schott, a glass chemist, to produce the first lenses which were engineered with 

sufficiently high quality to produce diffraction-limited microscopes.10 Their work in 1883 set 
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the limits of far-field optics for over a century, until the advent of the 4π microscope in 

1994.11  

Another eponymous invention of Abbe was the Abbe condenser – a unit which focuses light 

with multiple lenses which improved sample illumination but was quickly superseded by 

Köhler Illumination, the modern standard for ‘brightfield’ light microscopy. August Köhler 

was a student of many fields of the ‘natural sciences’. During his PhD studying limpet 

taxonomy he modified his illumination optics to include a field iris and also an aperture iris 

with a focusing lens to produce the best illumination with the lowest glare which aided in 

image collection using photosensitive chemicals.12 Due to the slow nature of photography of 

the period good images required relatively long exposure times and Köhler Illumination 

greatly aided in producing high-quality images. He joined the Zeiss Optical Works in 1900, 

where his illumination technique coupled with the optics already developed by Abbe and 

Schott went on to form the basis of the modern brightfield light microscope.  

 

3.� Increasing optical contrast 

One of the greatest challenges in imaging biological samples is their inherently low contrast, 

due to their refractive index being very close to water and thus generating little scatter 

interaction with incident light. A number of different methods for increasing contrast have 

been developed including imaging phase and polarization changes, staining and 

fluorescence, the latter being possibly the most far-reaching development since the 

invention of the light microscope. 

Biological samples generate contrast in brightfield microscopy by scattering and absorbing 

some of the incident light. As they are almost transparent, the contrast is very poor. One 

way around this, is to generate contrast from phase (rather than amplitude) changes in the 

incident light wave. Fritz Zernike developed phase contrast microscopy in the 1930s13 while 

working on diffraction gratings. Imaging these gratings with a telescope, they would 

‘disappear’ when in focus.14 These observations led him to realize the effects of phase in 

imaging, and their application to microscopy subsequently earned him the Nobel prize in 

1953. Phase contrast is achieved by manipulating the transmitted, background light 

differently from the scattered light, which is typically phase-shifted 90 degrees by the 
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sample. This scattered light contains information about the sample. A circular annulus is 

placed in front of the light source, producing a ring of illumination. A ring-shaped phase 

plate below the objective, shifts the phase of the background light by 90 degrees such that it 

is in phase (or sometimes completely out of phase, depending on the direction of the phase 

shift) with the scattered light producing a much higher contrast image.  

An alternative to phase contrast is Differential Interference Contrast (DIC). It was created by 

Smith15 and further developed by Georges Nomanski in 1955.16 It makes use of a Normanski-

Wollaston Prism through which polarized light is sheared into two beams polarized at 90 

degrees to each other. These beams then pass through the sample and carry two brightfield 

images laterally displaced a distance equal to the offset of the two incoming beams at the 

sample plane. Both beams are focussed through the objective lens and then recombined 

through a second Normanski-Wollaston prism. The emergent beam goes through a final 

analyser emerging with a polarization of 135 degrees. The coaxial beams interfere with each 

other owing to the slightly different path lengths of the two beams at the same point in the 

image, giving rise to a phase difference and thus a high contrast image. The resultant image 

appears to have bright and dark spots which resemble an illuminated relief map. This faux 

relief map should not be interpreted as such, however, as the bright and dark spots contain 

information instead about path differences between the two sheared beams. The images 

produced are exceptionally sharp compared to other transmission modes. DIC is still the 

current standard technique for imaging unstained microbiological samples in having an 

exceptional ability to reveal the boundaries of cells and subcellular organelles. 

 

Contrast can also be improved in biological samples by staining them with higher contrast 

material, for example dyes. This also allows differential contrast, where only specific parts of 

a sample, such as the cell nucleus, are stained. In 1858 came one of the earliest documented 

staining in microscopy when Joseph von Gerlach demonstrated differential staining of the 

nucleus and cytoplasm in human brain tissue soaked in the contrast agent carmine.17 Other 

notable examples include silver staining introduced by Camillo Golgi in 1873, which allowed 

nervous tissue to be visualized, 18 and Gram staining invented by Hans Christian Gram in 

1884,19 which allowing differentiation of different types of bacteria. Sample staining is still 
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widely in use today, including many medical diagnostic applications. However, the advent of 

fluorescent staining would revolutionize contrast enhancement in biological samples. 

The word ‘fluorescence’ to describe emission of light at a different wavelength to the 

excitation wavelength was first made by Stokes in 1852.20 Combining staining with 

fluorescence detection allows for enormous increases in contrast, with the first fluorescent 

stain fluorescein being developed in 1871.21 In 1941, Albert Coons published the first work 

on Immunofluorescence. This technique uses fluorescently-labelled antibodies to label 

specific parts of a sample. Coons used a fluorescein derivative labelled antibody and showed 

that it could still bind to its antigen. 22 This opened the way to using fluorescent antibodies 

as a highly specific fluorescent stain. 

Green fluorescent protein (GFP) was first isolated from the jellyfish, Aequorea victoria, in 

196223 but it was not until 1994 that Chalfie et al.24 showed that it could be expressed and 

fluoresce outside of the jellyfish. They incorporated it into the promoter for a gene that 

encoded β-tubulin and showed that it could serve as a marker for expression levels. The 

discovery and development of GFP by Osamu Shimomura, Martin Chalfie and Roger Tsien 

was recognised in 2008 by the Nobel prize in chemistry. 

By mutating GFP, blue, cyan and yellow derivatives had been manufactured25 but orange 

and red fluorescent proteins proved difficult to produce until the search for fluorescent 

proteins was expanded to non-bioluminescent organisms. This led to the isolation of dsRed 

from Anthozoa, a species of coral.26 Brighter and more photostable fluorescent proteins 

were subsequently produced by directed evolution.27 The discovery of spectrally distinct 

fluorescent proteins allowed multichannel (dual and multi-colour) fluorescence imaging and 

opened the way to studying the interaction between different fluorescently-labelled 

proteins. 

Early work with fluorescent proteins simply co-expressed GFP on the same promoter as 

another gene to monitor expression levels. Proteins could also be chemically labelled 

outside of the cell and then inserted using microinjection.25,28 A real breakthrough, with the 

discovery of GFP, was optimizing a method to fuse the genes of a protein of interest with a 

fluorescent protein and express this in a cell - thus leaving the cell relatively unperturbed. 

This was first demonstrated29 on a GFP fusion to the bcd transcription factor in Drosophila.
30 
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Fluorescent dyes have been used, not just high-contrast markers, but as part of molecular 

probes, which can readout dynamics between molecules and also environmental factors 

such as pH. In 1946, Theodore Förster posited that if a donor and acceptor molecule were 

sufficiently close together, non-radiative transfer of energy could occur between the two, 

now known as Förster resonance energy transfer (FRET), with efficiency proportional to the 

sixth power of the distance between them.31 If such molecules are themselves fluorescent 

dyes then fluroescenbce can be used as a metric of putative molecular interaction through 

FRET. In 1967, Stryer and Haugland showed this phenomenon could be used as a molecular 

ruler over a length scale of ~1-10 nm.32  Since then, FRET is used routinely to image 

molecular interactions and the distances between biological molecules, and also in  

fluorescence lifetime imaging (FLIM).33 Fluorescent probes have also been developed to 

detect cell membrane voltages, local cellular viscosity levels and the concentration of 

specific ions, with calcium ion probes, for example, first introduced by Roger Tsien in 1980.34 

 

4.� The Fluorescence Microscope 

The fluorescence microscope has its origins in ultraviolet (UV) microscopy. Abbe theory 

meant that better spatial resolution could be achieved using shorter wavelengths of light. 

August Köhler constructed the first UV microscope in 1904.���He found that his samples 

would also emit light under UV illumination (although he noted this as an annoyance). Not 

long after, Oskar Heimstaedt realized the potential for fluorescence and had a working 

instrument by 1911.�� These transmission fluorescence microscopes were greatly improved 

in 1929 when  Philipp Ellinger and August Hirt, placed the excitation and emission optics on 

the same side as the sample and invented the ‘epifluorescence’ microscope.���With the 

invention of dichroic mirrors in 1967��, this design would become the standard in 

fluorescence microscopes. Several innovative illumination modes have also been developed 

for the fluorescence microscope, which have allowed it to image many different samples 

over a wide range of length scales. These modes include confocal, FRAP, TIRF, two-photon 

and light-sheet microscopy. 
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In conventional fluorescence microscopy, the whole sample is illuminated and emitted light 

collected. Much of the collected light is from parts of the sample which are out of focus. In 

confocal microscopy, a pinhole is placed after the light source such that only a small portion 

of the sample is illuminated and another pinhole placed before the detector such that only 

in-focus light is collected (see Figure 1). This can reduce the background in a fluorescence 

image and allow imaging further into a sample. The latter even enables optical sectioning 

and 3D reconstruction. The first confocal microscope was patented by Marvin Minsky in 

1961.39 This instrument preceded the laser so the incident light was not bright enough for 

fluorescence. With laser-scanning confocal microscopes40 much better fluorescence 

contrast is achievable, as explored by White who compared the contrast in different human 

and animal cell lines.41 

Fluorophores only emit light for a short time before they are irreversibly photobleached, 

and so microscopists must limit their sample’s exposure to excitation light. Photobleaching 

can be used to reveal kinetic information about a sample by fluorescence recovery. In the 

earliest fluorescence recovery study, in 1974, Peters et al. bleached one half of fluorescein-

labelled human erythrocyte plasma membranes and found that no fluorescence returned, 

indicating no observable mean diffusive process of the membrane over the experimental 

time scales employed.42 Soon after, analytical work by Axelrod et al.43 (on what they termed 

Fluorescence Photobleaching Recovery) allowed them to characterize different modes of 

diffusion in intracellular membrane trafficking. The term Fluorescence Recovery After 

Photobleaching (FRAP) appears to have been coined by Jacobson, Wu and Poste in 1976.44 

With FRAP capabilities commercially available on confocal systems, it is now widely used for 

measuring turnover kinetics in live cells. 

When imaging features that are thin or peripheral such as cell membranes and molecules 

embedded in these, a widely used method is Total Internal Reflection Fluorescence (TIRF) 

microscopy. This technique uses a light beam introduced above the critical angle of the 

interface between the (normally) glass microscope coverslip and the water-based sample. 

The beam itself will be reflected by total internal reflection due to the differences in 

refractive index between the water and the glass, but at the interface an evanescent wave 

of excitation light is generated which penetrates only ~100 nm into the sample, thus only 

fluorophores close to the coverslip surface are excited, producing much higher signal-to-
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noise than conventional epifluorescence microscopy. It was first demonstrated on biological 

samples by Axelrod in 1981 to image membrane proteins in rat muscle cells and lipids in 

human skin cells.45 

In conventional epifluorescence or even confocal, there is a limit to how far into the sample 

it is possible to image because of incident light scattering from the sample, creating a 

fluorescent background. This is particularly problematic when imaging tissues. Longer 

wavelength light scatters much less but few fluorophores can be excited by this with 

standard single photon excitation. In her doctoral thesis, in 1931, Maria Gopport-Mayer 

theorized that two photons with half the energy needed, can excite emission of one photon 

whose energy was the sum of the two photons during a narrow time window for absorption 

of ~10-18 s. 46 The phenomenon of two-photon excitation (2PE) was not observed 

experimentally for another 30 years, until Kaiser and Garrett demonstrated it in CaF 

crystals.47 The probability of 2PE occurring in a sample is low due to the very narrow time 

window of coincidence with respect to the two excitation photons, so high intensity light 

with a large photon flux is required to use the phenomenon in microscopy. In 1990 Denk 

used a laser in a confocal scanning microscope to image human kidney cells w 2PE.48 Since 

then, it has become a powerful technique for observing molecular processes in live tissues, 

particularly in neuroscience, where the dynamics of neurons within a live rat brain were first 

observed by Svoboda et al.49 

Another method of reducing background in fluorescent samples is to only illuminate the 

sample through the plane which is in focus. This can be achieved by shining a very flat 

excitation beam through the sample perpendicular to the optical axis. A. Voie et al. first 

demonstrated this, using light-sheet microscopy (LSM) in 1993.50 LSM can be used to take 

fluorescence images through slices of a sample, allowing a stack of images to build a 3D 

reconstruction. One caveat of LSM is that samples need to be specially mounted to allow an 

unobstructed excitation beam as well as a perpendicular detection beam so a bespoke 

microscope is required. The technique was pioneered and developed by Ernst Stelzer in 

2004, and termed Selective Plane Illumination Microscopy (SPIM),  it was used to image live 

embryos in 3D.51 Stelzer’s group went on to image and track every nucleus in a developing 

zebrafish over 24 hours52 and also the growth of plant roots at the cellular level in 
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Arabidopsis.
53 LSM has proven itself a powerful tool for developmental biology, the 

potential of which is only now being realized. 

 

5.� Improving resolution in length and time 

Fluorescence microscopy set new standards of contrast in biological samples that have 

enabled the technique to achieve possibly the ultimate goal of microscopy in biology and 

visualize single molecules in live cells. The Abbe diffraction limit, thought unbreakable for 

over one hundred years, has been circumvented by ever more inventive microscopy 

techniques which are now extending into three spatial dimensions. 

The first single biological molecules detected were observed by Cecil Hall in the 

1950s,54using electron microscopy of metallic fibres shadowed replicas of large, filamentous 

molecules including DNA and fibrous proteins, with dried samples in a vacuum. The very 

first detection of a single biological molecule in its functional aqueous phase was made by 

Boris Rotman, his seminal work published in 1961 involving  the observation of 

fluorescently-labelled substrates of beta-galactosidase suspended in water droplets. The 

enzyme catalysed the hydrolysis of galactopyranose labelled with fluorescein to the sugar 

galactose plus free fluorescein, which had a much greater fluorescence intensity than when 

attached to the substrate. He  could detect single molecules because each enzyme could 

turnover thousands of fluorescent substrate.55 A more direct measurement was made by 

Thomas Hirschfield, in work published in 1976, who managed to see single molecules of 

globulin, labelled with ~100 fluorescein dyes, passing through a focused laser.56 Single dye 

molecules were not observable directly until the advent of Scanning Near-field Optical 

Microscopy (SNOM) developed by Eric Betzig and Robert Chichester allowing them to image 

individual cyanine dye molecules in a sub-monolayer.57 SNOM uses an evanescent wave 

from a laser incident on a ~100 nm probe aperture which illuminates a small section and 

penetrates only a small distance into the sample. Images are generated by scanning this 

probe over the sample. This is technically challenging as the probe must then be very close 

to the sample.  

Single molecules were shown to be observable with less challenging methods when, using 

TIRF microscopy, single ATP turnover reactions in single myosin molecules was observed in 
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1995.58 Other studies observed single F1-ATPase rotating using fluorescently labelled actin 

molecules in 199759 and the dynamics of single cholesterol oxidase molecules.60 In a 

landmark study, the mechanism and step size of the myosin motor was determined by 

labelling one foot, observing and using precise Gaussian fitting to obtain nanometre 

resolution (termed ‘fluorescence imaging with one nanometer accuracy’ - FIONA).61 This 

localization microscopy could effectively break the diffraction limit by using mathematical 

fitting algorithms to pinpoint the centre of a dye molecule’s PSF image, as long as they are 

resolvable such that the typical nearest-neighbour separation of dye molecules in the 

sample is greater than the optical resolution limit. These techniques were soon applied to 

image single molecules in living cells62,63 and now it is possible to count the number single 

molecules in complexes inside cells.64,65 

Stefan Hell showed that it was possible to optically break the diffraction limit with a more 

deterministic technique which modified the actual shape of the PSF, called Stimulated 

Emission Depletion microscopy (STED), which he proposed with Jan Wichmann in 199466 

and implemented with Thomas Klar in 1999.67 STED works by depleting the population of 

excited energy state electrons through stimulated emission. Fluorescence emission only 

occurs subsequently from a narrow central beam inside the deactivation annulus region 

which is scanned over the sample. The emission region is smaller than the diffraction limit 

(~100 nm in the original study), thus allowing a superresolution image to be generated.  

The development of STED showed that the diffraction limit could be broken and many new 

techniques followed.  In 2002, Ando et al.68 isolated a fluorescent protein from the stony 

coral, Trachyphyllia geoffroyi, which they named Kaede. They found that if exposed to UV 

light, its fluorescence would change from green to red and demonstrated this in Kaede 

protein expressed in HeLa cells. Photoactivatable proteins, such as this were used in 2006 by 

Hess et al. in Photo-Activated Localization Microscopy (PALM) using TIRF69 and by Betzig et 

al. in Fluorescence Photo-Activated Localization Microscopy (FPALM) using confocal. Both 

methods use low intensity long UV laser light to photoactivate a small subset of sample 

fluorophores then another laser to excite them to emit and photobleach. This is repeated to 

build a superresolution image. A related method utilizes stochastic photoblinking of 

fluorescent dyes, which for example can be used to generate superresolution structures of 

DNA.70  
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Other notable superresolution techniques include Structured Illumination Microscopy 

(SIM).71 In 1993, B. Bailey et al showed that structured stripes of light could be used to 

generate a spatial ‘beat’ pattern in the image which could be used to extract spatial features 

in the underlying sample image which had a resolution of ~2 times that of the optical 

resolution limit. In 2006, Xiaowei Zhuang et al demonstrated Stochastic Optical 

Reconstruction Microscopy (STORM)72 which used a Cy5/Cy3 pair as a switchable probe. A 

red laser keeps Cy5 in a dark state and excites fluorescence, while a green laser brings the 

pair back into a fluorescent state. Thus, similarly to PALM, a superresolution image can be 

generated. 

Improvements in dynamic fluorescence imaging have been significant over the past few 

decades. For example, using essentially the same localization algorithms as developed for 

PALM/STORM imaging, fluorescent dye tags can be tracked in a cellular sample in real-time 

for example tracking of membrane protein complexes in bacteria to nanoscale 

precicsion,73which have been extended into high time resolution dual-colour microscopy in 

vivo to monitor dynamic co-localization over with a spatial precision of  ~10-100 nm.74 

Modifications to increase the laser excitation of several recent bespoke microscope systems 

have also improved the time resolution of fluorescence imaging down to the millisecond 

level, for example using narrowfield and Slimfield microscopy.75 

 

3D information can be obtained in many ways including using interferometric methods76 or 

multiplane microscopy77 which image multiple focal planes simultaneously. Another method 

of encoding depth information in images is to distort the PSF image in an asymmetrical but 

measureable way as the light source moves away from the imaging plane.  Astigmatism and 

double-helix microscopy accomplish this using different methods and are compatible with 

many modes of fluorescence illumination as the equipment used is placed between the 

objective lens and the camera. As such, it is a viable way to extract 3D data from many 

currently developed fluorescence microscopes. 

Astigmatism microscopy is a simple 3D microscopy technique, first demonstrated by Kao 

and Verkman in 1994.78 An asymmetry is introduced in the imaging path by placing a 

cylindrical lens before the camera detector. The introduced astigmatism offsets the focal 
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plane along one lateral axis slightly, resulting in a controlled image distortion. When imaging 

singular or very small aggregates of fluorophores, the distortion takes the form of an ellipse, 

extending along either the x or y axis in the lateral plane of a camera detector conjugate to 

the microscope focal plane, depending on whether the fluorophore is above or below the 

focal plane. Values of 30 nm resolution in the lateral plane and 50 nm in the axial dimension 

have been reported using astigmatism with STORM.79  

Double-helix PSF (DH-PSF) microscopy is a similar 3D microscopy technique using controlled 

PSF distortion. It exploits optical vortex beams, beams of light with angular momentum and 

works by placing a phase mask – an object which modifies the phase of the beam differently 

at different points along a cross-section – between the camera and the objective lens to 

turn the laser beam intensity profile from a Gaussian beam to a mixture of higher-order 

optical vortex beams - a superposition of two so-called Laguerre-Gauss (LG) beams. These 

two beams interfere with each other at the point that the light hits the camera creating two 

bright lobes.80 The fields rotate as a function of distance propagated. As the two beams are 

superposed the distance is the same; if the two LG beams are slightly different the electric 

fields will rotate at different rates thanks to different so-called ‘Gouy Phase’ components. 

This means that the interference pattern produced rotates as a function of the distance of 

the point source from the image plane only.81 The distance from the focal plane can be 

determined by measuring the rotation angle of the two lobes.  

The phase mask can be created using transparent media such as etched glass or using a 

Spatial Light Modulator (SLM). An SLM is a 2D array of microscale bit components, each of 

which can be used to change the phase of the incident light across a beam profile. A liquid-

crystal-on-silicon SLM retards light as a function of the input voltage to each bit. As such, a 

phase mask can be applied and changed in real-time using computer control. One major 

drawback is that they are sensitive to the polarization of light82 limiting the efficiency of light 

propagation through the SLM. Alternatively a fixed glass phase plate can be etched using 

nanolithography. This is phase-independent and much more photon efficient. The phase is 

retarded simply by the thickness of the glass at each point in the beam. However, glass 

phase plates are less precise than SLM due to limitations in the lithography. Still, these are 

much easier to implement and can be purchased commercially or custom-built and used 

with almost any microscope setup with minimal detrimental impact. DH-PSF microscopy has 
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been shown to have some of the smallest spatial localization errors of any 3D localization 

mode in high signal to noise systems.83  

The power of beam-shaping combined with light-sheet illumination has been recently used 

to create lattice light-sheet microscopy.84 Using Bessel beams, which focused laser profiles 

with minimal divergence due to diffraction, they create different bound optical lattices with 

different properties allowing them to image across four orders of magnitude in space and 

time and in diverse samples including diffusing transcription factors in stem cells, mitotic 

microtubules and embryogenesis in Caenorhabditis elegans. 

 

6.� The future  

Although over 300 years since the pioneering work of van Leeuwenhoek, many of the major 

developments in light microscopy have occurred in just the past few decades and their full 

impact may not yet be felt. There are several technologies currently in development which 

may have a profound impact on microscopy. These include, for example, adaptive optics, 

lens-free microscopy, super lenses, miniaturization and combinational microscopy 

approaches. 

 

A biological sample itself adds aberration through spatial variation in the refractive index. 

This is even more of a problem when imaging deep into tissues. Adaptive optics uses so-

called dynamic correction elements such as deformable mirrors or SLMs to correct for this 

aberration, increasing spatial resolution and contrast. There have been many recent 

developments, reviewed comprehensively by Martin Booth,85 but the technology is still yet 

to be widely adopted. 

The archetypal lens used in light microscopy is made of glass, however this is not the only 

type of lens available. Optical diffraction gratings (optical gratings) can be used to focus, 

steer and even reflect light. Recognizing the need for miniaturization, researchers have been 

investigating the use of diffraction gratings in place of glass to help reduce the necessary 

size of optical components. While glass is great for large applications, it is extremely bulky 

when compared to the minimum size of a diffraction grating.86 Optical gratings can be used 

as equivalent to lenses under some circumstances, for example a Fresnel Zone Plate can be 
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used to focus light to a point as a convex lens does. Optical gratings all rely on the 

interaction of electromagnetic waves as they pass through the spaces in the gratings. This is 

fundamentally linked to the wavelength of propagating light making achromatic optical 

gratings very difficult to achieve in practice. Only recently have scientists been able to 

produce achromatic glass analogues such as an achromatic grating quarter-wave plates, for 

example, with good operational ranges.87  

 

Ptychography completely removes the need for imaging optics, lenses or gratings, and 

directly reconstructs real-space images from diffraction patterns captured from a beam 

scanned over a sample. In many cases, this allows higher contrast images than DIC or phase 

contrast and 3D reconstruction.88,89  

All optics currently used in microscopes are diffraction-limited but it is theoretically possible 

to construct, using so-called ‘metamaterials’, a perfect lens or super lens which could image 

with perfect sharpness. This was thought to require a material with negative refractive 

index90 but it has now been shown that ordinary positive refractive index materials can also 

be used.91 Even if super lenses are not achievable, new materials may revolutionize 

microscope lenses, still mostly composed of the same materials used by van Leeuwenhoek.  

It is interesting to note the return of microscopes such as van Leeuwenhoek’s which use 

only a single lens, in the foldascope developed by Manu Prakash at Stanford University92 

Using cardboard (an essential and surprisingly cheap component of some of the most 

advanced bespoke light microscopes found in our own laboratory) and simple filters and 

lenses, a near indestructible microscope with both normal transmission modes and 

fluorescence modes has been created that can be used by scientists and physicians working 

in areas far from expensive lab equipment.  

 

Combinatorial microscopy is an interesting recent advance, which shows significant future 

potential. Here, several different microscopy methods are implemented on the same light 

microscope device. Many advances are being made at the level of single-molecule 

biophysics coupled to light microscopy in this regard. For example, methods being 

developed which can permit simultaneous superresolution imaging of DNA coupled to 

magnetic tweezers manipulation.93  

Page 15 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



The ultimate practical limits at the other end of the length scale for imaging tissues and 

whole organisms in the future are difficult to determine. Recent technological 

developments, such as the light-sheet imaging of Arabidopsis or lattice light-sheet 

microscopy discussed previously have enabled imaging of ever larger samples in greater 

detail. What limits the largest possible sample and to what level of detail it can be imaged is 

unknown. And, just as importantly, is computing technology used to store and analyse these 

data up to the challenge?  

It is unquestionable that light microscopy has advanced enormously since the days of Antonj 

van Leeuwenhoek. The improvements have been, in a broad sense, twofold. Firstly, in 

length scale precision. This has been a ‘middling-out’ improvement, in that superresolution 

methods have allowed unprecedented access to nanoscale biological features, whereas 

light-sheet approaches and multi-photon deep imaging methods in particular have allowed 

incredible detail to be discerned at the much larger length scale level of multicellular tissues. 

Secondly, there has been an enormous advance, almost to the level of a paradigm shift, 

towards faster imaging in light microscopy, to permit truly dynamic biological processes to 

be investigated, right down to the millisecond level. Not only can we investigate detailed 

biological structures using light microscopy, but we can watch them change with time.  

 

And yet, equally so, the basic principles of light microscopy for the study of biology remain 

essentially unchanged. These were facilitated in no small part by the genius and diligence of 

van Leeuwenhoek. It is perhaps the finest legacy for a true pioneer of light microscopy (.  
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Figure legends 

Figure 1 

Optical microscope designs through the ages. a) One design of a simple compound microscope used 

by Hooke while writing Micrographia. b) An example of the single spherical lens mount system that 

van Leeuwenhoek used, approximately 5 cm in height. c) A simple epi-fluorescence system. d) A 

simple modern-day confocal microscope. 

 

Figure 2 

Mathematically generated Point Spread Function (PSF) images from in different light microscope 

designs. a) The Airy pattern, a disc and one of the rings produced by a point source emitter imaged 

using a spherical lens. b) Two such Airy discs separated by less than the Abbe limit for optical 

resolution. c) The lateral xy stretching exhibited in astigmatic imaging systems when the height z of a 

point source emitter is above or below the focal plane, the degree of stretching a metric for z. d) 

Expected pattern when a point source emitter is defocused. e) Two-lobed PSF used in Double-Helix 

PSF techniques, where the rotation of the lobes about the central point is used to calculate z. 

 

Figure 3 

By chance, in the last days of finishing this review the corresponding author was staying ~100m from 

Leeuwenhoek's final resting place in the Oude Kerk, Delft, and captured these images. 

 

References 

 

1. Baker, H. & Leeuwenhoek, M. An Account of Mr. Leeuwenhoek’s Microscopes; By Mr. 

Henry Baker, F. R. S. 1739 Philos. Trans. R. Soc. London 41, 503–519. 

Page 17 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



2. Leeuwenhoek, A. van & Hoole, S. 1800 The Select Works of Antony Van Leeuwenhoek, 

Containing His Microscopical Discoveries in Many of the Works of Nature, Volume 1 . 

3. Orchard, G. & Nation, B. 2014 Cell Structure & Function. 448 Oxford University Press,. 

4. Hooke, R. 1665 Micrographia: Or Some Physiological Descriptions of Minute Bodies 

Made by Magnifying Glasses, with Observations and Inquiries Thereupon. 273 Courier 

Corporation,. 

5. Airy, G. B. 1835 On the Diffraction of an Object-glass with Circular Aperture. Trans. 

Cambridge Philos. Soc. 5,. 

6. Abbe, E. 1873 Beiträge zur Theorie des Mikroskops und der mikroskopischen 

Wahrnehmung. Arch. für Mikroskopische Anat. 9, 413–418. 

7. F.R.S., L. R. XXXI. 1879 Investigations in optics, with special reference to the 

spectroscope. Philos. Mag. Ser. 5 8, 261–274. 

8. Mansuripur, M. 2002 Classical Optics and Its Applications. 502 Cambridge University 

Press,. 

9. Abbe, E. 1881 VII.-On the Estimation of Aperture in the Microscope. J. R. Microsc. Soc. 

1, 388–423. 

10. Abbe, E. 1883 XV.-The Relation of Aperture and Power in the Microscope. J. R. 

Microsc. Soc. 3, 790–812. 

11. Hell, S. W., Stelzer, E. H. K., Lindek, S. & Cremer, C. 1994 Confocal microscopy with an 

increased detection aperture: type-B 4Pi confocal microscopy. Opt. Lett. 19, 222. 

12. Köhler, A. 1893 Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. 

Z. Wiss. Mikrosk. 10, 433–440. 

13. Zernike, F. 1942 Phase contrast, a new method for the microscopic observation of 

transparent objects. Physica 9, 686–698. 

Page 18 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



14. Zernike, F. 1955 How I Discovered Phase Contrast. Science (80-. ). 121, 345–349. 

15. Smith, F. 1955 Microscopic interferometry. Res. 8, 385–395. 

16. Nomarski, G. & Weill, A. 1955 Application à la métallographie des méthodes 

interférentielles à deux ondes polarisées. Rev. Met. 2, 121–128. 

17. Gerlach, J. von. 1858 Mikroskopische Studien aus dem Gebiete der menschlichen 

Morphologie  72. . 

18. Golgi, C. 1873 Sulla struttura della grigia del cervello. Gaz. Med. Intalianna Lomb. 6, 

244–246. 

19. Gram, H. 1884 Über die isolierte F¨ärbung der Schizomyceten in Schnitt- und 

Trockenpräparaten. Fortschr. Med. 2,. 

20. Stokes, G. G. 1852 On the Change of Refrangibility of Light. Philos. Trans. R. Soc. 

London 142, 463–562. 

21. Baeyer, A. 1871 Über eine neue Klasse von Farbstoffen. Berichte der Dtsch. Chem. 

Gesellschaft 4, 555–558. 

22. Coons, A. H., Creech, H. J. & Jones, R. N. 1941 Immunological Properties of an 

Antibody Containing a Fluorescent Group. Exp. Biol. Med. 47, 200–202. 

23. Shimomura, O., Johnson, F. H. & Saiga, Y. 1962 Extraction, Purification and Properties 

of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. 

J. Cell. Comp. Physiol. 59, 223–239. 

24. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. 1994 Green fluorescent 

protein as a marker for gene expression. Science (80-. ). 263, 802–805. 

25. Heim, R., Prasher, D. C. & Tsien, R. Y. 1994 Wavelength mutations and 

posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U. S. 

A. 91, 12501–4. 

Page 19 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



26. Matz, M. V et al. 1999 Fluorescent proteins from nonbioluminescent Anthozoa 

species. Nat. Biotechnol. 17, 969–73. 

27. Shaner, N. C. et al. 2004 Improved monomeric red, orange and yellow fluorescent 

proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 

1567–72. 

28. Taylor, D., Amato, P., Luby-Phelps, K. & McNeil, P. 1984 Fluorescent analog 

cytochemistry. Trends Biochem. Sci. 9, 88–91. 

29. Gerdes, H.-H. & Kaether, C. 1996 Green fluorescent protein: applications in cell 

biology. FEBS Lett. 389, 44–47. 

30. Wang, S. & Hazelrigg, T. 1994 Implications for bcd mRNA localization from spatial 

distribution of exu protein in Drosophila oogenesis. Nature 369, 400–03. 

31. Förster, T. 1946 Energiewanderung und Fluoreszenz. Naturwissenschaften 33, 166–

175. 

32. Stryer, L. & Haugland, R. P. 1967 Energy transfer: a spectroscopic ruler. Proc. Natl. 

Acad. Sci. U. S. A. 58, 719–726. 

33. Clegg, R. M., Feddersen, B. A., Gratton, E. & Jovin, T. M. 1992 Time-resolved imaging 

fluorescence microscopy. Proc. SPIE 1640, 448–460. 

34. Tsien, R. Y. 1980 New calcium indicators and buffers with high selectivity against 

magnesium and protons: design, synthesis, and properties of prototype structures. 

Biochemistry 19, 2396–2404. 

35. Köhler, A. & Rohr, M., J. 1905 Photomicrography with Ultra-violet Light. J. R. Microsc. 

Soc. 25, 513. 

36. Heimstadt O. 1911 Das Fluoreszenzmikroskop. Z Wiss Mikrosk 28, 330–7. 

Page 20 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



37. Ellinger, P. & Hirt, A. 1929 Mikroskopische Beobachtungen an lebenden Organen mit 

Demonstrationen (Intravitalmikroskopie). Arch. für Exp. Pathol. und Pharmakologie 

147, 63–63. 

38. Ploem, J. S. 1967 The use of a vertical illuminator with interchangeable dichroic 

mirrors for fluorescence microscopy with incidental light. Z. Wiss. Mikrosk. 68, 129–

142. 

39. Minsky, M. 1961 Microscopy apparatus. 

40. Wilke, V. 1985 Optical scanning microscopy-The laser scan microscope. Scanning 7, 

88–96. 

41. White, J. G. 1987 An evaluation of confocal versus conventional imaging of biological 

structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48. 

42. Peters, R., Peters, J., Tews, K. H. & Bähr, W. 1974 A microfluorimetric study of 

translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta - Biomembr. 

367, 282–294. 

43. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. 1976 Mobility 

measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. 

J. 16, 1055–69. 

44. Jacobson, K., Wu, E. & Poste, G. 1976 Measurement of the translational mobility of 

concanavalin A in glycerol-saline solutions and on the cell surface by fluorescence 

recovery after photobleaching. Biochim. Biophys. Acta 433, 215–22. 

45. Axelrod, D. 1981 Cell-substrate contacts illuminated by total internal reflection 

fluorescence. J. Cell Biol. 89, 141–145. 

46. Göppert-Mayer, M. 1931 Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 

401, 273–294. 

Page 21 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



47. Kaiser, W. & Garrett, C. 1961 Two-Photon Excitation in CaF_{2}: Eu^{2+}. Phys. Rev. 

Lett. 7, 229–231. 

48. Denk, W., Strickler, J. & Webb, W. 1990 Two-photon laser scanning fluorescence 

microscopy. Science (80-. ). 

49. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. 1997 In vivo dendritic calcium 

dynamics in neocortical pyramidal neurons. Nature 385, 161–5. 

50. Voie, A. H., Burns, D. H. & Spelman, F. A. 1993 Orthogonal-plane fluorescence optical 

sectioning: Three-dimensional imaging of macroscopic biological specimens. J. 

Microsc. 170, 229–236. 

51. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. 2004 Optical 

sectioning deep inside live embryos by selective plane illumination microscopy. 

Science 305, 1007–9. 

52. Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. 2008 Reconstruction of 

zebrafish early embryonic development by scanned light sheet microscopy. Science 

322, 1065–9. 

53. Maizel, A., von Wangenheim, D., Federici, F., Haseloff, J. & Stelzer, E. H. K. 2011 High-

resolution live imaging of plant growth in near physiological bright conditions using 

light sheet fluorescence microscopy. Plant J. 68, 377–85. 

54. HALL, C. E. 1956 Method for the observation of macromolecules with the electron 

microscope illustrated with micrographs of DNA. J. Biophys. Biochem. Cytol. 2, 625–8. 

55. ROTMAN, B. 1961 Measurement of activity of single molecules of beta-D-

galactosidase. Proc. Natl. Acad. Sci. U. S. A. 47, 1981–91. 

56. Hirschfeld, T. 1976 Optical microscopic observation of single small molecules. Appl. 

Opt. 15, 2965–6. 

Page 22 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



57. Betzig, E. & Chichester, R. J. 1993 Single molecules observed by near-field scanning 

optical microscopy. Science 262, 1422–5. 

58. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. 1995 Imaging of single 

fluorescent molecules and individual ATP turnovers by single myosin molecules in 

aqueous solution. Nature. 

59. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. 1997 Direct observation of the rotation 

of F1-ATPase. Nature 386, 299–302. 

60. Lu, H. P. 1998 Single-Molecule Enzymatic Dynamics. Science (80-. ). 282, 1877–1882. 

61. Yildiz, A. et al. 2003 Myosin V walks hand-over-hand: single fluorophore imaging with 

1.5-nm localization. Science 300, 2061–5. 

62. Byassee, T., Chan, W. & Nie, S. 2000 Probing single molecules in single living cells. 

Anal. Chem.. 

63. Sako, Y., Minoghchi, S. & Yanagida, T. 2000 Single-molecule imaging of EGFR signalling 

on the surface of living cells. Nat. Cell Biol. 2, 168–72. 

64. Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. 2010 Stoichiometry and architecture 

of active DNA replication machinery in Escherichia coli. Science 328, 498–501. 

65. Leake, M. C. et al. 2006 Stoichiometry and turnover in single, functioning membrane 

protein complexes. Nature 443, 355–8. 

66. Hell, S. W. & Wichmann, J. 1994 Breaking the diffraction resolution limit by 

stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. 

Lett. 19, 780. 

67. Klar, T. A. & Hell, S. W. 1999 Subdiffraction resolution in far-field fluorescence 

microscopy. Opt. Lett. 24, 954. 

Page 23 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



68. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. 2002 An optical 

marker based on the UV-induced green-to-red photoconversion of a fluorescent 

protein. Proc. Natl. Acad. Sci. U. S. A. 99, 12651–6. 

69. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. 2006 Ultra-high resolution imaging by 

fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–72. 

70. Miller, H., Zhaokun, Z., Wollman, A. J. M. & Leake, M. C. 2015 Superresolution 

imaging of single DNA molecules using stochastic photoblinking of minor groove and 

intercalating dyes. Methods In press. DOI: 10.1016/j.ymeth.2015.01.010 

71. Bailey, B., Farkas, D. L., Taylor, D. L. & Lanni, F. 1993 Enhancement of axial resolution 

in fluorescence microscopy by standing-wave excitation. Nature 366, 44–8. 

72. Rust, M. J., Bates, M. & Zhuang, X. 2006 Sub-diffraction-limit imaging by stochastic 

optical reconstruction microscopy (STORM). Nat. Methods 3, 793–5. 

73. Leake, M. C. et al. 2008 Variable stoichiometry of the TatA component of the twin-

arginine protein transport system observed by in vivo single-molecule imaging. Proc. 

Natl. Acad. Sci. U. S. A. 105, 15376–81. 

74. Llorente-Garcia, I. et al. 2014 Single-molecule in vivo imaging of bacterial respiratory 

complexes indicates delocalized oxidative phosphorylation. Biochim. Biophys. Acta 

1837, 811–24. 

75. Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. 2010 Stoichiometry and architecture 

of active DNA replication machinery in Escherichia coli. Science (80-. ). 328, 498–501. 

76. Shtengel, G. et al. 2009 Interferometric fluorescent super-resolution microscopy 

resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. U. S. A. 106, 3125–30. 

77. Juette, M. F. et al. 2008 Three-dimensional sub-100 nm resolution fluorescence 

microscopy of thick samples. Nat. Methods 5, 527–9. 

Page 24 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



78. Kao, H. P. & Verkman, A. S. 1994 Tracking of single fluorescent particles in three 

dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67, 1291–

300. 

79. Huang, B., Wang, W., Bates, M. & Zhuang, X. 2008 Three-dimensional super-

resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–

3. 

80. Pavani, S. R. P. et al. 2009 Three-dimensional, single-molecule fluorescence imaging 

beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. 

Acad. Sci. U. S. A. 106, 2995–9. 

81. Schechner, Y., Piestun, R. & Shamir, J. 1996 Wave propagation with rotating intensity 

distributions. Phys. Rev. E 54, R50–R53. 

82. Carbone, L. et al. 2013 The generation of higher-order Laguerre-Gauss optical beams 

for high-precision interferometry. J. Vis. Exp.. (doi:10.3791/50564) 

83. Badieirostami, M., Lew, M. D., Thompson, M. A. & Moerner, W. E. 2010 Three-

dimensional localization precision of the double-helix point spread function versus 

astigmatism and biplane. Appl. Phys. Lett. 97, 161103. 

84. Chen, B.-C. et al. 2014 Lattice light-sheet microscopy: Imaging molecules to embryos 

at high spatiotemporal resolution. Science (80-. ). 346, 1257998–1257998. 

85. Booth, M. J. 2014 Adaptive optical microscopy: the ongoing quest for a perfect image. 

Light Sci. Appl. 3, e165 . 

86. Chrostowski, L. 2010 Optical gratings: Nano-engineered lenses. Nat. Photonics 4, 

413–415. 

87. Passilly, N. & Ventola, K. 2008 Achromatic phase retardation by subwavelength 

gratings in total internal reflection. J. Opt. A:�Pure Appl. Opt.. 

Page 25 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



88. Marrison, J., Räty, L., Marriott, P. & O’Toole, P. 2013 Ptychographya label free, high-

contrast imaging technique for live cells using quantitative phase information. Sci. 

Rep. 3, 2369 . 

89. Rodenburg, J. M., Hurst, A. C. & Cullis, A. G. 2007 Transmission microscopy without 

lenses for objects of unlimited size. Ultramicroscopy 107, 227–31 . 

90. Pendry, J. 2000 Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–9 . 

91. Leonhardt, U. 2009 Perfect imaging without negative refraction. New J. Phys. 11, 

093040 . 

92. Cybulski, J. S., Clements, J. & Prakash, M. 2014 Foldscope: origami-based paper 

microscope. PLoS One 9, e98781 . 

93. Wollman, A. J. M., Miller, H., Zhaokun, Z. & Leake, M. C. 2015 Probing DNA 

interactions with proteins using a single-molecule toolbox: inside the cell, in a test 

tube, and in a computer. Biochem. Soc. Trans. 43, 139-145. 

�

Page 26 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY



��

�

�

���������	�
������������������
�
�
�����
����
����������������
����������������
��������������
��������������
�������
���������
���������������	� ����	�������������������
����!��

���"#$���%$���"�$��� &'(��

�

�

Page 27 of 27

http://mc.manuscriptcentral.com/rsob

Submitted to Open Biology: FOR REVIEW ONLY


