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Abstract

This paper introduces a new approach for the identification of coupled map lattice
models of complex spatio-temporal patterns from measured data. The nonlinear function-
als describing the evolution of the spatio-temporal patterns are constructed using B-spline
wavelet and scaling functions. This provides a multiresolution approximation for the under-
lying spatio-temporal dynamics. An orthogonal least squares algorithm is used to determine
the suitable terms from wavelet functions to form an accurate representation of the nonlin-
ear spatio-temporal dynamics. Two examples are used to demonstrate the application of
the proposed new approach.

1 Introduction

Complex spatio-temporal patterns have been widely observed and explored in recent years in-
volving diverse fields such as physical, chemical, biological, and ecological systems (Kaneko 1993,
Scle, Valls and Bascompte 1992, Yanagita and Kaneko 1997, Tabuchi, Yakawa and Mallick et al.
2002, Kohler, Reinhard and Huth 2002, Bertram, Beta, Rotermund, and Ertl 2003, Goldman, et
al. 2003, Adamatzky 2003). A large number of current studies of pattern formation phenomena
involve observing what patterns are formed or changed under a variety of initial and boundary
conditions. But an interesting and important question needs to be addressed: if an observed
pattern formation follows some dynamical laws, then how can this dynamical origin be revealed
effectively? In some instances, the dynamical origin of spatio-temporal pattern formation can
be represented as partial differential equations (PDE’s). But in many other cases such as for
example in ecological systems, only a series of snapshots of the spatial pattern are available. At
the same time, the study of the formation and evolution of spatio-temporal patterns normally
requires a model with a specified accuracy. In both cases, however, obtaining or deriving such
& dynamical model or PDE describing the pattern formation is by no means straightforward
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because either the interactions involved are too complex or there maybe no established laws on
which to base the choice of the model. In this case, it would be advantageous if a model could be
identified from the observed patterns. The model could then be used for the analysis of pattern
formation or in control.

Computer simulations have emerged as an effective and powerful tool to study complex spatio-
temporal patterns. In such cases the spatio-temporal dynamical systems by necessity are dis-
cretised in space as well as in time. This was one of the main motivations for the introduction
of coupled map lattice (CML) models of spatio-temporal systems. CML models were developed
in the late 80’s by Kaneko (1985, 1986, 1989a) and can exhibit surprisingly rich dynamical be-
haviours, including spatio-temporal chaos, intermittency, traveling waves and pattern formation
(Kaneko 1989b). CML’s have been used to model convected temperature fluctuations in the
atmosphere (Platt and Hammel 1997), boiling processes (Yanagita 1992), spatio-temporal chaos
in fluid flows (He, Cao and Li 1995) and cloud dynamics (Yanagita and Kaneko 1997). But
most of the studies of CML’s mainly concentrate on analysing the properties and behaviours
of CML’s such as chaos. Just like the case of PDE’s, the identification of CML models from
observations or measured data is still regarded as a very important but difficult problem. The
aim of this paper is to introduce a new approach to identifying the local CML equations from
spatio-temporal observations using wavelets.

Various methods for the identification of local CML models from spatio-temporal observations
have already been proposed (Coca and Billings 2001, Mandelj, Grabec and Govekar 2001, Marcos-
Nikolaus, Martin-Gonzalez and Séle 2002, Grabec and Mandeji 1997, Parlitz and Merkwirth
2000). In practice however, some of these approaches may fail to produce models that accurately
describe the underlying spatio-temporal patterns either due to an inability to adapt the model
structure to that of the unknown system, or because the functions used to implement the model
structure are not suitable for modelling the underlying dynamics. This is especially critical when
an equivalent description of real-world systems is sought. In such cases the estimated model
should provide very accurate information regarding the dynamical properties of the observed
system. Theoretical studies have shown that the wavelet representation of any nonlinear func-
tion can be shown to be asymptotically near optimal in the sense that the COnVergence rates are
equal to the best attainable using general nonlinear approximation schemes (DeVore, Jawerth,
and Popov 1992). In addition wavelet approximations also provide similar rates of approximation
for functions belonging to a wide variety of function spaces including functions with sparse singu-
larities or functions that are not uniformly smooth or regular. All these properties suggest that
wavelet multiresolution expansions should provide an excellent foundation for the development
of identification algorithms for nonlinear CML models.

A mixed wavelets and NARX approach to the identification of nonlinear spatio-temporal dynam-
ical systems has been discussed in Billings, Wei, Mei, and Guo (2003). In this paper, wavelets,
as regressors, are directly used to identify the CML models, which drive spatio-temporal pattern
formation, from measured data or snapshots for the purpose of revealing the dynamical origin
of the given patterns. The nonlinear functionals describing the evolution of the spatio-temporal
patterns are constructed using B-spline wavelet and scaling functions, originally introduced by
Chui and Wang (1991). The orthogonal least squares algorithm proposed by Chen, Billings, and
Luo (1989) is used to determine the suitable terms from B-spline wavelet and scaling functions.
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The paper is organised as follows. Section 2 introduces the CML model of spatio-temporal dy-
namical systems. The wavelet models are introduced in section 3 including an introduction to
wavelets and a discussion about wavelet model structures. In section 4, the identification method
and the implementation strategy are presented. Section 5 illustrates the proposed approach using
two examples. Finally conclusions are drawn in section 6.

2 The CML model

Consider a d-dimensional lattice I consisting of the set of all integer coordinate vectors ¢ =
(41,+++,14) € Z% The deterministic CML state-space model of spatio-temporal dynamical sys-
tems defined over I is of the following form (Coca and Billings 2001)

:L',(f) = fg(.x"l‘@(?f e 1), ‘?.t.g;(t = 1)) + fc(l“i(t — 1), U.,;(t — 1), Sm.’Ei(f =iz 1), Smu,-(t = 1)) (1)
where z;(t) € X; C R® and w;(t) € U; C RY, X; and U; are open sets, n and [-dimensional
vectors representing the local state and input variables respectively at the ith site in I, and f;
and f. are piecewise differentiable maps. s™ is a spatial shift operator, which is defined as

B = (g, @02 e gP) (2)

such that

Smwi (t) = (5@1 mi(t)a spzzi(t)a Ty Spmmi (t)) = ('TH-M (t)a Titpy (t}v  Titpm (t)) (3)

where p1,ps,---,Pm are the indices of the neighbours of the ith site - that is the region in [
around the sth site, which influences the dynamics of that particular site.

The CML model (1) can also be written, in terms of the global state and input variables z =
{m,;}z-g CX= Hiel’ X;and u = {ui}iel clU= Hie}' Lf“ as follows

z(t) = f(a(t - 1), u(t - 1)) (4)

where f : X xU — X is the function sequence f = {f;};c; with f; = fi+f. and i = {13,- +,i4} €
1.

In general, the direct measurement of the state vector z is not possible and only some observable
variable y which depends on the state and input can be measured. Therefore, the state-space
model of the CML is usually complemented with a2 measurement equation

yi(t) = hi(z(t)) ()




Here it is assumed that the lattice equations are spatially invariant over the observed spatial
domain. This implies that the difference equations corresponding to each lattice site or location
are the same for all lattice sites. Generally it is alsc assumed that the following input-output
representation

yit) = g{a™ui(t), d™us(t), s™ @ (1), 5™ i (%)) (6)

can be derived for any site from (1) and (5). In (6), q is a backward shift operator such that

qyi(t) = (k= 1), ult —2), -, v — ny)) (7)

A number of sufficient conditions which ensure that this can be found are given in Billings and
Coca (2002) and Guo, Mei and Billing (2002).

Many spatio-temporal patterns can be generated from the above CML model (6). Two typical
examples are the reaction-diffusion processes and predator-prey populations in ecosystems. CML
models of both types of systems will be identified using the proposed method later on in this
paper.

Note that in eqn. (6) g is generally a nonlinear differential map depending on the history of local
input and output variables, and on the variables at some neighbouring sites. If g is unknown then
the nonlinearity of g makes it difficult to apply traditional identification techniques. It is common
practice to approximate nonlinear input-output equations from the available data using a known
set of basis functions or regressors. Typical classes of regressors used in nonlinear identification
include polynomial and rational functions, Gaussian radial basis functions and wavelets. In this
paper, wavelets are chosen as basis functions to approximate the CML model (6).

3 Wavelet models

3.1 Wavelets for identification

The approximating properties of wavelet multiresolution expansions in many situations outper-
form many other approximation schemes (DeVore et al. 1992). Because of the space-frequency
localisation properties of the functions involved, wavelets are ideal candidates to represent spa-
tial model structures which can match the complexity of the underlying nonlinear relationship
without the risk of overfitting. The advantage in this case is that the approximation can be
refined locally over a subregion in the input domain without affecting the model elsewhere too
much.

In practice, a multiresolution approximation can be implemented using different types of wavelet
and scaling basis functions, the class usually depends on the applications. For nonlinear system
identification, the class of semi-orthogonal wavelet multiresolution approximation introduced by

4




Chui and Wang (1992), defined in terms of B-spline scaling and wavelet basis functions are
particularly suitable. The main reasons are that B-spline wavelets are compactly supported and
analytic which provide near-optimal time-frequency localisation. Moreover, a comparative study
of the approximation power of some classes of wavelet decompositions (Sweldens and Piessens
1994) emphasized that B-spline wavelets are by far the best in terms of the approximation rate.
Practically this means that fewer resolution levels are required to approximate a function with
a given degree of accuracy. Since each extra level doubles the amount of work, the selection of
wavelets is clearly important.

3.2 B-spline wavelet models

Consider a wavelet multiresolution approximation structure which allows the representation of
a square-sumable function f(-) as a series expansion in terms of the translates and dilates of a
scaling and a wavelet basis function ¢(z) and (z)

co

flz)= % Cinbik(z) + 2D dixthin() (8)

I=j k

where ¢ and di are the coefficients of the expansion, ¢;(z) = 2i2¢(2z — k) and Yii(z) =
2424 (2'z — k). In (8) j is an integer representing the scale while % is the translation parameter,
an integer indicationg the location of the basis function.

The scaling basis function considered in this paper is the m-th order cardinal B-spline function
¢(z) = ¢™(x) = f™(z) given by the recursive relation

m — I m—1 , M= _
Bm(a) = 2™ a) + 2o~ 1) ©)
where 5%(z) is the indicator function
1 ifze(0,1)

AH(z) = { (10)

0 otherwise

The wavelet function is defined as a linear combination of scaling functions

3m—2

P™(z) = Y qo™(2z—1) (11)
=0

with the coefficients given by




q:=;;i):§(?)¢2m(l_k+l)>lzov“"3m‘"2 (12)

The wavelet model of the input-output CML equation (6) can be obtained by expanding the
nonlinear function g as a multiresolution wavelet series in terms of the B-spline scaling and
wavelet functions as follows

yi(t Zﬁjkgj, )., kEZ (13)

where

X = (q™ui(t), g™ ua(t), s™ q™ui(t), 8™ g™ us(t)) (14)

is the vector of regression variables consisting of past outputs, inputs, coupling variables from
the neighbouring sites, § = {6, 7,k € Z} is the parameter vector and g = {g; x};rez represents
the model set, the family of scaling and wavelet basis functions (or regressors) doubly indexed
according to scale and location.

Note that if X = z is a scalar, then

{954(2)} = {Gion(2), ¥ix(2) },5 = Jo G,k € Z (15)

where ¢(z) = ¢™(z) = f™(z) and ¢(z) = ¥™(z) for some positive integer m are the B-spline
scaling and wavelet functions given in (9) and (11) and j, is the starting scale. Multi-variable
bases can be constructed using the tensor product method. A d— dimensional multi-resolution
approximation can be implemented using the basis functions {®(z)} and {T®(z)},—; .. 54_; con-
structed as tensor products of scalar basis functions. Assuming X = {z;,2z,} for example, the
multiresolution decomposition can be implemented in terms of the translation and dilations of
the following two-dimensional basis functions

2(X) = o(z1)o(za) (16)
TO(X) = ¢(z1)9(z2)
TO(X) = 1p(z1)d(z2)
TO(X) = h(z1)v(za)

In this case

{93 (X)} = {0 (20), TH0), WAX), CAX)}, 5 > o, 5o k € Z (17)




4 Identification algorithm

In theory, the wavelet multiresolution approximation is an infinite series expansion. In practice,
however, it is not realistic to use all the terms in this infinite series expansion. Generally the
objective of the identification algorithm is to obtain a truncated finite representation containing
the terms up to some orders of scaling and dilation. Therefore the identified CML model will
be an approximate representation of the underlying spatio-temporal dynamics, which can be
equivalently described as an infinite wavelet series. Although this is a finite approximation
representation, in practice, it can be made to approximate the underlying dynamics at any given
accuracy. Note that the key task of the identification algorithm is to select the desirable terms
for the final representation from a given set of candidate terms {g;x(X)}; xeq- In this paper, the
orthogonal least squares algorithm (Chen, Billing, and Luo 1989) is employed to implement the
selection task. Based on the algorithm, the iterative identification procedure can be outlined as
follows

Step 1 Determine the spatial neighbourhood sites (represented by sm’) of the ith site.

_Step 2 Select the time lags n, and n,, then the process variables involved in the identification is
{Smly’i(t - 1)) i :Sm’yi(t - ny): Sm‘u'i(t = 1)1 R 7sm1ui(t - nﬂ)} (18) 2

For above each process variable initialise the following parameters

- the order of B-spline wavelet and scaling functions used to implement the model;
- the starting resolution;
- the number of resolutions.

Step 3 Apply the orthogonal least squares algorithm to obtain the terms and parameters of the
CML model (wavelets as regressors).

Step 4 Apply model validity test to evaluate the model. If no valid models are found, then the set
of candidate terms is refined in the following way

- select the resolution just one order higher than the current used;
- increase the order of B-spline functions;

- add higher dimensional terms to the set of candidate terms.

If data is available from more sensors than the minimum required to extract the CML equations,
the additional measurements can be used in model validation. The CML model identified using
a set of data from a given spatial site can be validated on data recorded at different spatial
locations by computing the model predicted output

95(t) = g(a™9;(t), @™ u;(t), s™ @ §;(2), s™ g™ u;(t)) (29)
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Model predicted output is a much more rigorous test than one step ahead predicted outputs

which most authors use.

Note that in the above identification procedure, the spatial neighbourhood sites (represented by
s™) of the identified site and the time lags (n,,n,) need to be known a priori. In other words,
the neighbourhood of the identified site, that is, the region around that site which influences
the dynamics of that site in the spatial domain and the time domain need to be known before
starting the identification. In practice, these two factors are important in determining the spatio-
temporal dynamics of the underlying system. Determining which site and what time lag should
be included in the model structure is therefore very important in CML identification. This

problem has been studied by Guo, Mei, and Billings (2002).

5 Simulation studies

5.1 Example 1 - Linear Diffusion Equation

Consider the following diffusion equation

*u(t, ) o*u(t, )
BE C P e u(t, z),z € [0, 1]
with initial conditions
v(0,z) = 0
: dy(;; 2 = dexp(—z) + exp(—0.5z)

where

u(t, z) = —13exp(—z)cos(1.5t) — 9.32exp(—0.5z)cos(2.1%)

For C' = 1.0 the exact solution v(t, z) of the initial value problem (20), (22) is

v(t,z) = 4exp(—x)cos(l.5t) + 2exp(—0.5z)cos(2.1¢)
—4exp(—z)exp(—t) — 2exp(—0.5z)exp(—0.5t)

The measurement function was taken as

(20)

(21)

(23)




Terms Estimates ERR STD
Goo(vilt — 1))  3.2203e-01 9.9576e-01 3.9659e-02
doo(ui(t —1)) -8.3119e¢-03 1.6033e-05 3.9600e-02
dop(vi1(t—1)) 3.7405e-01 9.9002e-04 3.4647e-02
doo(vica(t —2)) 2.0120e-01 2.1336e-04 3.3483e-02
doo(vi(t—2))  1.0362e-01 3.0315e-05 3.3314e-02
doolus(t—2))  1.1808e-02 6.7397e-07 3.3310e-02

Table 1: Example 1: The terms and parameters of the final CML model

y(t,z) = v(t, z) (24)

The reference solution was sampled at 15 equally spaced points over the spatial domain ) =
[0,1],z = {z1, -, zxn}. From each location, 500 input/output data points sampled at At =
/100 were generated. Note that all data were normalised to the interval (0,1). The data are
plotted in Fig.(1).

In this simulation, the neighbourhood was selected to be 4 — 1 and i + 1 in the spatial domain
and t — 1, — 2 in the time domain. The identification data consisted of the first 30 data points
of input /output data u;(t), 4 (t) at site i = 3. In addition, 30 input and output data u;(t), vi—1(%)
and y;41(t) from neighbouring locations 7 — 1,i + 1 acted as inputs during the identification.
The identified model using the forward regression orthogonal least squares algorithm with the
following parameters: the order of B-spline is 2, initial scale is 0, and the maximal resolution is
3 for all variables, is listed in Table (1), where ERR denotes the Error Reduction Ratio (Chen,
Billings, and Luo 1989) and STD denotes the standard deviations.

The model predicted output is plotted in Fig.(2), which shows very good agreement between the
exact solution and the CML model output.

5.2 Example 2 - Predator-prey populations in ecosystems

Consider the following spatio-temporal evolution of interacting populations on a two-dimensional
coupled map lattice (Séle, Valls and Bascompte 1992, Coca and Billings 2001)

zi(t) = pzi(t— 1)1 =zt — 1))exp(—Bui(t — 1)) + D1 V2zi(t — 1) (25)
u(t) = it —1)(1—exp(—Pyi(t — 1)) + D2 V2ys(t — 1)

which 4 = (i1,42) € Z* and the coupling is given by a discrete diffusion operator, i.e.
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2 _

Vi = Ti-1y + Tigiiy + Biyip—1 + iy ipr1 — 425, 4, (26)
2 —

Vria = Yi~lja + Yirt1ia + Yirjio—1 + Yirsint1 — iy ip

This CML model describes the evolution of the host and parasitoid population on the lattice
Z? in which z; = Tiyi, and Y; = Y 4, are the host and parasitoid population respectively. It
has been shown (Séle, Valls and Bascompte 1992) that this CML model is able to exhibit many
interesting spatio-temporal patterns including spiral waves, chaotic and periodic dynamics under
the different parameters and/or different initial conditions.

In this simulation, the measurement function used for identification was just set to be z;(t) and
y;(t) for each site i € Z2 and the data used for identification was generated by simulating the
CML model (26) with p = 4,8 = 5,D; = 0.0001, D, = 0.20 for 1000 steps over a 50 x 50
lattice I starting from randomly generated initial populations and periodic boundary conditions.
Following Séle, Valls and Bascompte (1992), the initial condition for which both populations
were randomly generated was as follows

03< z;(0) <04,foralliel (27)
03< %(0) <04,foriel

Iy = {10,420, %30, %40, 350} being 5 randomly selected lattice sites. As stated in Séle, Valls and
Bascompte (1992), this is a situation that an initial small number of predators appearing at
random positions lead to the formation of some patterns.

The identification was performed using the proposed method from a single site (10,10) and the
four nearest neighbours, namely (9,10), (11, 10), (10,9), (10,11). The identification data con-
sisted of the last 100 data points out of total 1000 input /output data points. The initial param-
eters were: the order of B-spline is 2, initial scale is 0 and the maximal resolution is 1 for all
variables. The identified model is listed in Table (2)

The system and model predicted outputs are plotted in Fig.(3), which show that the identified
CML model can reproduce the spatio-temporal patterns of the original system very well. Note
that comparing with the CML model (10 terms for both equations) obtained by using polynomial
regressors (Coca and Billing 2001), the resulting CML model using wavelets only contains 7 terms
in the first equation, and 6 terms in the second equation. Although there are fewer terms in the
model, it can be observed that the identified model and the original model can generate very
similar spatio-temporal patterns under the same initial and boundary conditions. In this sense,
this means that the proposed identification algorithm is more effective.
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Figure 3: Example 2: System and model predicted outputs at ¢ = 1000




Output Terms Estimates ERR STD
i (h) 00T im1(t — 1)) 1.3998¢+00 9.5837e-01 7.0858e-02
b0.0(Tiy10(t — 1)) -1.7289e-01  2.6573e-02 4.66686-02
(ﬁg’g(mihiz (t = 1))@50’{](%‘1,2'2 (t = 1)) -7.9931e-03 4.0158e-03 4.0701e-02
w{),n(mil,iz(‘t—l)) 2.1287e-02  2.1820e-03 3.6745e-02
Wo,-1(%i i (t — 1)) -3.7536e-01 7.1279e-04 3.5296e-02
b0.0(Ti,—1.5,(t — 1)) -8.7093e-02 3.1803e-04 3.4606e-02
Bo0(Ti, as1 (t — 1)) -2.2540e-02 1.2784e-05 3.4564e-02
G) 0.0 Wiri—1(t — 1)) 1.4245e+00 9.1482e-01 6.3807e-02
Po.0(Uint1ia(E— 1)) -2.1467e-01 4.3702e-02 4.4427e-02
G0,0(Uin iz (t — 1)) bo,0(Ti 5, (E — 1)) -8.0286e-01 1.1992e-02 3.7521e-02
0,0 Wiy (E — 1)) -1.1236e-02 1.1643e-03 3.6695¢-02
bo.o(Wiire1(t — 1)) -4.2812e-02 1.1570e-04 3.6587e-02
Bo.0(Ti; 1.4, (t — 1)) 2.1707e-03 1.7294e-07 3.6586e-02

Table 2: Example 2: The terms and parameters of the final CML model

6 Conclusions

A novel approach to the identification of CML models of spatio-temporal dynamics, which is
the origin of some pattern formation, has been introduced. It has been demonstrated that the
B-spline wavelet multiresolution approximation method provides a powerful approximation tool
for the spatio-temporal dynamics being responsible for pattern formation. It is also shown that
it is possible to extract the CML model using only a small number of spatio-temporal locations.
Simulation results were included to demonstrate that the new wavelet-based identification pro-
cedure can produce excellent final CML models with a significant reduction in computational
resource.
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