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Prediction of the Dst Index Using Multiresolution Wavelet Models

H.L. Wei, S.A. Billings and M. Balikhin

Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 3JD, UK

A new identification approach is introduced for predicting the Dst index using multi-resolution B-spline wavelet
models based on an observational data set consisting of VBs, the solar wind parameter as the input, and the Dsz index
as the output. The relationship between the input VBs and output Dst is initially described using a B-spline wavelet
model. This model is then simplified using an OLS-ERR (orthogonal least squares and error reduction ratio)
algorithm by selecting the significant model terms to produce a parsimonious wavelet model. Forecasts of the Dst

index are then computed based on this model.
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1. Imtroduction

The sun is a source of a continuous flow of charged particles, ions and electrons called the solar wind. The
terrestrial magnetic field shields the Earth from the solar wind, and forms a cavity in the solar wind flow that is
called the terrestrial magnetosphere. The magnetopause is a boundary of the cavity, and its position on the day
side (sunward side) of the magnetosphere can be determined as the surface where there is a balance between the
dynamic pressure of the solar wind outside the magnetosphere and the pressure of the terrestrial magnetic field
inside. A complex current system exists in the magnetosphere to support the complex structure of the
magnetosphere and the magnetopause. Changes in the solar wind velocity, density or magnetic field lead to
changes in the shape of the magnetopause and variations in the magnetospheric current system. In addition if the
solar wind magnetic field has a component directed towards the south a reconnection between the terrestrial
magnetic field and the solar wind magnetic field is initiated. Such a reconnection results in a very drastic
modification to the magnetospheric current system and this phenomenon is referred to as magnetic storms.
During a magnetic storm, which can last for hours, the magnetic field on the Earth’s surface will change as a
result of the variations of the magnetospheric current system. Changes in the magnetic field induce considerable
currents in long conductors on the terrestrial surface such as power lines and pipe-lines. Unpredicted currents in
power lines can lead to blackouts of huge areas, the Ontario Blackout is just one recent example. Other
undesirable effects include increased radiation to crew and passengers on long flights, and effects on
communications and radio-wave propagation. Forecasting geomagnetic storms is therefore highly desirable and

can aid the prevention of such effects.

The magnetosphere can be considered as a complex input-output system. For such a system, the solar wind
plays the role of the input and the geomagnetic indeces can be considered as outputs. The Dsz index is used to
measure the disturbance of the geomagnetic field in the magnetic storm. Numerous studies of correlations
between the solar wind parameters and magnetospheric disturbances show that the product of the solar wind

velocity V and the southward component of the magnetic field, quantified by Bs, represents the input that can be




considered as the input to the magnetosphere [Gonzalez et al. 1994]. This multiplied input will be denoted by

VBs.

Several approaches have been proposed to forecast the Dst index and other geomagnetic activity indices based
on input-output observational data, see for example, the review by Klimas et al. [1996]. The analogue modelling
approach which aims to build low-dimensional dynamic analogue systems that can be used to interpret the
physical interactions in the magnetosphere and to forecast the geomagnetic indices, has been successfully
applied by Goertz et al. [1993] and Klimas et al. [1997,1998,1999]. Existing input-output observational data-
based modelling approaches which have been applied to forecast these indices include ARMA models
[McPherron, 1999; Vassiliadis, 1999; Vassiliadis, 2000 and the references therein], neural networks [Hermandez
et al, 1993; Wu and Lundsted, 1997], NARMAX models [Boaghe et al., 2001], and wavelet-NARMAX models
[Billings and Wei, 2003; Wei et al., 2003a].

The aim of the present paper is to introduce a new approach for identifying the input-output relationship for
the magnetosphere system based on a limited observational Input-output data set. The nonlinear dynamics of the
magnetosphere system is initially assumed to be described by a wavelet model with over-complete wavelet
bases, an OLS-ERR algorithm [Billings et al., 1988, 1989: Korenberg et al., 1988; Chen et al., 1989] is then
applied to determine the model structure and to select the most significant model terms. The resulting
parsimonious model, which consists of a relatively small number of wavelet basis functions, is then used to

predict the Dsz index.

2. B-spline wavelets

2.1 Why wavelets ?

Among almost all the functions used for the purpose of approximation, few have had such an impact and
spurred so much interest as wavelets. Wavelet decompositions outperform many other approximation schemes
and offer a flexible capability for approximating arbitrary functions. Wavelet basis functions have the property
of localization in both time and frequency. Due to this inherent property, wavelet approximations provide the
foundation for representing arbitrary functions economically using only a small number of basis functions. It can
be shown that the intrinsic nonlinear dynamics related to real nonlinear systems can easily be captured by an

appropriately fitted wavelet model consisting of a small number of wavelet basis functions.

2.2 Multi-resolution wavelet decompositions

Under some assumptions and considerations, an orthogonal wavelet system can be constructed using
multiresolution analysis (MRA) [Mallat, 1989; Chui, 1992; Daubechies, 1992]. Assume that the wavelet /' and
associated scaling function¢ constitute an orthogonal wavelet system, then any function f € L*(R) can be
expressed as a multiresolution wavelet decomposition

F=3a, 0,0+ 3 Y d, 0, (x (1)
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where @, ,(x)= 21292 x~k) andgﬁ'j‘k {x) = 2ﬂz¢(2jx- k), j,k€ Z are the scale and translation
parameters, and j, is an arbitrary integer representing the lowest resolution or scaling level.

Using the concept of rensor products, the multiresolution decomposition (9) can be immediately generalised

to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by taking the zensor
product of the one-dimensional scaling and wavelet functions [Mallat,1989]. Let fe L*(R?%),then f(x) can

be represented by the multiresolution wavelet decomposition as
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with 77 = @ or @ (scalar scaling function or the mother wavelet) but at least one n(i) =¢Q.

Notice that if j, is large enough, the approximation representation (2) can be expressed using only the scaling

function @, that is, there exists a sufficiently large integer J, such that

d
FGrx) = 20, @, x) = Y, 29[ x, ~k) (5)
k i=1
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2.3 B-spline wavelets

Although many functions can be chosen as scaling and/or wavelet functions, most of these are not suitable for
system identification applications, especially in the case of multidimensional and multiresolution expansions. An
implementation, which has been tested with very good results, involves B-spline and B-wavelet functions in
multiresolution wavelet decompositions [Billings and Coca, 1999; Coca and Billings, 2001; Wei and Billings,

2002].

B-splines are piece-wise polynomial functions with good local properties, and were originally introduced by
Chui and Wang [1992] to define a class of semi-orthogonal wavelets for representing a signal using

multiroselution decompositions.

The B-spline function of  th order is defined by the following recursive formula:

m-—Xx

N (x)=—2-N,, (x)+ N_ (x-1), m=22 ©)
m—1 m—1
with
1 if xe[0,1)
N = % = 7
/() Ao (x) {0 otherwise &
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Setting N, as the scaling function, that is, @(x) = N_(x), then both the wavelet and the scaling functions

can be expressed in terms of the scaling function N, (x) as follows

o(x) = chNm (2x—k) (8)
k=0
3m-2

@(x)= Y d,N,(2x~k) ©)
k=0

with the coefficients given by
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Clearly, the support of the m th order B-spline wavelet and the associated scaling function are
supp ¢ = suppN,,, =[0,m]
(12)
supp ¢ =[0,2m 1]

Both the B-spline wavelets and the associated scaling functions are symmetric or anti-symmetric within the
supports. The most commonly used B-spline wavelets are the linear (71 = 2) and cubic (m = 4) cases, both of

which can be expressed explicitly. In the present study, the 4™ order B-spline and the associated wavelet
functions will be used for magnetosphere system identification and the Dsz index prediction. The 4® order B-

spline is defined as

1a[4 : o
PR =N, (=23, S (13)

j=0

where x} =x" for x>0 and x] =0 for x<0.

3. Nonlinear Input-Output Representations

3.1 The NARMAX model
A wide range of nonlinear systems can be described using the NARMAX model proposed by Leontaritis and

Billings [1985]

y(t) = f(y(r—l),---,y(t—ny),u(r——1),~-‘,u(r—nu),e(t—l),~--,e(r—ng))+e(r) (14)
where f is an unknown nonlinear mapping, %#() and Y(¢) are the sampled input and output sequences,

n,and 1 are the maximum input and output lags, respectively. The noise variable e(?) with maximum lag

n,, is unobservable but is assumed to be bounded and uncorrelated with the inputs and the past outputs. The
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model (14) relates the inputs and outputs and takes into account the combined effects of measurement noise,
modelling errors and unmeasured disturbances represented by the noise variable e(2) . As a general and natural

representation for a wide class of linear and nonlinear systems, model (14) includes, as special cases, several
model types, including the Volterra and Wiener representations, time-invariant and time-varying AR(X), NARX

and ARMA(X) structures, output-affine and rational models, and the bilinear model [Pearson, 1999].

The NARX model is a special case of the NARMAX model and takes the form

YO = FE =D,y ~n,)ult =1),--,u(t ~n,)) +e(t) )

3.2 The approximation of multivariate functions in high-dimensions
It can be shown that a multivariate nonlinear function can often be decomposed into a superposition of a
number of functional components similar to the well known functional analysis of variance (ANOVA)

expansions [Chen, 1993]
YO = £ (5 (0, 5,07, 1)
= ot DGO T h G5O+ Y f(xx5) ¢

1=i<j<n I<i<j<k=n

D Fun, (5 @O, @, % O) o frpn (5 (0,2, (1), 0, %, (1) +e(t)  (16)
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where the first functional component f is a constant to indicate the intrinsic varying trend; fi fjj. 3%y ETE
univariate, bivariate, etc., functional components. The univariate functional components ﬁ (x[.) represent the
independent contribution to the system output that arises from the action of the ith variable X, alone; the
bivariate functional components fij (xi , X j) represent the interacting contribution to the system output from the

input variables X; and X,, etc. Notice that the constant term f, can often be omitted since it can be combined

into other functional components. Although the ANOVA expansion (16) involves up to 2" different functional
components, experience shows that a truncated representation containing the components up to the bivariate

functional terms is often sufficient

YO = £+ £, + Y S G, 0.5, (1) + e0) an

p=1 g=p+1

In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions can
be chosen to express the functional components in the models (16) and (17). In the present study, however,

mutiresolution wavelet decompositions will be chosen to describe the functional components. The functional

components f;

4

by, (le (r),xl.2 (r),---,xjr(t))(léil<i2<---<ir_<_n) will be expressed using the
multiresolution wavelet decompositions (2) or (5). For example, the univariate and bivariate functional
component f, (x, (7)) (p=12,...,n) and [, (x,(),x,(2)) (1= p<g<n) can be expressed using the

multiresolution wavelet decompositions (2) and (5) as
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y(t = k), 1<k<n,

x, (1) = (20)
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The quasi-ANOVA expansion (16) can then be viewed as a special form of the NARX model (15) for dynamic

input and output systems.

3.3 Model term determination

Assume that M bases (scalar mother wavelet or scaling functions or multiplication of some scalar wavelet
and scaling functions) are required to expand the NARX model (16) or (17), and for convenience of

representation also assume that the M wavelet bases are ordered according to a single index m, that is, the
wavelet dictionary D ={p,_}™_ | then (16) or (17) can be expressed as a linear-in-the-parameters form as

belm-N:
M
Y(©) =>.6,p, () +e@) 1)
m=1

which can be solved using linear regression techniques. Note that for large 7, and 7, the model (21) might

involve a great number of model terms or regressors. Experience shows that very often many of the model terms
are redundant and therefore are insignificant to the system output and can be removed from the model. An
efficient orthogonal least squares (OLS) algorithm and an error deduction ratio (ERR) criterion [Billings et al.,
1988, 1989; Korenberg et al., 1988; Chen et al., 1989] was developed to determine which terms should be

included in the model.

4. System Identification

Figure 1 shows 1464 data points of measurement of the solar wind parameter VBs (imput) and the Dsz index
(output) with a sample period T=1hour from 1% March 1979 to 30® April 1979. This data set was separated into
the estimation set consisting of 744 input-output data points measured in March 1979, and the validation set
consisting of 711 input-output data points measured in April 1979. The objective was to identify an input-output
nonlinear model based on the estimation data set. This model was then used to predict the Dst index over the

next month.

A variable selection algorithm [Wei et al., 2003b] was applied and six significant variables,{Dst (t-1),Dsz (t-
2), Dst (t-3),Dst (t-4), VBs (t-1),VBs (t-2)} were selected for this data set. These six variables were used to form

a wavelet model.
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Figure 1 The input (VBs) and output(Dsz) data of the terrestrial magnetospheric dynamic system

4.1 Data pre-processing

The original observational data X(r) =[X,(t),X,(t), -, X, ()]” are often normalized into a standard

domain, for example the unit hypercube[0, 1]", for the convenience of problem description, where X, (¢) is
defined similar to (20), and n=6 for the input-output data set shown in Figure 1. This is especially true when a
compactly supported wavelet and/or a scaling function are chosen in the multiresolution decomposition (2)
and/or (5). Taking the univariate Haar wavelet (the first-order B-spline wavelet) as an example, it is much easier
to select the starting resolution level and the range of the shift parameters if the sample data has been normalized

to [0, 1].

Assume that the initial observations X € R" fall into the finite hypercube[a, ,b 1X[a,,b,]1%X---[a,,D,].
then X(f)can be normalized into the unit hypercube[0,1]"by means of a simple linear transform
x,(t)=(x()—a)/(b,—a), i=12,---,n. The modelling can then be performed in the standard
hypercube [0,1]", and the model output can then be recovered to the original system operating domain by
taking the inverse transform which converts X back into X .

After data nomalisation the truncated multiresolution wavelet models (18) and (19) can be expressed as

241 1 Jy 2741
£, @)= D @i, (2, N+ Y, Y BEH,(x, ), p=12,n, (22)
k=-3 j=jy k=2
272 1272
FaaCep @2, = D D 1,80, 0, OBy, 4, (5, (). 1S p<g<n, (23)
ky=—3k,=-3




4.2 Modelling the Dsz index

The initial wavelet model was chosen as

y() = f(y(t =1,y =2), y(t = 3), y(t = 4),u(t = D, ut - 2)) + e(2)

6 5 6
=Y FiGn @)+, Y, £ (i (1), x,(0)) + () (24)
=1

i=l j=i+l

where x;(#)=y(t —i)=Dst(t —i) for i=1,2,3,4 and x;(t) =u(t —i+3)=VBs(t —i+3) for i=5,6, f; and
fjj are unknown univariate and bivariate functions which can be approximated by one- and two-dimensional
wavelet decompositions. In this example, both the input and output data points were initially normalized and the

modelling procedure was performed on the standard hypercube[0, 1], where n =6. The first 744 input-output

data points were used for model identification and the remaining 711 data points were used for testing.

Each univariate function component f, was decomposed using the multiresolution wavelet model (22) with

&

starting resolution scale j, =0 and the highest resolution scale J; = j_,, =5, and each bivariate functional

component [, was decomposed using the multiresolution wavelet model (23) with the resolution scale J>=2.

The “initial model (24) contains 1209 candidate regressors (model terms) after decomposition into the
multiresolution wavelet models. An OLS-ERR algorithm [Billings et al., 1988, 1989; Korenberg et al., 1988;

Chen et al., 1989] was then used to select the significant model terms. The final was found to be

9
y(@) =Y 6,B,(t) +elt) @5)

i=1
where B, (f)(i=1.2, ....9) are wavelet regressors formed by the 4th-order B-spline function defined by (13),
and @, (i=1,2,...,9) are the parameters. The terms, parameters and corresponding ERR values are listed in Table

1. Notice again that the variables in the model (24) and (25) were normalised into [0, 1], and the model outputs

were recovered to the original system operating domain by taking inverse transforms.

4.3 Prediction results

In practice the one-step-ahead (one-hour-ahead) predictions for the Dst index are not useful, since it is difficult
during a few minutes to collect all the data from both satellite measurements and ground based magnetometers
and to feed them into the model (25) to obtain predictions. Forecasting the Dst index several months ahead of the
real measurements is also seldom required. To be practically useful, the predictions should be made on some
time scale which is intermediate between these two extreme cases. Both 6- and 12-hour-ahead predictions based
on the model (25) were considered here. The comparisons between the 6- and 12-hour-ahead predictions, the
mode] predicted outputs (the model free-run behaviour) and the measurements are shown in Figure 2, which
clearly shows that both the short and long term predictions of the Dsr index based on the identified model are
excellent. The discrepancy between the predicted outputs and the measured values of the Dst index might be the

result of other inputs which affect the system output but were not included in the current model.
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Table 1 The selected model terms, estimated parameters and the corresponding ERR values for the magnetospheric dynamic system

Number B, (1) o ERR,; X 100%
1 @0‘4 (y@-1)) 1.43819914e+000 9.85860803e+001
2 ¢D,_1 Fald— 1) -4.09138701e-001 1.22631148e+000
3 ¢0’0 (y(z —4)) 1.22124826e+000 3.88133408e-002
4 ¢0,H1 (y(f _ 4)) -1.85552706e-001 3.93542828e-003
5 (Dlo_o (u(t —2)) 2.05974080e+000 1.25672979¢-003
6 ¢0‘0 (y(t —2)) -3.28263544e-001 1.18231886e-004
7 ¢(),() (y(t—3)) 5.26676127e-001 3.85101910e-004
8 ¢0’_1 (y(t =3)) -4.31071342e-002 3.98627720e-005
9 ¢’0__1 (y(t —2)) -2.13486968e-002 5.21787785¢e-006

Note: 1) ¢j’k (x) =2 3 ¢(2j X — k) — the 4th-order B-spline functions defined by (13);
2) y(£)=Ds1(1) and u(r)=VBs(1).
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Figure 2 Comparisons of the 6- and 12-hour-ahead predictions, model predicted outputs and the measurements for the solar
wind Dst index of April 1979. (a) 6-hour-ahead predictions; (b) 12-hour-ahead predictions; (c) Model predicted outputs.
{Solid—measurements; Dashed—=6-hour-ahead, 12- hour-ahead, or model predicted outputs).




5. Conclusions

A novel approach has been proposed for predicting the Dst index using multiresolution B-spline wavelet
decompositions. By expanding a high-order nonlinear model into a sum of additive and interactive low-
dimensional submodels, the common problem associated with the curse-of-dimensionality in high-order
nonlinear system modelling has been greatly alleviated. Wavelets have excellent approximation properties which
outperform many other approximation schemes and are well-suited for approximating general nonlinear signals,
even those with sharp discontinuities. The intrinsic dynamics in nonlinear systems can be easily captured by a
well fitted wavelet model with a small number of wavelet basis functions. This suggests that wavelets are a

powerful tool in nonlinear system identification.

The main disadvantage of the new wavelet based modelling approach seems to be that a large number of
candidate wavelet basis functions might be involved in the initial wavelet model for a high-dimensional system
with several variables (large time lags for the system input and/or system output). Fortunately, this problem can
be successfully resolved by employing the well-known and widely used ORS-ERR algorithm, which selects and

ranks the significant model terms (regressors).

The prediction results for the Dst index in the example provided in section 4 clearly demonstrates the
applicability and effectiveness of the new identification approach. This implies that, given some observational
data on the input and output of the magnetospheric dynamic system, the modelling approach introduced in the
present study can be used to directly identify a wavelet model based on the observational data, and the identified

model can then be used to accurately predict the future behaviour of the Dst index.
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