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Abstract

Variational data assimilation (4DVar) is a powerful technique for tuning dynamical models to observa-

tions, in order not only to forecast future time evolution of the system, but to make inferences about

quantities that are otherwise unconstrained by observation. We apply this technique, well-grounded in

meteorology (Daley, 1994) and oceanography (Wunsch, 1996), to the Earth’s core where incompressible

fluid motions in an electrically conducting medium are responsible for magnetic field generation. Our

dynamical model’s momentum equation neglects inertia such that the entire evolution depends only on

the structure of the initial magnetic field; time evolution of the system is solely governed by the equation

of magnetic induction. Nevertheless the dynamical system encompasses the effects of rotation, Lorentz

forces and viscosity and aims to mimic a reasonable force-balance in the Earth’s core. Building on the

work of Li et al. (2011), in order to optimise the data-fit subject to the dynamics, we further develop the

mathematical structure of the adjoint equations of the system. We address the feasibility of recovering

3D spatial properties of the system using only time-varying 2D observations of different character. Using

closed-loop testing, we demonstrate the retrievability of the initial state (and thus the entire trajectory) of

the system over convective timescales, when sampling in regions in which magnetic induction dominates

over diffusion. The results suggest the possibility of retrieving the entire trajectory of the dynamo system

of the Earth using the 400-year model of secular variation gufm1.

1 Introduction

Earth’s magnetic field is generated by fluid motions in its electrically-conducting liquid outer core,

whereby convective motions are thought to be driven by cooling of the Earth and crystallisation of the

solid inner core (Olson, 2007). This system is governed by a set of three coupled equations that describe

the conservation of momentum, energy and the evolution in time of the spatially-varying magnetic field.

The resulting magnetic field permeates the silicate mantle and is observable at the Earth’s surface, thus

providing a window into the dynamics of the core (Jackson and Finlay, 2007).

Beginning with the pioneering work of Glatzmaier and Roberts (1995) and Kageyama and Sato

(1995), three-dimensional self-consistent numerical models that simulate this physical system have been
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instrumental in demonstrating the feasibility of this picture of dynamo action in the core. The computer

codes that simulate this dynamical system have now reached a level of maturity such that, additionally,

various basic features of the field are reproduced well: for example, dipolarity and field strength. Suc-

cesses of these models are predominantly measured statistically, by way of the degree to which features

appear, on average, to agree with long-term features of the palaeomagnetic field, or with statistical fea-

tures of the 400-year record of the observed field from the model gufm1 (Jackson et al., 2000). Recently,

even the temporal characteristics of the numerical models, the secular variation, have been statistically

compared to observations with considerable success (Christensen et al., 2012). Whilst the ultimate aim

of such activities is to characterise and to understand the force balances and physical structures within the

core, another approach is to analyse the system’s observed time evolution deterministically rather than

statistically. In this context, properties of the model, such as, inter alia, the dipole moment are analysed

in time. The evolution of such a quantity is termed a trajectory and the purpose of the present work is to

tune the predicted trajectories of the physical model (with the proviso that time span not be too long) to

be in accord with observations.

The techniques used to tune such a physical model to a set of observations are known as data assim-

ilation, and have been used with great success in the last few decades in meteorology (Lynch, 2008) and

oceanography (Ghil, 1989). The particular approach we adopt is termed variational data assimilation

and builds upon our previous work in this area (Li et al., 2011).

Data assimilation as applied to geomagnetism is a relatively nascent activity, beginning with the work

of Fournier et al. (2007), Sun et al. (2007) and Liu et al. (2007), part of a broad body of applications to

the geosciences, which includes seismology (Tarantola, 1984). In meteorology, oceanography and geo-

magnetism, two flavours of data assimilation have been adopted, namely sequential and variational data

assimilation (Evensen, 2006; Talagrand, 2010); the former has recently contributed to the International

Geomagnetic Reference Field (IGRF), (see Kuang et al. (2010)). Although both techniques can be shown

to be equivalent in a certain limit (Evensen, 2006), our choice of the variational method is motivated both

by mathematical succinctness, efficiency and its ease of computability.

The power of data assimilation is both in its ability to produce forecasts of the dynamical model, but

also to make inferences in quantities that are otherwise hidden from observation. One ultimate aim of this

activity is to produce a predictive tool for the internal magnetic field, with a wide variety of applications

in industry and space-weather (Siscoe and Solomon, 2006). A second but much broader goal is to use

the tuned dynamical models to constrain quantities such as the present-day internal magnetic field inside

the core and the mechanism which controls its time evolution (Fournier et al., 2010).

Observations of the Earth’s magnetic field over the last few hundred years exist in the form of data

from permanent magnetic observatories, shipping logs, land surveys (Jonkers et al., 2003) and satellites

(Olsen et al., 2009); on longer timescales archeomagnetic data supplements the record (Korte et al., 2005;

Donadini et al., 2009). The surface measurements are typically transformed into a spherical harmonic

model describing the potential field at the Earth’s surface. Assuming that the mantle is an electrical

insulator, we can straightforwardly downward continue the magnetic field to the edge of the dynamo

region, the core-mantle-boundary (CMB), providing a known distribution of the poloidal magnetic field

over the spherical surface. We term these observations time-varying 2D observations, which differ sub-

stantially from those used in meteorology because of their limited spatial distribution. Although these

data constrain only the surface of the dynamical system and not within, the equivalent 2D problem in

meteorology has been found to have encouraging results (Compo et al., 2006). The de facto model of

time varying magnetic field over the last 400 years is gufm1 of Jackson et al. (2000), which provides

a convenient parameterised representation of the observations and can be used for assimilation. In the
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future, however, it is envisaged that data assimilation techniques should be constrained by the original

observations directly. One further difference between the meteorological and geomagnetic observations

is that the latter are confined to only large scale features. This band-limited nature takes the form, in

the spherical harmonic domain, of a truncation to degrees less than approximately 15 (Langel and Estes,

1982). Nevertheless, 400 years of continuous data represents several core-turnover times (of about 150

years) and thus, by analogy with the atmosphere, gives reason to believe that the data are sufficient to

constrain a large part of the interior dynamics of the core.

Data assimilation techniques have already been used successfully in geomagnetism, but in far more

focussed problems. For example, Canet et al. (2009) applied a variational data assimilation scheme to a

magnetohydrodynamic (MHD) system specialised for short-term dynamics (decadal timescales), the so-

called Quasi Geostrophic (QG) system. The QG model is a simplified system based on the assumption

that the flow is nearly invariant in the direction parallel to the axis of Earth’s rotation, due to the strong

Coriolis force. The resulting 2D flow interacts with the radial component of the magnetic field at the

CMB, whose signature can be observed. In a subsequent landmark work, Gillet et al. (2010) were able,

for the first time, to constrain the interior geomagnetic profile, and its intensity over much of the core to

be 2-3 mT.

At the heart of data assimilation is the prescription of the dynamical model. In this work, we choose

an inertia-free version of the Navier-Stokes equations coupled with the magnetic induction equation.

We consider two variants, one system that is driven by a prescribed time-invariant radial force, and a

second decaying system. This inertia-free system is motivated by the smallness of the Rossby number

in the core, and follows the original philosophy of Glatzmaier and Roberts (1995). In concert with other

authors, our system includes viscosity despite the fact that it is generally considered negligible in the

core. This approximation is unavoidable for numerical reasons. In this formulation, the velocity at every

point in time is uniquely determined by both the prescribed radial force and Lorentz force. The advantage

of this simplification is that the initial structure of the magnetic field determines the entire evolution of

the system. Our prescribed radial force reduces the loss of energy; in the future it is envisaged that a time

varying buoyancy force will be included whose initial structure will then also be an unknown.

At this point we briefly summarise the mathematical developments that are intrinsic to the 4DVar

scheme. Given the aim of bringing the model predictions into accord with observations, we define a Chi-

squared measure of misfit between these two quantities that we then seek to minimise. The minimisation

is achieved by the derivation of the so-called adjoint system of equations, which operate in reverse time.

A series of backward and forward integrations in time, over the prescribed time-window, gives access

to the gradient of the misfit with respect to the initial condition that is sought. This gradient is used,

in conjunction with a conjugate gradient or Newton-type method (Nocedal and Wright, 2006), to itera-

tively update the current estimate of the initial condition until convergence is achieved. A computational

scheme is designed around a spectral discretisation of the equations, based on spherical harmonics and

an expedient radial representation for the full sphere geometry as described in Li et al. (2011); this is the

topic of sections 3 and 4 of the paper. In sections 5 and 6 we describe closed-loop tests, in which the

ability to retrieve known initial conditions is quantified under different observational scenarios. We dis-

cuss the results and their implications for forecasting and inference of geophysical properties in Earth’s

core in section 7.
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2 The governing equations of Earth’s dynamo system

The geodynamo system is governed by three coupled equations for the velocity field u
∗, magnetic field

B
∗ and temperature anomaly T ∗, where the symbol ∗ represents dimensional fields. The flow is assumed

incompressible and vanishes at the core mantle boundary (CMB). The Earth’s mantle is a weak electrical

conductor compared with the Earth’s core, hence we consider the mantle as an electrical insulator and

the magnetic field satisfies an insulating boundary condition at the CMB. The geodynamo system can be

written as

∂u∗

∂t
+ (u∗ · ∇)u∗ + 2Ω∗ × u

∗ = −1

ρ
∇p+

1

ρ
J
∗ ×B

∗ + ν∇2
u
∗ + αgT ∗

r̂, (1)

∂B∗

∂t
= ∇× (u∗ ×B

∗) + η∇2
B

∗, (2)

∂T ∗

∂t
+ u

∗ · ∇T ∗ = κ∇2T ∗ + h∗, (3)

∇ · u∗ = ∇ ·B∗ = 0,

where J∗ = 1
µ0
∇×B

∗ is the electrical current density, ρ is the mass density of the core, ν is the kinematic

viscosity, Ω∗ is the angular velocity, η is the magnetic diffusivity, κ is the thermal-diffusivity, g is the

gravitational acceleration, α is the thermal expansion coefficient, αgT ∗
r̂ is the buoyancy force and h∗ is

an internal energy source. In this work, we neglect (3) and replace the buoyancy force by a prescribed

forcing.

2.1 Simplified MHD model and the control parameters

We work in the full sphere and follow Glatzmaier and Roberts (1995), nondimensionalizing the dynamo

system (1–2) using the characteristic length R (the radius of Earth’s core) and the magnetic decay time

R2/η. With the removal of the temperature equation (3) from the dynamo system, we replace the buoy-

ancy force by a static force, F , in the radial direction. Our governing equations now read

Em

[
∂u

∂t
+ u · ∇u

]
+ ẑ× u = −∇π + (∇×B)×B+ Ek∇2

u+ F ,

∂B

∂t
= ∇× (u×B) +∇2

B, (4)

where the dimensional fields u
∗ and B

∗ are rescaled by the factors R
η and (2Ω∗µ0ρη)

−1/2 such that

u = R
η u

∗ and B = (2Ω∗µ0ρη)
−1/2

B
∗. Two small parameters appear in these equations, the magnetic

Ekman number (sometimes called the magnetic Rossby number), Em, which is estimated to be 10−9

in Earth’s core and the Ekman number, Ek, estimated to be 10−15. Following Glatzmaier and Roberts

(1995), we neglect the inertial term but retain viscosity for numerical reasons. This simplification filters

out numerous types of wave motion, such as Alfvén, torsional and Rossby waves, but remains a good

description of the dynamics over centennial and longer time scales. We note that a similar conclusion

concerning the neglect of the inertial force is reached from a kinematic analysis: taking the westward drift

rate of 5×10−4 m/s, gives a conventional Rossby number of 10−6. A consequence of this approximation

is that the Navier-Stokes equation is converted from prognostic (predictive) to diagnostic form, i.e., at

every instant in time, u is enslaved to F and the magnetic field through the Lorentz force. The governing
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equations now read

N (u,B) ≡ ẑ× u+∇π − (∇×B)×B− Ek∇2
u−F = 0, (5)

I(u,B) ≡ ∂B

∂t
−∇× (u×B)−∇2

B = 0. (6)

An estimate of the ratio of magnetic induction to diffusion is the magnetic Reynolds number, Rm,

which in our rescaled system, we take to be simply Rm = û, where

û =

√
1

V

∫

V
u2dV =

√
〈u,u〉
V

, (7)

denotes a volumetric root-mean-square (rms) and V is the volume of the sphere. In this paper we will

also use the volume integral notation 〈 , 〉

〈a, b〉 =
∫

V
a b dV (8)

for arbitrary quantities a and b. As we show later in the paper, in general this estimate differs from

the true ratio of the magnitudes of the induction to diffusion terms, since it does not take into account

their full spatial structure. In our study, we also use the horizontal rms as a function of radius, i.e., the

horizontal rms of B can be written as

B =

√∫

Ω

1

4π
B2 sin θdθdφ, (9)

where Ω is the spherical surface, not to be confused with the same symbol used for Earth’s angular

velocity in (1).

Taking the estimated Earth value for the magnetic diffusivity η = 1.5m2/s (Olson, 2007), we have

a time unit of the MHD system of (6) of R2/η = 2 × 105 years. Similarly, the Elsasser unit of field

strength is (2Ω∗µ0ρη)
−1/2 ≈ 0.6mT. Adoption of the new values for η of de Koker et al. (2012) would

alter those scales by factors of 3 and
√
3 respectively but this has not been done. We choose a moderate

Ekman number, Ek = 10−4, such that the viscous force is small compared to the Coriolis force and large

enough to make the model computationally feasible. If the rotation rate of the model is one day as that for

Earth, one has the viscous diffusivity of the order of 105 times larger than the magnetic diffusivity, where

as in Earth, this value is expected to be 105 times smaller. The solution of (5 & 6) is uniquely determined

by the initial condition (I.C.) of the magnetic field B(t = 0) = B0 and the boundary conditions (B.C.)

for B and u, which are chosen as electrical insulating B.C. for B and a non-slip B.C. for u. Note that

the velocity field is diagnostically determined and its solution can be written as u = uB + uF , where

uB (driven magnetically) and uF (driven by F) satisfy the linear equations

ẑ× uB − Ek∇2
uB +∇π1 = (∇×B)×B,

ẑ× uF − Ek∇2
uF +∇π2 = F . (10)

Let us briefly consider the energetics of the system (5 & 6). The total energy integrated over all space

satisfies
d

dt

∫
B

2 dV = −
∫

(∇×B)2dV − Ek

∫
(∇× u)2dV +

∫
F · u dV. (11)
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For F = 0, the magnetic field, therefore, decays at least as fast as it would do under free decay, i.e.,

when u = 0. In order to reduce the rapid decay of the energy, a static driving force is introduced,

F , that provides a positive rate of working on the system at the initial time for a given I.C., B0, i.e.,∫
F · u dV > 0 at t = 0. We note that both of B and u are dynamically varying and hence there is no

guarantee of the positivity of
∫
F · u dV for all time; F is fully described in §5.2.

3 4DVar and the adjoint dynamo model

Using the technique developed in Li et al. (2011), we define a positive definite quantity termed the misfit,

χ2, which measures the deviation between the predictions and the observations

χ2 =
1

2

∫ τ

t=0
〈O(B)− y,O(B)− y〉dt+ 1

2

∫ τ

t=0
〈Ou(u)− yu,Ou(u)− yu〉dt, (12)

where [0, τ ] is the observation time window, 〈 , 〉 is defined in (8), and continuous observations in time

are considered presently. As a thought experiment, we consider the possibility of observations of both

magnetic and velocity fields, and consequently define observation operators O and Ou (see §4.2), which

generate the predictions O(B) and Ou(u) at the same positions in space and time as the measurements

y(r, t) and yu(r, t) respectively. We look for the optimal trajectory satisfying the governing equation (5

& 6) and best fitting the observations. Hence χ2 in (12) has to be further constrained by (5 & 6) and

written as

χ2 =
1

2

∫ τ

t=0
〈O(B)− y,O(B)− y〉dt+ 1

2

∫ τ

t=0
〈Ou(u)− yu,Ou(u)− yu〉dt

+

∫ τ

t=0
〈u†,N (u,B)〉dt+

∫ τ

t=0
〈B†, I(u,B)〉dt+

∫ τ

t=0

[
〈p†1,∇ · u〉+ 〈p†2,∇ ·B〉

]
dt, (13)

where u
† and B

† are Lagrange multipliers (also known as adjoint variables), N and I are defined in (5

& 6), and the adjoint pressure terms p†1 and p†2 are required to implement the divergence free conditions

for u and B, and are a necessary part of the numerical method which we use to project the vector fields

onto a divergence-free discretisation. For details, please refer to Li et al. (2011).

We minimize χ2 in (13) by computing the downhill direction of χ2 with respect to B0. The downhill

direction can be written as

∇B0χ
2 = −B

†
0, (14)

where the adjoint variables B† and u
† satisfy the adjoint system,

u
† × ẑ− Ek∇2

u
† = −∇p†1 +B× (∇×B

†)− O†
u[Ouu− yu], (15)

−∂B†

∂t
= (∇×B

†)× u−∇p†2 +
[
∇× (B× u

†) + u
† × (∇×B)

]

+
[
∇2

]†
B

† −O†[OB− y]. (16)

[
∇2

]†
is the adjoint operator of ∇2; we construct the discrete version as the transpose of the appropriate

matrix as we did in Li et al. (2011). 1
B

† at the terminal time satisfies the terminal condition B
†
τ = 0, u†

1The statement concerning the self-adjointness of the Laplace operator acting on a magnetic field with insulating B.C.s

as in Li et al. (2011) is only correct when the integration volume is all space, which was not the case in the study of Li et al.

(2011); thus the statement is erroneous.
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and B
† satisfy the same boundary conditions as those of u and B respectively and the adjoint pressure

terms p†1 and p†2 satisfy

∇2p†1 = ∇ ·
[
−u

† × ẑ+B× (∇×B
†)
]
, (17)

∇2p†2 = ∇ ·
[
(∇×B

†)× u+ u
† × (∇×B)

]
, (18)

where the B.C. on p†2 is p†2 = 0 at r = 1. Similar to the pressure term, π, in (5), the term p†1 is treated by

the discretisation method in §4, and does not enter the solution of the system (see Eq. 26). The adjoint

system is driven by the deviation between the predictions and the observations, propagates backwards

in time from t = τ to t = 0 and the solution B
† at t = 0 is the downhill direction of the misfit with

respect to the unknown B0. Also note that the solution of the adjoint Navier-Stokes equation in (15)

is diagnostic and depends entirely on the given forcing term B × (∇ × B
†), in a similar way to the

Navier-Stokes equation itself in (5). The radial force is invariant in time and hence does not appear in

the adjoint system.

4 Numerical discretization of the forward and the adjoint dynamo model

4.1 Numerical discretizations

We use a poloidal-toroidal representation for the divergence-free fields, u and B. Each poloidal and

toroidal scalar is further expanded in fully normalized spherical harmonics Y m
l in colatitude and longi-

tude (θ, φ) with associated radial basis functions. We design the radial basis functions for the poloidal and

toroidal scalars such that the bases are orthonormal under volumetric integration and satisfy insulating

B.C. on B and no-slip B.C. on u; these can be written as

B = BS +BT =
∑

(n,l,m)

a(n,l,m)S(n,l,m) + b(n,l,m)T(n,l,m), (19)

u = uS + uT =
∑

(n,l,m)

c(n,l,m)s(n,l,m) + d(n,l,m)t(n,l,m), (20)

where a(n,l,m) and b(n,l,m) are the poloidal and toroidal coefficients for the magnetic field, c(n,l,m) and

d(n,l,m) are the poloidal and toroidal coefficients for the flow and the vector basis functions S(n,l,m),

T(n,l,m), s(n,l,m) and t(n,l,m) can be further written as

S(n,l,m) = ∇×∇× (Φl
n(r)Y

m
l r̂) and T(n,l,m) = ∇× (Ψl

n(r)Y
m
l r̂),

s(n,l,m) = ∇×∇× (Z l
n(r)Y

m
l r̂) and t(n,l,m) = ∇× (Ψl

n(r)Y
m
l r̂). (21)

The orthogonality of the vector basis functions can be written as (Li et al., 2011)

〈S(n,l,m), S(n′,l′,m′)〉 = δl,l′δm,m′ l(l + 1)

∫ 1

r=0

[
l(l + 1)

r2
Φl
nΦ

l′

n′ +
∂Φl

n

∂r

∂Φl′

n′

∂r

]
dr = δn,n′δl,l′δm,m′ ,

〈T(n,l,m), T(n′,l′,m′)〉 = δl,l′δm,m′ l(l + 1)

∫ 1

r=0
Ψl

nΨ
l′

n′dr = δn,n′δl,l′δm,m′ ,

〈S(n,l,m), T(n′,l′,m′)〉 = 0, (22)
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with similar relations for s(n,l,m) and t(n,l,m). All of our radial basis functions, based on one-sided

Jacobi polynomials (Boyd, 2001; Livermore, 2010), are regular at the origin and infinitely differentiable

everywhere. Our specially constructed radial basis functions Φl
n(r), Ψ

l
n(r) satisfy the B.C. (Bullard and

Gellman, 1954)

dΦl
n/dr + lΦl

n = 0 at r = 1,
Ψl

n = 0 at r = 1,
(23)

and Z l
n (the radial basis for the poloidal part of the flow) satisfies the no-slip B.C.

Z l
n = 0 and

d

dr
Z l
n = 0 at r = 1. (24)

We truncate our spectral expansions at degree and order Lmax, and in radius, the radial index n, at Nmax.

More details of the numerical scheme can be found in Livermore et al. (2014).

We derive the adjoint system in a Hilbert space using the volume integral within the sphere as the

inner product and we discretize the spatial part of the MHD system (5 & 6) and its adjoint (15 & 16)

using the orthonormal basis functions (21) in the same Hilbert space. Hence, as we proved in Li et al.

(2011), the adjoint of the discrete system is identical to the discretized continuous adjoint system.

The spatial part of the induction equation and its adjoint is discretized and solved using the pseudo-

spectral method developed in Li et al. (2011). For the Navier-Stokes equation and its adjoint we pre-

compute the matrix representation Mi,j of the operator L, where L(ui) = ẑ × ui − Ek∇2
ui + ∇πi,

i.e.,

Mi,j = 〈uj , L (ui)〉 = 〈uj , ẑ× ui〉 − Ek〈uj ,∇2
ui〉+ 〈uj , ∇πi〉

= 〈uj , ẑ× ui〉 − Ek〈uj ,∇2
ui〉, (25)

where 〈 , 〉 is the volume integral defined in (8), i and j are the collective indies of (n, l,m), ui are the

basis functions describing u defined in (21) and πi is the pressure force associated with ui. To be clear,

the subscript i refers to the ith (3D) vector basis function describing the flow, and not to a component

in the ith direction of some coordinate system. To see that the pressure term does not contribute to the

discretized system, we note that when every member of the basis represents a non-penetrable flow at the

CMB (ur = 0 at r = 1), we have

∫

V
ui · ∇πi =

∫

V
∇ · (πiui)− πi∇ · uidV =

∫

Ω
πi [ui · r̂] dΩ = 0, (26)

where dΩ is the surface element, dΩ = r2 sin θdθdφ. Having the discretised operator, Mi,j in hand, the

matrix representation of the adjoint operator L† reads M †
i,j = Mj,i (Li et al., 2011). The solution of the

Navier-Stokes equation and its adjoint can be written as

u =

(
c

d

)
= M−1[〈ui, (∇×B)×B+ F〉]T , (27)

u
† =

(
c
†

d
†

)
= [M †]−1[〈ui,B× (∇×B

†)−O†
u[Ou(u)− yu]〉]T , (28)

where [c,d]T and [c†,d†]T are the spectral coefficients of the velocity field and its adjoint, defined by

(21). We are preparing another paper to discuss the numerical scheme for solving the N-S equation and

its adjoint.
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Using the symmetry of the operator L in the Navier-Stokes equation, one can substantially reduce

the computational complexity for computing (27) and (28). L is an even operator (Zhang, 1991) in (5),

which decouples u into even and odd symmetries, and is a symmetric operator in the azimuthal wave

number, m, which decouples all m modes. Therefore Mi,j can be divided into 2Lmax+2 square diagonal

blocks and each one can be inverted independently.

We evolve the MHD system (5 & 6) forwards in time using an Euler scheme for the initial time step

and an Adams-Bashforth second order scheme for the following time steps.

Having the downhill direction (14) in hand, the minimization of the misfit is carried out using a

limited memory quasi-Newton method (L-BFGS), where the second derivative of χ2, known as Hessian,

is estimated and gradually improved in the minimization step. The numerical algorithm is based on

Nocedal (1980)2.

We choose the model resolution K to be K = Nmax = Lmax that leads to 4K2(K + 1) coefficients

that describe each of the forward and adjoint models. Since the computational complexity scales as K4

(Li et al., 2010), we solve the MHD system (5 & 6) and its adjoint (15 & 16) numerically in parallel

using the Message Passing Interface (MPI), where (i) the magnetic induction equation and its adjoint are

parallelized in radius and (ii) linear solvers defined in (27) and (28) are parallelised by symmetry class.

The minimization step is computed on a single processor using the L-BFGS package, where at each

assimilation cycle, the misfit and the downhill direction, χ2 and B
†
0, are collected from each processor.

4.2 The observations and the misfit

Let O be the observation operator that measures, at a certain radius, the degree l and order m spherical

harmonic components of the radial part of the modelled magnetic field B. The aim of our assimilation is

to fit the O(B(ti)) to the corresponding datum at time ti, denoted yi (Li et al., 2011).

In our discrete system, the misfit can be written as

χ2
B =

1

2

∑

i

[O(B(ti))− yi]
T · [O(B(ti))− yi] , (29)

where O(B(ti)) and yi, vectors of spherical harmonic coefficients, are truncated at degree Lob.

Similarly, we define the observation operators OSu and OTu that measure the 3D structure of the

poloidal and toroidal flow respectively. The contribution of the flow at radius rj to the misfit reads

χ2
u = χ2

Su + χ2
Tu =

1

2

∑

i

∫

r=rj

[u(ti)− uob(ti)]
2 dΩ, (30)

where uob is the observed flow at time ti. Although our equations are formulated for continuous ob-

servations, in our discretised system we observe at discrete points in time, ti, at uniform spacing of ∆τ
throughout the time-window [0, τ ].

5 The characteristics of the forward model

Before studying the retrievability of the initial magnetic field in the closed-loop experiments, we first

describe the evolution of the forward model itself.

2The software package is acquired from http://users.eecs.northwestern.edu/˜nocedal/lbfgs.html
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Figure 1: (a) The internal structure of B∗ shown by the horizontal rms of: (i) the total field B
∗

shown in

blue, (ii) the radial field B
∗

r shown in red and (iii) the toroidal component of field B
∗

T shown in green.

(b) The rms of B∗ shown in blue and B∗
s shown in red, where B̃ denotes the rms over a cylinder of

cylindrical radius s.

a(1,1,0) = −2.03 a(2,1,0) = 2.80 b(1,1,0) = 3.46

a(1,1,1/c) = −0.13 a(2,1,1/c) = 0.17 b(1,1,1/c) = 0.22

a(1,1,1/s) = 0.37 a(2,1,1/s) = −0.51 b(1,1,1/s) = 0.63

a(1,2,0) = −0.39 a(2,2,0) = 0.54 b(1,2,0) = 0.67

a(1,2,1/c) = 0.55 a(2,2,1/c) = −0.76 b(1,2,1/s) = 0.94

a(1,2,1/s) = −0.42 a(2,2,1/s) = 0.57 b(1,2,1/s) = 0.70

a(1,2,2/c) = 0.31 a(2,2,2/c) = −0.42 b(1,2,2/c) = 0.52

a(1,2,2/s) = −0.07 a(2,2,2/s) = 0.09 b(1,2,2/s) = 0.12

Table 1: The poloidal and toroidal coefficients of the magnetic profile shown in Fig. (1), a(n,l,m) and

b(n,l,m), written in nondimensional units and rounded to 2 decimal places.

5.1 The initial condition for magnetic field

The entire trajectory of (5 & 6) is uniquely determined by both the initial structure of the magnetic field

and the boundary conditions. Although the magnetic field internal to the Earth’s core is unknown, here

we create a synthetic magnetic profile of maximum degree l = 2 that has been constructed to honour

various constraints, in that (i) its radial component Br matches the gufm1 model at 1990 at the CMB and

(ii) the horizontal rms of Br is 4.6 mT at r = 7/20 (Buffett et al., 2002). Fig. (1 a) illustrates the profile

of various components of magnetic field as a function of radius r and Fig. (1 b) the magnetic profile of

various components as a function of cylindrical radius s. The corresponding spectral coefficients a(n,l,m)

and b(n,l,m) are listed in Table (1). More details can be found in Appendix A.

5.2 The choice of body force

In some models in this study, we choose a radial driving force F , which is large scale and of spherical

harmonic degree 2 and order 2 (and with cosine phase) with an intensity comparable to the Lorentz force
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of the MHD system (5 & 6) (see Fig. 4 d). We define F to be

F =
5

2

√
429r3

(
9r2 − 7

)
Y

2/c
2 r̂, (31)

which has the property that ∫
F · u dV > 0, (32)

for the initial time t = 0 and can be further written as the combination of a poloidal field and a scalar

potential field, i.e.,

F = (F, 0, 0) = −10S
2/c
2 +∇R

2/c
2 , (33)

where S
m
l is a poloidal vector basis function defined in (21) and the scalar potential term R

2/c
2 is

R
2/c
2 = −

[
5

8

√
429r2

(
7r4 − 10r2 + 3

)
Y

2/c
2

]
. (34)

In the absence of magnetic field, this generates a static convection pattern, uF , defined in (10), well-

mixing the magnetic field lines in the core.

Fig. (2 a–c) illustrates the form of uF in the r, θ and φ directions and Fig. (2 d) the horizontal rms

of various components of the velocity. Since the Ekman number is sufficiently small (Ek = 10−4), in

the outer half of the core, the flow uF is largely geostrophic (see Fig. 2 c) with an rms intensity of about

30 and a maximum of 40 (see Fig. 2 d). Recall that this represents an approximate magnetic Reynolds

number.

5.3 Model convergence

With the chosen Ekman number Ek = 10−4 and the time window, [0, τ ], where τ = 1/40, our model

is fully resolved using the spatial resolution Nmax = Lmax = mmax = 20. Fig. (3) illustrates the energy

spectrum of the magnetic field as a function of spherical harmonic degree l at the terminal time, t = τ .

Given the strength of the flow, this time window is close to one convective overturn time. Fig. (3)

illustrates the spectral convergence of the solution B for different spatial resolutions, Nmax = Lmax =
mmax = 20 (upper panel) and Nmax = Lmax = mmax = 40 (lower panel). Clearly, the simulation with

the spatial resolution of Nmax = Lmax = mmax = 20 demonstrates exponential convergence and will be

used for all subsequent studies; the optimal time step, ∆t, determined empirically, is about 10−5.5.

5.4 The internal dynamics of the forward model

We now investigate the internal dynamics of the forward model, beginning with the role of the force F .

Fig. (4 a) shows the volume rms of the velocity field with and without F , shown in blue and red curves.

The volumetric rms of the flow varies between 10 and 60, similar to the typical value of the horizontal

rms of 40 found above. Within this time window, [0, τ ] (τ = 1/40), the static driving force positively

injects energy into the flow, i.e.,
∫
V F · u dV > 0 for t ∈ [0, τ ] (see Fig. 4 b) and increases the flow

intensity by about 20% to 30%. However, this increase in flow strength does not greatly influence the

energy evolution of the magnetic field and for both cases, the energy of the magnetic field decays in a

similar fashion. Fig. (4 c) illustrates the volume rms of the magnetic field within the time window [0, τ ]
with and without F as shown in blue and red respectively.
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Figure 2: Plots of the iso-surface of the static convection pattern driven by the radial force, F , for the r,

θ and φ components in (a), (b) and (c) and the horizontal rms of the velocity as a function of radius in

(d), where the red, green and blue curves are for the poloidal, toroidal and the total field.

Fig. (5) illustrates the horizontal rms of B as a function of r and Fig. (6) shows Br evaluated at the

CMB. For both figures, the upper panels show the trajectories without the driving force and the lower

panels show those with F . We note that the magnetic field decays exponentially in a similar fashion in

the bulk of the core (see Fig. 5), however its intensity at the CMB varies much less (see Fig. 6).

Fig. (7) illustrates the horizontal rms of the velocity field for models driven without and with F . In

both cases, the flow is strong in the bulk of the core and decreases rapidly to zero at the CMB in the

Ekman boundary layer. Without driving, the intensity of the flow is more evenly distributed in radius in

the bulk of the core than that with the driving force. When driving is present, the flow is stronger at the

top of the core.

As will become apparent in the next section, when we try to retrieve the initial magnetic field struc-

ture, it will be important to consider the regions of the modelled core in which the process of magnetic

induction dominates magnetic diffusion. Fig. (8) shows the ratio of the horizontal rms of these two

quantities. Of particular note is the dominant influence of diffusion in the Ekman boundary layers in

which the flow is weak (due to the imposed non-slip boundary), and the evolution of the magnetic field

is entirely governed by diffusion. Away from the CMB, the induction process gradually overwhelms the

diffusion process and the ratio reaches a maximum in the bulk of the core. When driven by F , we see

12
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Figure 3: The spectral convergence of B and u as a function of spherical harmonic degree l at the

terminal time t = τ for different resolutions Nmax = Lmax = mmax = 20 in (a) and (b) and Nmax =
Lmax = mmax = 40 in (c) and (d), where τ = 1/40 (5000 years) and the blue and red curves show the

poloidal and toroidal contribution.

in the figure, at each snapshot in time, that the ratio of induction to diffusion is generally higher than in

those models without the driving force.

6 Variational data assimilation

6.1 Closed-loop testing

In order to study the retrievability of the initial magnetic field, on which the entire trajectory of the system

depends, we now discuss the setup of several closed-loop experiments. Using the magnetic profile given

in table (1) as the true I.C., we evolve and measure (to degree Lmax) the coupled system of the magnetic

field and flow, at certain time snapshots and locations. These are then used as observational data in the

variational data assimilation.

When setting up the closed-loop tests, there are various issues to consider: (i) the location of the

observation, (ii) the specific quantity being observed, (iii) the frequency of observation and (iv) the

length of the time window of the observations. All four points, in addition to the initial estimate of B0,
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Figure 4: Plots of several quantities within the simulation time window τ = 1/40 (5000 years): (a) The

volume rms of the velocity field with and without F in blue and red respectively. (b) The rate of working

of the driving force, F . (c) The volume rms of B with and without F in blue and red respectively. (d)

The ratio C of the volume rms values of the driving force and the Lorentz force.

have a bearing on the rate of iterative convergence and the retrieval accuracy. Therefore, we consider

three classes of observational strategies, which are described below and summarised in table (2). For

each case, we report the converged value of χ2 along with quantity D, measuring within the 3D volume

the deviation from the true model, which, recall, is of spherical harmonic degrees, l = 1 and 2; a low

value of D signifies an almost perfect model recovery, where

D =

̂
B0 −B

(n)
0

B̂0

(35)

and B
(n)
0 is the estimated initial condition at the nth iteration.

• Case 1: observing only Br at the CMB.

Geomagnetic observations on the Earth’s surface allow only inference of the field on the CMB. The

simplest and most geophysically relevant strategy is therefore to observe on r = 1. We observe at

500 equally spaced snapshots, over the time window τ = 1/40. We use the initial estimate for B0

of zero, which we loosely equate to having no knowledge of the solution regime.

• Case 2: observing Br at the CMB and u within and close to the top of the core.

We extend Case 1 by considering, as a thought experiment, inclusion of observations of u, which

will more fully constrain the nonlinear dynamics of the model. We choose to observe the flow at a

radius of r = 0.85, where, at later times, its magnitude is the greatest (Fig. 7 c–d).

• Case 3: observing Br only at a location far away from the boundary.

In order to test the hypothesis that inductive processes will be favourable to a data assimilation

14



0.0 0.2 0.4 0.6 0.8 1.0
r0

1

2

3

4

5
B

(a) t = τ/3, F = 0

0.0 0.2 0.4 0.6 0.8 1.0
r0

1

2

3

4

5
B

(b) t = 2τ/3, F = 0

0.0 0.2 0.4 0.6 0.8 1.0
r0

1

2

3

4

5
B

(c) t = τ , F = 0

0.0 0.2 0.4 0.6 0.8 1.0
r0

1

2

3

4

5
B

(d) t = τ/3, F 6= 0

0.0 0.2 0.4 0.6 0.8 1.0
r0

1

2

3

4

5
B

(e) t = 2τ/3, F 6= 0

0.0 0.2 0.4 0.6 0.8 1.0
r0

1

2

3

4

5
B

(f) t = τ , F 6= 0

Figure 5: The horizontal rms of B as a function of r, where τ = 1/40 (5000 years), the total magnetic

field, the poloidal part of the flow and toroidal part of the magnetic field, are shown in blue, red and green.

Interestingly, for both cases with and without F , the magnetic fields in the bulk decay exponentially in

time in a similar fashion, however their intensities at the CMB vary much less (see Fig. 6).

scheme, we observe Br at r = 1/2, a location at which the induction processes are strongest (Fig.

8). We also investigate the effect of the driving F , the length of time window τ and the starting

guess for B0.

We illustrate the method by considering the largest scale poloidal mode, described by the coefficient

a1. Fig. (9) illustrates the inner workings of the adjoint scheme at the 3rd iteration of Case 1, where the

adjoint poloidal mode for a†1 starts from zero at the terminal time, t = τ , backward propagates in time

reaching, at t = 0, its initial value a†1(t = 0) with the value approximately 6, describing the downhill

direction of χ2 with respect to a1(t = 0). Fig. (9 b) is a close-up of the red rectangular region of Fig.

(9 a), where the periodic jumps in a†1 are due to the injection of the observed data into the adjoint field.

6.2 Results

Figs. (10–13) show the retrieved initial state from the closed-loop assimilations compared with the true

model, where we plot the individual spherical harmonic contributions to the radial component of the

poloidal magnetic field, i.e., [Sr]
m
l =

∑
n

l(l+1)a(n,l,m)Φ
l
n(r)

r2
, and the spherical harmonic contributions

to the horizontal, i.e., [Th]
m
l =

∑
n

b(n,l,m)Ψ
l
n(r)

r , for each spherical harmonic degree, l, and order, m.

In all cases, the value of χ2 decreases with iteration count, indicating the success of the methodology.
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Figure 6: The trajectories of spherical harmonic components l = 1, 2 and 3 of Br within the time

window [0, τ ] at the CMB, where τ = 1/40 (5000 years). The red, green, blue, and yellow curves show

the m = 0, 1, 2 and 3 components and the solid lines show the cosine phase and the dashed lines show

the sine phase.

Figs. (10–11) illustrate the results from the most successful observational strategies, namely cases 2, 3a

and 3b. It is clear that the incorporation of velocity information leads to successful recovery, as does the

observation of radial magnetic field deep in the core, as long as a reasonable starting guess is provided.

We comment on the relationship of these types of data to the geophysical reality in the next section. Of

particular note is the fact that we are able to recover large scale features of the toroidal magnetic field,

despite the fact that they are not directly constrained by observation. For example, Fig. (10 a) shows

excellent recovery of the largest scale toroidal mode. This illustrates the power of the data assimilation

technique: the dynamical model gives access to properties of the system that are otherwise hidden. It is

clear that case 2 gives the best recovery of the initial field, based on the value of D (see table 2), even

when the starting guess B0 = 0 represents complete ignorance of the correct answer.

Figs. (12–13) illustrate less successful observation strategies. Case 1, with observations at the CMB,

where the fluid is quiescent (by dint of the no-slip boundary condition), fails to recover the structure

of the interior magnetic field, despite a rapid initial decrease in χ2. Case 3c retrieves the structure of

S0
1 and T 0

1 , which, since they together comprise 90% of the energy of the dynamical system, define the

large-scale evolution of the system. This test case also reveals one important aspect of the retrievability

of the 4DVar scheme, i.e., the modes contributing less energy have a less significant contribution to the

misfit. The misfit is less sensitive with respect to these parts of the unknown B0 than those of dominant

intensity, and they are therefore more difficult to restore.

All five models are compared in Fig. (14), which show the decrease in D as a function of
√

χ2

and iteration number N . Of particular note are the low values of D for cases 2, 3a and 3b, achieved at

the end of the closed-loop test, further highlighting their success. The faster decrease of D in case 3b,

compared to that of 3a, indicates that the inclusion of the driving force improves the convergence rate of

the assimilation scheme.
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Figure 7: The horizontal rms of u as a function of r without (a–d) and with (e–h) the driving force,

where τ = 1/40 (5000 years), the total flow, the poloidal part of the flow and toroidal part of the flow,

are shown in blue, red and green. Of particular note is the Ekman layer close to the CMB, in which the

flow decreases rapidly to zero.

7 Discussion

In this paper, we studied the retrievability of the trajectory of a simplified geodynamo system and demon-

strated our results in five representative numerical experiments. Two observational strategies were suc-

cessful: (i) 2D observations of the radial magnetic field Br, taken in a region in which magnetic induction

dominates diffusion and when using a reasonable starting guess; (ii) 2D observations of Br at the CMB

and of the flow in regions where it is strong.

Observations of the geomagnetic field taken on or above the Earth’s surface constrain the radial part

of the magnetic field, Br, on the CMB—and not within the core. Inside the Ekman boundary layer, in

which the flow is almost quiescent, magnetic diffusion dominates magnetic induction and thus smooths

the magnetic signal from inside the core. This effect explains the success of our assimilation strategy

based on observing the magnetic field on r = 1/2, compared to that based on observing Br on the CMB.

The implementation of non-slip boundary conditions has the effect of causing magnetic induction to be

exactly zero at the CMB which, in our relatively viscous models (compared to the Earth), appears to

prevent successful reconstruction of the core field. One possible strategy may be the use of stress-free

boundary conditions (Kuang et al., 2009, 2010), which weakens the effect of the boundary; this is one

avenue we plan to pursue.

We propose one strategy that may enhance convergence of the system. Preliminary determination

of the surface flow field at the CMB, admittedly under the frozen-flux approximation, can be beneficial

when the estimates are used as data in conjunction with magnetic field observations. This may be ben-

eficial as a scheme to accelerate convergence during early iterations. Since the assumptions required to

determine the flow field are at variance with our underlying dynamical model, it is essential to ultimately

abandon these observations in later iterations. We recognise that this technique is tantamount to using the

same data twice, and emphasise that the idea is solely to improve initial convergence when starting from
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Figure 8: The ratio of the horizontal rms of the vectors describing magnetic induction and diffusion, as

a function of r without (a–d) and with (e–h) the driving force at certain time snapshots, where τ = 1/40
(5000 years). Blue shows this ratio calculated using the total vectors, red and green show the ratio

calculated using only the poloidal and toroidal components of the vectors respectively.

an initial guess that is far from the expected truth. We circumvent the question of how best to make the

velocity estimates from the magnetic field and its secular variation, but note the success of an analogous

study (Rau et al., 2000) in reconstructing a dynamo’s true flow field.

The lack of obvious prior information on the state of the core, from which a reasonable starting guess

can be constructed, remains an outstanding challenge. Knowledge gleaned from torsional oscillation

studies (Gillet et al., 2010) is clearly pertinent, since it constrains the cylindrical component of magnetic

field. However, the azimuthally-averaged nature of these estimates allows considerable latitude in con-

structing a reasonable 3D starting model. We remain optimistic that approaches along these lines will

bear fruit.

There are two issues that require further analysis. In our study we have treated perfect error-free data,

an assumption that never occurs in geophysical reality. Thus performance when data are incomplete and

noisy remains outstanding. As with all inverse problems, we can only reasonably expect to recover the

large scale features of the model, and even these will benefit from the inclusion of either prior information

or spatial regularisation. No such regularisation has been implemented in our study, and the choice of

such requires careful consideration.

A major finding of our study is the encouraging performance of the data assimilation system when

the time window of observations is as small as one convective time. Since this time scale is of O(100)

years in the Earth’s core, it suggests that with 400 years of data, described by the gufm1 model, there

is the very real possibility of interrogating interior structures in the core. Outstanding issues include the

need to address the time-varying buoyancy force in a variational manner, an aspect that was necessarily

simplified in the present work. Future assimiliation systems need to work at much higher values of the

magnetic Reynolds number, necessitating higher resolutions in the numerical scheme.
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F 2D observation B
(0)
0 τ ∆τ χ2

0 χ2
N D N

Case 1 F 6= 0 Br|r=1 0
1
40 τ/500 2.5× 102 3.8× 10−1 1.03 302

Case 2 F = 0 Br|r=1 & u|r=0.85 0
1
40 τ/500 1.1× 106 3.4× 102 0.11 375

Case 3a F = 0 Br|r=1/2 B0/2
1
40 τ/500 1.9× 103 2.7× 10−2 0.22 354

Case 3b F 6= 0 Br|r=1/2 B0/2
1
40 τ/500 3.5× 103 1.5× 10−1 0.17 163

Case 3c F 6= 0 Br|r=1/2 0
1
25 τ/1000 1.2× 104 2.7× 10−1 0.42 214

Table 2: Summary of observational scenarios considered. B
(0)
0 is the initial guess of the I.C., τ is the

assimilation time window, ∆τ is the time interval between two observations, χ2
0 and χ2

N are the misfits

at the initial and the final iteration respectively, D is the recovery performance defined in (35) at the final

iteration and N is the number of iterations used. Note that the differences in χ2
0 for cases 3a and 3b

originate in the fact that one has a forcing F and the other does not, thus leading to a different trajectory

over which the misfit is calculated.
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Figure 9: The trajectory of the poloidal (1, 1, 0) mode of the adjoint field B† at the 3rd iteration of the

assimilation in Case 1, where in (a) the adjoint field a†1 starts from zero at the terminal time, t = τ
and backward propagates until t = 0 giving the required derivative; and (b) is a close-up of the red

rectangular region in (a).
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A A synthetic magnetic profile

Using the following assumptions, we create a 3D, synthetic model of magnetic field inside the core. We

use a variety of geophysical constraints reported in the literature in its construction. We assume that

A. 1. B∗
r matches the gufm1 model at the CMB in 1990 for each l,m ≤ 2.

A. 2. the horizontal rms of B∗
r at radius ri =

7
20 is 4.6 mT (Buffett et al., 2002).

A. 3. for each l and m, the radial magnetic field at r = ri is proportional to the field at the CMB.

A. 4. there is equipartition of energy in the magnetic field between its poloidal and toroidal components

for each l and m.

A. 5. only the lowest order radial mode contributes to the toroidal field.

Denoting that (Br)(l,m)(r) as the nondimensionalized horizontal rms of Br as a function of the radius

r for the spherical harmonic degree, l, and order, m, defined as

(Br)(l,m) =

√[
l(l + 1)Sm

l

]2

4πr4
, (36)

we have that the radial magnetic field satisfies

(Br)(l,m)(ri) = γ

√√√√ (Br)2(l,m)(1)∑
l,m(Br)2(l,m)(1)

, (37)

where γ is the nondimensionalized value of Br at ri =
7
20 . Together with assumption A.1. and the Eqs.

(36) and (37), one determines the poloidal scalars for each l and m at r = 1 and r = 7/20, i.e.,

l(l + 1)Sm
l (ri)√

4πr2i
= γ

√√√√ (Br)2(l,m)(1)∑
l,m(Br)2(l,m)(1)

and
l(l + 1)Sm

l (1)√
4π

= (Br)(l,m)(1). (38)

The poloidal scalar Sm
l (r) can be further represented by the radial basis functions as Sm

l (r) = a1Φ
l
1(r)+

a2Φ
l
2(r). For each l and m, the coefficients a1 and a2 can be uniquely determined by Eq. (38).

For the toroidal field, we assume a simple radial profile of the toroidal basis function of degree n = 1,

Tm
l = b1Ψ

l
1, and match the energy with the poloidal part for each l and m, i.e., b1 =

√
a21 + a22.
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Figure 10: The poloidal part of the retrieved I.C. and the reduction of the misfit as a function of iteration

for cases 2, 3a and 3b at the final iteration of each one for each spherical harmonic degree, l, and order

m, where the dashed red lines stand for the truth and the solid lines are for the retrieved components (see

the legend for the colour correspondence to different cases).
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Figure 11: The toroidal part of the retrieved I.C. and the reduction of the misfit as a function of iteration

for cases 2, 3a and 3b at the final iteration of each one for each spherical harmonic degree, l, and order

m, where the dashed red lines stand for the truth and the solid lines are for the retrieved components (see

the legend for the colour correspondence to different cases).
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Figure 12: The poloidal part of the retrieved I.C. and the reduction of the misfit as a function of iteration

for cases 1 and 3c at the final iteration of each one for each spherical harmonic degree, l, and order m,

where the dashed red lines stand for the truth and the solid lines are for the retrieved components (see

the legend for the colour correspondence to different cases).
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Figure 13: The toroidal part of the retrieved I.C. and the reduction of the misfit as a function of iteration

for cases 1 and 3c at the final iteration of each one for each spherical harmonic degree, l, and order m,

where the dashed red lines stand for the truth and the solid lines are for the retrieved components (see

the legend for the colour correspondence to different cases).
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Figure 14: The reduction of D, defined by (35), as a function of
√
χ2 in (a) and number of iterations N

in (b) on a log-linear scale for all test cases .
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