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Identification of the Hammerstein Model Using Multiresolution Wavelets

H.L. Wei and S.A. Billings

Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 31D, UK

o
A new approach is introduced for identifying the Hammerstein model using multiresolution wavelet decompositions.
Under some mild assumptions, the linear dynamic part of the Hammerstein model can be identified separately from
the static nonlinearity. The static nonlinearity can then be identified and recovered using multiresolution B-spline
wavelet decompositions. The main advantages of the new method is that now the static nonlinearity can be an
arbitrary function which is ether continuous or discontinuous. Simulation results are included to d emonstrate the

effectiveness of the new approach.
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1. Imiroduction
The identification of the Hammerstein model, which consists of a static nonlinearity followed by a linear ‘

dynamic system in Figure 1, has been widely studied by several authors. Most of the early work [Narenda and

Gallman,1966; Chang and Luus,1971; Thatachar and Ramaswamy, 1973; Gallman,1975,1976; Billings and ‘

Fakhouri, 1979; Stoica and Soderstrom, 1982] was mainly concerned with parametric identification methods

which assumed that under certain input excitations the unknown static nonlinearity could be approximated using

a polynomial with a finite known order. Clearly, if the nonlinearity is not a polynomial and the input is non-

Gaussian, many of these algorithms may not converge [Gallman,1975]. Most of the nonparametric algorithms i

[Greblicki and Pawlak, 1986, 1987, 1989; Hwang and Shyu, 1988; Greblicki, 1989; Krzyzak,1989] are based on A

kernel regression or infinite series expansions. Although relatively little .a priori knowledge about the 4

Hammerstein model is required for these nonparametric approaches, which can generally achieve estimates

which converge to the true nonlinear characteristics quite well, the resulting representations are often rather

complicated and involve high dimensional parameter estimation problems[Al-Duwaish et al., 1997].
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Figure 1 The Hammerstein model

To overcome the drawbacks of the early parametric approaches, some new algorithms for identifying the
Hammerstein model have recently been proposed, see, for example, Al-Duwaish et 2l.[1997], Voros [1997], Li
[1999], Zhu [2000], and Giri et al. [2001]. In these algorithms, either the static nonlinearity is assumed to be
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described using a continuous function, or prior knowledge of the intrinsic properties of the static nonlinearity
have to be known beforehand. The application of nonparametric polynomial approaches [Greblicki and
Pawlak,1994; Lang, 1997] make the representation of the estimates relatively simple and more applicable, but
these methods cannot be used to effectively identify nonlinearities with intrinsic discontinuities. The introduction
of multiresolution analysis to nonparametric identification for the Hammerstein model [Pawlak and
Hasiewicz1998] provides a more flexible and more accurate representation for describing a static nonlinearity.

In the present study, a new method is introduced for identifying the Hammerstein model based on
multiresolution B-spline wavelet decompositions. With some mild restrictions imposed on the static nonlinearity,
the identification of the linear dynamic part of the Hammerstein model can be separated from the identification
of the static nonlinearity. This enables the identification of the static nonlinearity and the linear dynamics to be
independent, but with the advantage that the static nonlinearity can now be an arbitrary function, which is

continuous or discontinuous.

2. Multiresolution Wavelet Decompositions

Wavelet decompositions outperform many other approximation schemes and offer a flexible capability for
approximating arbitrary functions, even those with sharp discontinuities. Wavelet basis functions have the
property of localization in both time and frequency. Due to this inherent property, wavelet approximations
provide the foundation for representing arbitrary functions economically using only a small number of basis
functions. It can be shown that the infrinsic nonlinear dynamics related to real nonlinear systems can easily be
captured by an appropriately fitted wavelet model with a small number of wavelet basis functions.

Under some assumptions, an orthogonal wavelet system can be constructed using multiresolution analysis
(MRA) [Mallat, 1989; Chui, 1992; Daubechies, 1992]. Assume that the wavelete and associated scaling

function@ constitute an orthogonal wavelet system, then any function f € L*(R) can be expressed as a

multiresolution wavelet decomposition

JE =Y 0, 48+ DD B0, (%) o))
k

Jzip k
where @, (x) =2/2p(27 x - k) andg, , (x) = 2j!2¢(2jx—k), j,k € Z are the scale and translation
parameters, and j, is an arbitrary integer representing the lowest resolution or scaling level.

Although many functions can be chosen as scaling and/or wavelet functions, most of these are not suitable in
system identification applications, especially in the case of multidimensional and multiresolution expansions. An
implementation, which has been tested with very good results, involves B-spline and B-wavelet functions in
multiresolution wavelet decompositions [Billings and Coca, 1999; Liu 2000; Coca and Billings, 2001; Wei and
Billings, 2002].

B-splines are piece-wise polynomial functions with good local properties, and were originally introduced by
Chui and Wang [1992] to define a class of semi-orthogonal wavelets for representing a signal using
multiroselution decompositions. The mth order B-spline function is defined as

LS em -1y (= jymt m22 @
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where C;" =m(m —1)---(m -k +1)/k!,and xJ =x" for x20 and x} =0 for x<0. The mth order B-

spline N can be calculated by the following recursive formula:

Nm(x)—_-—x_ m—l(x)-i-HNm-t(x'l)’ Lot "
— m-1
with
1 ifxel0l)
Ni(x)= Ao (x)= {0 otherwise N

Setting NV, as the scaling function, that is, #(x) = N, (x), then both the scaling function and the associated

wavelet can be expressed in terms of the scaling function N, (x) as follows

#(x) =Y ¢, N, (2x — k) ®)
k=0
3m-2

p(x)= D d,N,(2x~k) ©)
k=0

with the coefficients given by
1
Ck = zm_—l CI: (7)
(*l)k 2 m :
dk=2—m_1—-ZCszm(k—J+l),k=0,1,--',3m—2 (8)
j=0

Clearly, the support of the m th order B-spline wavelet and the associated scaling function are

{ supp ¢ = suppN,, =[0,m] ©

supp ¢ =[0,2m -1]

Both the B-spline wavelets and the associated scaling functions are symmetric or anti-symmetric within the
support. The most commonly used B-splines are those of orders 1 to 4, which can be explicitly expressed as
Table 1.

Table 1 The B-splines of order 1 to 4

N, (x) N,(x) 2N;(x) 6 N,(x)
0<x<l1 1 x x* x
1<x<2 0 2-x -2x*+6x-3 | -3x® +12x? -12x+4
2<x<3 0 0 (x-3)? 3x® - 24x? + 60x — 44
3<x<4 0 0 0 —x° +12x* - 48x + 64
elsewhere 0 0 0 0




~
3. Identification of the Hammerstein Model
The new identification approach for the Hammerstein model will be derived using multiresolution B- spline

wavelet decompositions to describe the static nonlinearity. The following assumptions on the static nonlinearity

will be considered:

The static nonlinear function f* in Figure 1 is bounded and saturates outside an interval, so that f can be

b described as
w usa
w=f(u)=<g(u) asusb (10)
w b<u

where a, b, w=A,aand W = 1,b are known constants, <0<band w<w, g(-) is an unknown
nonlinear function which is to be identified and might be ether continuous or discontinuous.

3.1 Separating the linear dynamics from the static nonlinearity
The idea of separating the identification of the linear dynamics and the static nonlinearity is direct and simple

under the assumption (10) above. From Figure 1, the output the Hammerstein model be expressed as

_B(z") 1 _B(z™") 1
y(t)= A(Z_I)W(t)+ A(Z_,)at)— A(z_l)f(u(t))+ A(z,l)é(t) 11)
B(z™)

where H(z™)= 5 is the transfer function of the linear dynamic part, and £(£) = 4(z ™" )7(¢) represents

zh)
the noise. From the assumption (10), if the input signal u(t)<a or u(f)>b, then the internal variable
w(t)=w or w(f)=W . Setting u()to bea two-step signal with one-step value, say, of Apa(Ay 21), and

. another value, say, of A,b , then the Hammerstein model becomes

_,B(z™) 1
y=41 A(z_[)u(t)+ A(z'l)é:(t) (12

where =4,/ A for u(f)<aand A=A, /A, for u(t)2b. Using existing linear identification techniques, the
linear dynamic model (12) can easily be identified based on the input-output measurements by choosing the
input signal u(f) as follows: u(¢) is a two-level signal, for example, an offset PRBS, where one amplitude is

greater than b, and the other amplitude is less than a.

3.2 Identification of the Static nonlinearity using multiresolution wavelet decompositions

Assume that the linear dynamic model was identified as H(z ™' )= B(z™")/ A(z™"), where

Az =1+aiz™ ++a,z” (13a)

B(z7)=by +byz™ +-+b,z7, p2gq (13b)




Then form wavelet theory [Chui, 1992; Daubechies, 1992], the static nonlinearity g(-) can be represented using

a multiresolution wavelet decomposition as

g)=Y a; 48, k@ + D, D Bu#,u @), ucla,b] ' (14)

ked, J2jokeB;
where @, (x) = 2/ (2’ x k) and 9 (x)= 27'2 (27 x — k) are the mth order B-spline wavelet and the

associated s caling functions, with support [0,m] and [0,2m-1], respectively. In theory, the decomposition (14)

consists of an infinite number of basis functions. In practice, however, the decomposition (14) is usually

truncated at an appropriate resolution scale level J. The index sets K, and K 7, which depend not only on the
index j but also the interval [a, b], can be chosen as A, = fk:2ha-m<k< 2hp-1,keZ}, and
B;={k:2'a-2m+2<k<2’b-1keZ,jeZ} for jo<j<J.
From (10), (11) and (14), for any arbitrary signal # €[a,b]
yO +ayt-D+-+a,y(-p)
=bog(u(®)) +b,g(u(t 1)+ +b, g(ut - q)) +5()
= Db e O+ Y D 5B (w(®)

ked, J2jokeB;
+ > by bk =)+ DD BB (w(t = D)+
kedy jzjokeB;
+ quaju,k¢jo,k (u(t-g)+ 2 quﬁj,k%,k (u(t-9) +£@) (15)
kedy JjZzipkeB;

Eq. (15) can be rearranged and transferred into a linear-in-the-parameter regression form with respect to the

unknown wavelet coefficients @; ; and B; ;- Assume that M bases (the dilated and translated mother wavelet

and/or scaling functions or their combinations) are involved in the model (15), and for convenience of

representation also assume that the M wavelet bases are ordered according to a single index m to form a wavelet

dictionary D ={p,, ()} M, then (15) can be expressed as the linear-in-the-parameters form

M
2()=Y 6, Pn()+E@) (16)
m=1

This can be solved using linear regression techniques. Note that for a high resolution scale J, the model (16)
might involve a great number of model terms or regressors. Experience shows that very often many of the model
terms are redundant and therefore are insignificant to the system output and can be removed from the model. An
efficient orthogonal least squares (OLS) algorithm and an error reduction ratio (ERR) criterion [Billings et al.,
1988, 1989; Korenberg et al., 1988; Chen et al., 1989] can be used to determine which terms should be included

in the model.

4. Simulation Studies
Two examples, one with a continuous and the second with a discontinuous static nonlinearity, will be used to

illustrate the application of the new identification procedure.




4.1 Example 1
Consider the following Hammerstein model
iy D25
o 1-1.8z7 +0.825272 =
0 0 <fu(@®)| <1
_ _ sgn(u(?)) 1< [u(t))’ <2
Wi =)= 0.5u(r)|sen(u(s))  2<fu(r)|<4 W
2sgn(u(t)) 4<u(®))

where sgn(u) is a function whose value is defined to be 1 for >0, -1 for u<0, and 0 for 4=0. The noise £(¢) was

assumed to be a Gaussian white noise with a standard deviation o - =0.1.

The system was initially simulated using a PRBS input with one amplitude of * 4. Figure 2 shows the first
200 points of this input. Based on 500 input-output data points and using the forward regression OLS-ERR
algorithm[Billings et al., 1988, 1989; Korenberg et al., 1988; Chen et al., 1989], the liner dynamic model was
identified to be

-1
f) = 0.2504T
1.0201-1.7886z7" +0.82232

(19)

This model was then used to identify the static nonlinearity in the next step, where a random input sequence u(z)
uniformly distributed in the interval [-5, 5] was used as the system input. Altogether 1000 input-output data
points were used to identify the static nonlinearity. The Haar wavelet and scaling functions (the first order B-
spline wavelet and scaling functions) were used to describe the static nonlinearity with the initial and the
truncated high resolution scale levels Jo=0 and J=3, respectively. The Haar scaling and mother wavelet
functions are respectively defined as follows

) 1 for 0<x<l 20)
#(x)= 0
0 otherwise (

1 0<x<1/2
px)=5-1 1/2<x<l (21)
0 otherwise '

The static nonlinearity can be described as

4 3 22
8= Y Coubos @)+ Y B0, w(®)) , u(t) e[~4,4] (22)
k=—4 J=0 k=-2+2

Finally from Eq. (15), the Hammerstein model can be described as
z(£)=1.0201y(r) - 1.7886 y(t — 1) + 0.8223y(r - 2)

=0.2504g(u(t - 1)) + £(2)

4 3 2
= D 02504a,y, (ut 1)+ 37025048,,0,, (u(t -1) +£(¢2) (23)
ke=—4 J=0 f=-2"*2
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Figure 3 The static nonlinearity recovered from the identified multiresolution Haar wavelet model for Example 1

Note the model (23) contains 133 wavelet basis functions(candidate model terms), and 67 significant model
terms (wavelet basis functions) were selected using the OLS-ERR algorithm[Billings et al., 1988, 1989;
Korenberg et al., 1988; Chen et al., 1989] with a cutoff value of ©=0.0005 for algorithm t ermination. T his
cutoff value also d efines an approximate accuracy for the representation. Ordering the 67 selected significant

wavelet basis functions using a single index m, the identified model for the static nonlinearity can be expressed

as
67
g@(®) = ) 6,B,,(u(r)) 24)
m=1
where B, (-) (m=1,2,...,67) indicates the dilated and translated Haar wavelet/scaling basis functions.
By setting the input signal as a ramp function, that is, u(£)=t, the static nonlinearity can be recovered from the

identified model (24) and this is shown in Figure 3, which clearly indicates that the static nonlinearity was

accurately identified.

4.2 Example 2
Consider a Hammerstein system where the linear dynamics were the same as in Example 1, but the static

nonlinearity was described by the following continuous function

loepCu’() u(t)<2
w(t) = f () =4 1+ exp(-u* (£)) (25)
— sgn(u(t) 2 <lu))

7
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The linear d ynamics w ere i dentified in the same way as in Example 1 and the resulted model is the same as
model (19). To identify the static nonlinearity, a random sequence u(f) uniformly distributed in the interval [-
3,3] was used as the system input. A total of 600 input-output data points were used for identification. The fourth

order B-spline wavelet and scaling functions were used to describe the static nonlinearity with the initial and the

truncated high resolution scale levels j, =0 and J=2, respectively. The static nonlinearity can be described as

1 2 2/
g@)= Y osbos N+ D Bia0, ) , u(t)e[-2.2] (26)
k=-5 J=0 k=—2"*_¢g

From Egq. (15), the Hammerstein model can be described as
z(t)=1.0201y(z) —1.7886y(t — 1) + 0.8223y(¢ - 2)
=0.2504g(u(t -1)) +£(@)

1 2 2/
= Z0.2504@:(,,,:;;5‘,,,r (u(¢-1))+2 20.2504,61.,,@ =) +&@) @7
k==5 J=0 k=—27*_¢

Although altogether 81 wavelet basis functions(candidate model terms) were involved in the initial model (27),
only 12 significant model terms (wavelet basis functions) were selected using the OLS-ERR algorithm[Billings
et al., 1988, 1989; Korenberg et al., 1988; Chen et al., 1989] with a cutoff value of p =10 “* for the algorithm

termination. This cutoff value also defines an approximate accuracy for the representation. The final identified

model for the static nonlinearity was found to be

g(u)=1.69771469 gy, (1)  +0.18352418 ¢, _, (1) -0.18724256 ¢, , ()

-1.69902113 8, _, () +1.59785418 0, o (u) -0.95245890 ¢, _, ()

+0.28092308 @, _; (1) -0.27990980 @, _, (1) +0.96395753 @, _¢ ()
-1.70618033 @, _, (1) +0.0320097 @, 5 (1) +0.02370121 @, () (28)

where @, (x)= 2712 (27 x — k) and ¢, (x)= 272¢(2 x—k) are the 4th-order B-spline wavelet and

scaling functions. The recovered static nonlinearity from the identified model (28) is shown in Figure 4, which

clearly indicates that the identified model is excellent.

Figure 4 Comparison of the recovered static nonlinearity from the identified multiresolution B-spline wavelet model with
the actual static nonlinearity for Example 2. (Solid: the actual; Dashed: the identified).




In the two examples given in sections 4.1 and 4.2, the static nonlinearity function were both anti-symmetric
about the origin. The anti-symmetric property of the nonlinear element is not required by the new identification
algorithm. A non- symmetric static nonlinearity could also be successfully identified using the new wavelet-

based identification approach.

5. Conclusions

A new approach for identifying the Hammerstein model has been proposed using multiresolution wavelet
decompositions. The static nonlinearity and the linear dynamic subsystem can be identified separately under
some mild constrains, where the static nonlinearity is assumed to be bounded and to saturate outside a known
interval. No a priori knowledge is assumed for the static nonlinearity inside the interval. The main advantage of
the new approach over existing methods is that, the static nonlinearity can be an arbitrary function, which can
contain jumps or discontinuities. It was shown that multiresolution wavelet decompositions can be used to
describe any arbitrary static function with a required accuracy. The disadvantage of the new algorithm is that a
boundary value for the static nonlinearity is assumed to be known. One aspect of further studies includes

removing the boundary constraint imposed on the static nonlinearity.

Acknowledgment
The authors gratefitlly acknowledge that part of this work was supported by EPSRC.

References

Al-Duwaish, H., Karim, M.N. and Chaodrasekar, V. (1997). Hammerstein model identification by multilayer
feedforward neural networks. International Journal of Systems Science, 28(1), 49-54.

Billings, S.A. and Fakouri, S.Y. (1979). Nonlinear system identification using the Hammerstein model.
International Journal of Systems Science, 10(5), 567-578.

Billings, S.A., Korenberg, M. and Chen, S.(1988). Identification of nonlinear output-affine systems using an
orthogonal least-squares algorithm. International Journal of Systems Science, 19(8),1559-1568.

Billings,S.A., Chen,S. and Korenberg,M.J.(1989). Identification of MIMO non-linear systems suing a forward ‘
regression orthogonal estimator. International Journal of Control, 49(6),2157-2189.

Billings, S.A. and Coca, D.(1999). Discrete wavelet models for identification and qualitative analysis of chaotic
systems. International Journal of Bifurcation and Chaos, 9(T), 1263-1284.

Chen, S., Billings,S.A., and Luo,W.(1989). Orthogonal least squares methods and their application to non-linear
system identification. International Journal of Control, 50(5),1873-1896.

Chang, F.H.I. and Luus, R. (1971). A noniterative method for identification using Hammerstein model. IEEE
Trans. Automatic Control, AC-16, 464-468.

Chui, C. K.(1992). An introduction to wavelets. Boston : Academic Press.

Chui, C. K., and Wang, J. Z.(1992). On compactly supported spline wavelets and a duality principle. Trans. of
the American Mathematical Society, 330(2), 903-915.

Coca, D. and Billings, S.A.(2001). Non-linear system identification using wavelet multiresolution models.
International Journal of Control, 74(18),1718-1736.

Daubechies, 1.(1992). Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philaelphia,
Pennsylvania.

Gallman, P.G.(1975). An iterative method for the identification of nonlinear systems using Uryson model. IEEE

9




Trans. Automatic Control, AC-21, 124-126.

Gallman, P.G.(1976). A comparison of two Hammerstein model identification algorithms. IEEE Trans.
Automatic Control, AC-21, 124-126.

Giri, F., Chaoui, F.Z. and Rochdi, Y.(2001). Parameter identification of a class of Hammerstein plants.
Automatica, 37(5), 749-756.

Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein systems using kernel regression
estimates. IEEE Trans. Automatic Control, 31(1), 74-77.

Greblicki, W. and Pawlak, M. (1987). Hammerstein system identification by nonparametric regression
estimation. International Journal of Control, 45(1), 343-354.

Greblicki, W. (1989). Non-parametric orthogonal series identification of Hammerstein systems. International
Journal of Systems Science, 20(12), 2355-2367.

Greblicki, W. and Pawlak, M. (1989). Nonparametric identification of Hammerstein systems. IEEE Trans.
Inform. Theory, 35(2), 409-418.

Greblicki, W. and Pawlak, M. (1994). Nonparametric recovering nonlinearities in block oriented systems with
the help of Laguerre-polynomials. Control-Theory and Advanced Technology-Part 1,10(4) , 771-791.

Hwang, C.Y. and Shyu, K.K. (1988). Series expansion approaches to the analysis and identification of discrete
Hammerstein systems. International Journal of Control, 47(6), 1961-1972.

Korenberg, M., Billings, S.A., Liu, Y. P. and Mcllroy P.J.(1988). Orthogonal parameter estimation algorithm for -
non-linear stochastic systems. International Journal of Control, 48(1),193-210.

Krzyzak, A.(1989). Identification of discrete Hammerstein systems by the Fourier series regression estimate.
International Journal of Systems Science, 20(9), 1729-1744.

Lang, Z.Q. (1997). A nonparametric polynomial identification algorithm for the Hammerstein system. JEEE
Trans. Automatic Control, 42(10), 1435-1441.

Li, H.X.(1999). Identification of Hammerstein model using genetic algorithms. JEE-Control Theory and
Applications, 146(6), 499-504.

Liu,G.P., Billings,S.A. and Kadirkamnathan, V.(2000). Nonlinear system idntification using wavelet networks.
International Journal of Systems Science, 31(12), 1531-1541.

Mallat,S.G.(1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans.
On Pattern analysis and machine intelligence, 11(7), 674-693.

Narenda, K.S. and Gallman, P.G.(1966). An iterative method for the identification of nonlinear systems using
the Hammerstein model. IEEE Trans. Automatic Control, AC -11, 546-550.

Pawlak, M. and Hasiewicz, Z.(1998). Nonlinear system identification by the Haar multiresolution analysis. IEEE
Trans. Circuits and Systems I-Fundamental Theory and Application, 45(9), 945-961.

Stoica, P. and Soderstrom, T. (1982). Instrumental-variable methods for identification of Hammerstein systems.
International Journal of Control, 35(3), 459-476.

Thatachar, M.A.L. and Ramaswamy, S.(1973). Identification of a class of nonlinear systems. International
Journal of Control, 18, 741-752.

Voros, J.(1997). Parameter identification of discontinuous Hammerstein systems, dutomatica, 33(7), 1351-1355.
- Wei, HL., and Billings, S.A.(2002). Identification of time-varying systems using multi-resolution wavelet
models. International Journal of Systems Science, 33(15), 1217-1228.

Zhu, Y.C.(2000). Hammerstein model identification for control using ASYM. International Journal of Control,
73(18), 1692-1702.

10




